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Abstract. Possibilistic networks are the counterpart of Bayesian networks in the
possibilistic setting. There exist two types of Bayesian nets depending if a qualita-
tive or a quantitative conditioning is used. Possibilistic nets have only been stud-
ied and developed from a reasoning-under-uncertainty point of view until now. In
this short note, for the first time, one advocates their interest in preference mod-
eling. Beyond their graphical appeal, they can be shown as providing a natural
encoding of preferences agreeing with the inclusion-based partial order applied
to the subsets of preferences violated in the different situations. Moreover they do
not encounter the limitations of CP-nets in terms of representation capabilities.
They also enjoy a logical counterpart that may be used for consistency checking.
This short note provides a comparative discussion of the merits of possibilistic
networks with respect to other existing preference modeling frameworks.

1 Introduction

Preferences are usually expressed by means of pieces of information in a local manner,
rather than as a complete preorder between the different possible states of the world.
This state of facts has led AI researchers to propose compact representation formats
for preferences and procedures for computing a plausible ranking between completely
described situations from such representations, in the last fifteen years. Conditional
preference networks [5] (CP-nets for short) have emerged as a popular reference setting
for representing preferences, leading to different refinements [4, 13], as well as some
alternative approaches [3, 7, 11]. See [6] for a brief overview. Inspired from Bayesian
nets, CP-nets inherit their graphical nature, and besides, rely on a simple, apparently
natural principle, named ceteris paribus, which allows to extend any contextual prefer-
ence “in context c, I prefer a to ¬a” (denoted for short c : a � ¬a), to any particular
specification b of the other variables used for describing the considered situations, i.e.,
the preference is understood as ∀b, cab is preferred to c¬ab.

The CP-net approach perfectly exemplifies the ingredients needed for a satisfac-
tory completion of preferences, stated in a possibly conditional manner, into a preorder
useful for a user: i) a simple representation setting, preferably having a graphical coun-
terpart for elicitation ease, ii) a natural principle for making explicit the preferences
between completely described situations, and iii) an algorithm for determining how to
compare two complete situations according to the existence of a path of worsening flips
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linking them. In spite of their appealing features, CP-nets have some limitations. First,
there exist preorders that make sense and for which there does not exist any CP-net that
can be associated to them. Moreover, they tend to force some debatable priorities be-
tween preferences associated to nodes in the CP-nets, beyond what is really expressed
by the preferences one starts with [9, 10].

In this short paper, we advocate possibilistic networks as a valuable tool for rep-
resenting preferences. First, possibilistic nets are the counterpart of Bayesian nets in
possibility theory, based on a possibilistic Bayesian-like conditioning rule. Although
they have been only used for uncertainty modeling until now, they can serve preference
modeling purposes as well, as shown in the following, without having the CP-nets lim-
itations mentioned above. The paper is organized as follows. Section 2 provides a brief
background on possibilistic networks. Then Section 3 proposes and explains their use
in preference modeling and establishes some properties. The paper ends with a short
discussion comparing CP-nets and the preference possibilistic network.

2 Possibilistic networks

Let V = {V1, . . . , VN} be a set of N variables. Each variable Vi has a value domain
D(Vi). vi denotes any value of Vi. Ω = {ω1, . . . , ωi} denotes the universe of dis-
course, which is the Cartesian product of all variable domains in V . Each element
ωi ∈ Ω is called an interpretation. We start by a brief recall of possibility theory [8,
14] which relies on the idea of a possibility distribution π, which is a mapping from
a universe of discourse Ω to the unit interval [0, 1], or to any bounded totally ordered
scale. This possibilistic scale could be interpreted in twofold: a numerical interpre-
tation when values have a real sense and an ordinal one when values only reflect a
total preorder between the different interpretations. π(ωi) = 0 means that ωi is fully
impossible, while π(ωi) = 1 means that ωi is fully possible. The possibility distri-
bution π is normalized if ∃ ωi ∈ Ω s.t, π(ωi) = 1. Given a normalized possibil-
ity distribution π, we can describe the uncertainty about the occurrence of an event
A ⊆ Ω via a possibility measure Π(A) = supωi∈A π(ωi) and its dual necessity mea-
sure N(A) = 1 − Π(Ā) = 1 − supωi /∈A π(ωi). Measure Π(A) evaluates to which
extend A is consistent with the knowledge represented by π while N(A) evaluates at
which levelA is certainly implied by the π. Conditioning in possibility theory is defined
from the Bayesian-like equationΠ(A∩B) = Π(A|B)⊗Π(B), where⊗ stands for the
product in a quantitative setting (numerical) or for min in a qualitative setting (ordinal).

Possibilistic networks [1, 2] are defined as counterparts of Bayesian networks [12]
in the context of possibility theory. They share the same basic components, namely:
(i) a graphical component which is a DAG (Directed Acyclic Graph) G= (V,E) where
V is a set of nodes representing variables and E a set of edges encoding conditional
(in)dependencies between them.
(ii) a numerical component associating a local normalized conditional possibility distri-
bution to each variable Vi ∈ V in the context of its parents (denoted by pa(Vi)). The two
definitions of possibilistic conditioning lead to two variants of possibilistic networks:
in the numerical context, we get product-based networks, while in the ordinal context,
we get min-based networks (also known as qualitative possibilistic networks). Given a
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possibilistic network , we can compute its encoded joint possibility distribution using
the following chain rule: π(V1, . . . , VN ) = ⊗i=1..N Π(Vi | pa(Vi)) where ⊗ is either
the min or the product operator ∗ depending on the semantic underlying it.

3 Modeling preferences with a possibilistic network

In this section, we introduce a new approach, based on product-based possibilistic net-
works, for representing preferences. We use the product-based conditioning to avoid
the drowning problem of the minimum operator and then increasing the discriminating
power. In this approach, possibility degrees may remain symbolic but stands for num-
bers. As we shall see, the representation is particularly faithful to the user’s preferences.

The ordering between interpretations obtained from this compact representation
fully agrees with the inclusion ordering associated with the violation of preference
statements. In the sense that if an interpretation ωi violates all the preferences vio-
lated by another interpretation ωj plus some other(s), then ωi is strictly preferred to ωj .
Moreover, the relative importance of preferences can be easily taken into account when
available. To illustrate the idea of representing preferences by means of possibilistic
networks, we shall use the following example inspired from the CP-net literature [5].

Example 1 Let us consider a simple example about a night dressing with 4 variables
standing for shirt (S), trousers (T ), jacket (J) and shoes (H) s.t D(S) = {black(s),
red(¬s)}, D(T ) = {black(t), red(¬t)}, D(J) = {red(j), white(¬j)} and D(H) =
{white(h), black(¬h)}. The preference conditional set is:
The user prefers to wear a black shirt to a red one.
He prefers to wear black trousers to red ones.
If he wears a black shirt and black trousers, he prefers to wear a red jacket to a white one.
If he wears a black shirt and red trousers, he prefers to wear a white jacket.
If he wears a red shirt and black trousers, he prefers to wear a red jacket.
If he wears a red shirt and red trousers, he prefers to wear a white jacket.
If he wears a red jacket, he prefers to wear white shoes to black ones.
If he wears a white jacket, he prefers to wear black shoes.

The universe of discourse associated to this example is:
Ω = {ω1 = tjsh, ω2 = tjs¬h, ω3 = tj¬sh, ω4 = tj¬s¬h, ω5 = t¬jsh, ω6 = t¬js¬h,
ω7 = t¬j¬sh, ω8 = t¬j¬s¬h, ω9 = ¬tjsh, ω10 = ¬tjs¬h, ω11 = ¬tj¬sh, ω12 =
¬tj¬s¬h, ω13 = ¬t¬jsh, ω14 = ¬t¬js¬h, ω15 = ¬t¬j¬sh, ω16 = ¬t¬j¬s¬h}.

The preference description is assumed to be given under the form of conditional state-
ments of the form c : a � ¬a where c stands for the specification of a context in terms
of Boolean variable(s) and a is a Boolean variable. Unconditional preferences corre-
spond to the case where c is the tautology >. The graphical structure of the network
is then directly determined from this description (as in the CP-net case). Namely each
variable corresponds to a node and conditional preferences are expressed by means of
edges. The possibilistic preference table (ΠP -table for short) associated to a node is
defined in the following way. To each preference of the form c : a � ¬a, pertaining to
a variable A whose domain is {a,¬a}, is associated the conditional possibility distri-
bution Π(a|c) = 1 and Π(¬a|c) = α where α is a symbolic weight such that α < 1.
We write Π(·|>) = Π(·).
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Fig. 1. A possibilistic network
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Fig. 2. The Inclusion-based ordering

Figure 1 gives the possibilistic graph associated to the Example 1. For instance,
the corresponding conditional possibility distribution of the variable H is Π(h|j) =
1 and Π(¬h|j) = ε1, Π(¬h|¬j) = 1 and Π(h|¬j) = ε2. Thanks to conditional
independence relations as exhibited by the graph, and using the product-based chain
rule, we have: π(TSJH) = Π(H|J) ∗Π(J |TS) ∗Π(T ) ∗Π(S).

We are then in position to compute the symbolic possibility degree expressing the
satisfaction level of any interpretation. For instance, π(ω4) = Π(¬h|j) ∗ Π(j|t¬s) ∗
Π(t) ∗ Π(¬s) = ε1δ2β. Similarly, π(ω3) = Π(h|j) ∗ Π(j|t¬s) ∗ Π(t) ∗ Π(¬s) =
δ2β. Then, based on the fact that ∀ α, α < 1, and ∀α, β, α ∗ β < min(α, β), we
can define a partial order �Π between interpretations under the form of a possibility
distribution. In fact, given two interpretations ωi, ωj ∈ Ω, ωi �Π ωj iff π(ωi) >
π(ωj). Thus, for instance, ω3 �Π ω4. Besides, π(ω6)= δ1 and π(ω14) = αδ3, thereby
ω6 and ω14 remain incomparable. However, if we further assume α < δ1 expressing
that the unconditional preference associated with a node T is more important than the
preference ts : j � ¬j, we become in position to establish that ω6 �Π ω14. Therefore,
the approach leaves the freedom of specifying the relative importance of preferences.

Assume that for each node, i.e. each variable Vi ∈ V , two distinct symbolic weights
are used, one for the context where the preferences associated with each parent nodes
are satisfied, one smaller for all the other contexts. For instance, the symbolic weights
of the variable J become δ1 > δ2 = δ3 = δ4 and those of the variable H become
ε1 > ε2. The partial order induced from the possibilistic network (without adding other
constraints between symbolic weights) is then faithful to the inclusion order associated
to the violated constraints. It is, in fact, exactly the same ordering. This is due to the
non comparability between some symbolic weights (following from the use of product).
Figure 2 shows the inclusion-based order induced by the possibilistic graph with these
additional assumptions. We should mention that the approach presented here can be
extended to handle multivalued variables and cyclic preferences.

4 Comparison with CP-nets and concluding remarks

CP-nets [5] are based on the ceteris paribus principle. As can be seen on the previous
example (where ω6 and ω14 are incomparable, while> : t � ¬t), possibilistic networks
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do not obey that latter principle. The order induced by the CP-net is a refinement of the
possibilistic order �Π , if no constraints about the relative importance of preferences
are added. CP-nets are, in some sense, too bold and too cautious. Too bold since, as
a result of the systematic application of the ceteris paribus principle, some priority is
given to preferences associated to parent nodes which cannot be questioned and mod-
ified, as already said. Too cautious since they usually lead to a partial order while a
complete preorder may be more useful in practice. The basic ordering associated to
a possibilistic network is just the inclusion-based ordering, which can then be com-
pleted by adding relative importance constraints. In particular, a complete ordering of
the symbolic weights leads to a complete preordering of the interpretations. It may be
that CP-net orderings also respect the inclusion-based order, although it has apparently
never been investigated.

Example 2 Figures 3 and 4 show, respectively, the order induced by the CP-net and
possibilistic network of Figure 1. Here we assume α = β < δ1 < δ2 = δ3 = δ4 <
ε1 < ε2. For instance, let us consider the interpretations ω7 and ω16. In contrast to the
possibilistic network, which gives a total preorder, the CP-net considers these two inter-
pretations as incomparable. We notice that both interpretations violate two preferences:
associated to a parent and to a grandchild for ω7, and to two parents preferences for
ω16. As expected, ω7 is preferred to ω16 in the possibilistic network as their possibility
degrees are respectively π(ω7) = βε2 and π(ω16) = αβ.
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Fig. 3. The order induced by the CP-net Fig. 4. The order induced by the possibilistic network

Moreover, CP-nets are sometimes unable to represent some user preferences.

Example 3 Let us consider two binary variables A and B standing respectively for
“vacations” and “good weather”. Suppose that we have the following preference or-
dering: ab � ¬a¬b � a¬b � ¬ab. We observe that this complete preorder can-
not be represented by a CP-net, while the possibilistic network can display it. In fact,
given two variables we can define two possible structures: either A depends on B or
inversely, both of them are unable to capture this order in the CP-net setting. How-
ever, such preferences can be represented by a joint possibility distribution such that:
π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab). Since any joint possibility distribution can



6

be decomposed into conditional possibility distributions as shown by the possibilistic
chain rule, any complete preorder can be represented by a possibilistic net. Here, we
have > : a � ¬a, a : b � ¬b and ¬a : ¬b � b. It corresponds to a network with
two nodes with their corresponding conditional possibility distributions: Π(a) = 1,
Π(¬a) = α, Π(b|a) = 1, Π(b|¬a) = γ, Π(¬b|a) = β and Π(¬b|¬a) = 1. This
yields π(ab) = 1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) = αγ taking α > β and
β = γ.

Lastly, it is important to mention that one of the advantages of the possibilistic graph is
its ability to be translated into a possibility logic base [2, 9, 10] that can be used for ex-
ecuting the preference queries. This short note has outlined a preliminary presentation
of possibilistic networks as providing a convenient setting for acyclic preference repre-
sentation. This setting remains close to the spirit of Bayesian networks since it relies on
directed acyclic graphs, but is flexible enough, thanks to the introduction of symbolic
weights, for capturing any ordering agreeing with the inclusion-based ordering. Further
research is still needed for investigating their potential in greater detail.
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