
1

Université de Tunis
Institut Supérieur de Gestion
LARODEC Laboratory

Resource-Constrained
Project Scheduling Problem:

A Multi-Objective model
with contingency

Elaborated by: Olfa Dridi Ben Zekri

Co-advised by: Fouad Ben Abdelaziz

Saoussen Krichen

june 2007

2

To the memory of my Grand Mother,

To my dear parents,

To my husband Riadh,

To my sisters,

To all my family and my friends.

Acknowledgements

I am deeply indebted to my supervisors Professor Fouad Ben Abdelaziz and

Mrs Saoussen Krichen for their support, encouragement and valuable dis-

cussions concerning this research. I greatly benefited from their guidance

during this work.

I wish to thank all person who provided me information, advice, criticism

and encouragement.

3

Contents

General introduction 11

1 Multi-Objective Resource-Constrained Project Scheduling

problem: A survey 14

1.1 Introduction . 14

1.2 Description of the problem . 15

1.2.1 Definition of the RCPS problem 15

1.2.2 Definition of a Course Of Actions (COAs) 16

1.2.3 Definitions of planning and scheduling 17

1.2.4 Notation . 18

1.2.5 Mathematical formulation 18

1.2.6 An illustrative example 19

1.3 The classification of resource-constrained project scheduling

problem . 22

1.3.1 Single mode RCPSP 22

1.3.2 Multi-mode RCPSP 23

1.3.3 RCPSP with non-regular objective functions 23

1.3.4 Stochastic RCPSP . 24

1.3.5 Bin-packing-related RCPSP 24

1.3.6 Multi-RCPSP . 25

1.4 Multi-modes and multi-objective RCPSP 25

4

5

1.4.1 Resolution of the multi-mode RCPSP with the PRA

procedure . 27

1.4.2 Main features of the PRA approach 28

1.4.3 Description of the PRA algorithm 30

1.5 Conclusion . 32

2 Contingency planning 33

2.1 Introduction . 33

2.2 Definition of contingent plan 34

2.3 Need for contingency planning 35

2.4 The classification of contingency plans 35

2.4.1 Conditional plans . 35

2.4.2 Probabilistic plans . 36

2.4.3 Probabilistic and Conditional plans 37

2.5 An illustrative case . 37

2.6 Evaluation of contingency plans 40

2.7 A survey of contingency plans 40

2.7.1 C-Shop plan . 40

2.7.2 C-MaxPlan . 41

2.7.3 Cassandra plan . 41

2.8 Conclusion . 41

3 Metaheuristics: An Overview 43

3.1 Introduction . 43

3.2 Tabu Search . 44

3.2.1 TS: preliminaries . 44

3.2.2 The algorithm . 45

3.3 Genetic Algorithm . 46

3.3.1 Adaptation of biological evolution 46

3.3.2 Difference and analogy between GAs and traditional

methods . 47

6

3.3.3 The algorithm . 48

3.4 Ant System . 49

3.4.1 The Natural Archetype 49

3.4.2 Background . 50

3.4.3 A brief description of the metaheuristic 51

3.4.4 The algorithm . 53

3.5 Conclusion . 53

4 An Ant based approach for multi-objective RCPS problem 55

4.1 Introduction . 55

4.2 Problem statements . 56

4.2.1 Notation . 59

4.2.2 Mathematical formulation of the problem 60

4.3 The Ant based approach . 64

4.3.1 The adaptation of the Ant System 64

4.3.2 The implementation strategy for the Multi-Objective

RCPS problem . 65

4.3.3 The global algorithm 69

4.3.4 The ACS-cost . 70

4.3.5 The ACS-time . 70

4.3.6 A description of soft and hard environments 71

4.4 Examples . 72

4.4.1 Example 1 (n = 6) . 72

4.4.2 Example 2 (n = 11) 74

4.4.3 Example 3 (n = 50) 77

4.5 Case studies . 79

4.5.1 A RCPSP with n = 100 80

4.5.2 A RCPSP with n = 200 81

4.6 Lower Bound . 82

4.7 Computational experiments 83

4.8 Conclusion . 86

7

General conclusion 87

Bibliography 88

A An example with 100 tasks 94

List of Tables

1.1 Links between TS and PRA method 29

3.1 Analogy between GA and Traditional Methods 48

3.2 Analogy between real ants and artificial ants 53

4.1 A RCPS problem with n = 6 and k = 4 72

4.2 A RCPS problem with n = 11 and k = 12 75

4.3 Average deviations from the lower bound 83

4.4 Comparison between the 2 methods TS and AA 84

4.5 CPU time . 84

8

List of Figures

1.1 The course of actions . 17

1.2 An illustrative example of the RCPS problem with n = 4 and

k = 2 . 21

1.3 The optimal solution for the illustrative example 22

1.4 The Progressive Resource Allocation procedure 28

1.5 The intensification and diversification stages 30

2.1 The contingency planning . 34

2.2 The probabilistic plan . 36

2.3 Classical plan . 38

2.4 Stochastic plan . 38

2.5 Conditional plan . 39

3.1 How real ants find the shortest path 50

4.1 the structure of the RCPS problem 58

4.2 Availability calendar . 61

4.3 A solution structure to the RCPS problem 63

4.4 General scheme of the Ant based method 68

4.5 The structure of the RCPS problem n = 6 and k = 4 73

4.6 Chart of potentially efficient solutions corresponding to the

number of ants n = 11 . 77

4.7 Chart of potentially efficient COAs n = 50 78

4.8 Chart of potentially efficient COAs n = 100 81

9

10

4.9 Comparison between TS(square points) and AA(triangular

points) for problem P15 . 85

General introduction

Many real-life decision situations involve multiple objectives that should

be simultaneously optimized. These objectives are generally conflicting and

heterogeneous [22]. Such a decision problem is called a Multi-Objective

Optimization problem (MOP). This kind of problems has increased tremen-

dously in almost various domains such as industry, engineering and schedul-

ing. To solve MOPs, classical methods reformulate them into a single ob-

jective optimization problem by using an aggregation function [15]. This

aggregation requires an interactive approach, in other words, allows the de-

cision makers (DMs) to incorporate his preferences and priority for each

objective into a decision process [28]. The optimization of such problem

provides a single optimal solution. But, it is often not advisable to reduce

the MOP to a scalar optimization. It is preferable to tackle them as MOP.

In these cases not a single solution can be found but a set of efficient solu-

tions or pareto-optimal solutions.

The majority of the multi-objective combinatorial optimization problems

have conflicting criteria and hard constraints that should be optimized and

satisfied at the same time. Therefore, they are classified as NP -hard prob-

lems : they need an exponential time to be solved. So, it is impossible or

very difficult to solve them in a reasonable time. In this sense, the feasi-

ble way to solve this NP -hard problem is the use of heuristic approaches,

i.e. approximate algorithm, to obtain potentially non-dominated solutions.

There are two type of approximate algorithms : construction algorithms as

11

General introduction 12

greedy algorithm and local search algorithm, and improvement algorithms as

the Tabu Search algorithm.

In the field of combinatorial optimization problems, we turn our attention to

the well-known Resource-Constrained Project Scheduling Problem (RCPSP)

which is one of the most important problems in project scheduling domain.

It is a generalization of the job-shop problem one of the most studied prob-

lem in combinatorial optimization theory [3] [4]. There are many variants of

the RCPSP; multi-mode, single mode, with non pre-emptive or pre-emptive

resources, renewable or non-renewable resources [38].

The classical RCPSP tries to schedule activities in order to minimize the

makespan of the project without violating precedence and resource availabil-

ity constraints. An overview of heuristic and exact methods can be found

in [24][23]. However, in real life situations scheduling problems require the

consideration of several objectives that are to be optimized simultaneously.

Such objectives are conflicting by nature as the time duration of the project

and the cost of the resources used to perform the activities of the project.

The literature on multi-objective RCPS problem is scant. However, in sin-

gle objective case, this problem was extensively studied. That’s why, in the

existing literature there are a large variety of heuristic and exact methods

proposed to solve each variants of uni-objective RCPSP. Some researchers

consider the problem with single mode aspect, others consider the prob-

lem with multiple mode where activities can be pre-emptive or not. As

: Merkle et al. [33] [32], who present the first application of Ant System

metaheuristic to solve the single mode and uni-objective RCPS problem,

Demeulemeester et al. [10] developed an exact method for solving single

mode and uni-objective RCPSP by applying an implicit enumeration proce-

dure of the Branch-and-Bound. Genetic Algorithm has been also applied to

uni-objective RCPSP [37]. About the multi-objective RCPS problem, Bel-

fares et al. [4] presented a Tabu Search method that consists in modelling

the course of actions planning as a multiple mode RCPSP. Belfares et al. [4]

General introduction 13

proposed a progressive resource allocation method based on the Tabu Search

metaheuristic and multi-objective concepts. Al-Fawzan and Haouari [2] de-

veloped a method based on Tabu Search to solve the single mode RCPSP

with two objectives: makespan and robustness.

It is note worthy that real world environment is usually characterized by

uncertain and incontrollable informations. Therefore, it seems that classical

approaches are inefficient. In fact, they neglected the state of the environ-

ment and its instantly evolution. Hence, the production of contingent plans

is necessary in the planning process. In this research, we introduce and de-

fine the concept of contingency planning and we develop a multi-objective

RCPS model with a multi-mode feature and contingency. For that, we pro-

pose a new method based on Ant System metaheuristic and multi-objective

concepts to raise the issue of the environment uncertainty and to schedule

activities.

This thesis is framed as follows:

Chapter 1 deals with the definition and the classification of the RCPS prob-

lems.

Chapter 2 draws upon the definition and the utility of contingent plans in

the planning process and provides a description of some categories of plan-

ning under uncertainty.

Chapter 3 contains an overview of the main metaheuristics used to tackle

the multi-objective combinatorial optimization problems.

In chapter 4 we present our contribution and consists in developing a new

approach to handle the aspect of uncertainty in the planning process. We

finish by conclude this thesis.

Chapter 1

Multi-Objective

Resource-Constrained

Project Scheduling problem:

A survey

1.1 Introduction

Facing the globalisation and the growing number of international competi-

tors, and in an attempt to promote development and to avoid failure, the

manager should predict a good plan. Hence, in project scheduling prob-

lems planning and scheduling activities are viewed profoundly important to

generate plans and to maximize the utilization of scarce resources. Thus,

finding a feasible and efficient plan is a considerable challenge.

In this respect, the well known Resource-Constrained Project Scheduling

(RCPS) represents the most important problem in project scheduling. There

are many variants of this problem; multi-mode, single mode, with non pre-

emptive or pre-emptive resources, renewable or non-renewable resources

[38]. The classical RCPSP tries to find suitable solution in order to op-

14

Multi-Objective Resource-Constrained Project Scheduling problems: A survey15

timize the makespan, i.e. to find the best resource allocation for a given set

of activities/tasks. But, in real-life the scheduling problem requires the con-

sideration of several objectives, generally conflicting, as the time duration

of the project and the cost of the resources used to perform the activities of

the project. Thus, the project manager faces the problem of finding good

feasible schedules taking into account multiple objectives and not a single

objective. In this context, the notion of optimality is replaced with the

notion of efficiency and instead of a single optimal solution we deal with a

set of trade-offs called efficient solutions or Pareto-optimal solutions. The

literature on multi-objective RCPS problem is scant, hence, there are few

papers about it.

The multi-objective RCPS problem is considered as an NP -Hard problem

[1]. For that, metaheuristics are applied. In the literature we can find the

Tabu Search algorithm [5] [4], The Ant Colony Optimization algorithm

[16].

This chapter is structured as follows: in the first part we will define the

problem. Next, we will present the mathematical formulation and provide

an illustrative example. Then, we will define the classification of the RCPS

problem. Finally, we will present an instance of multi-objective RCPSP.

1.2 Description of the problem

1.2.1 Definition of the RCPS problem

Resource-Constrained Project Scheduling problem can be defined as a set of

resources with limited capacities to be assigned to a set of tasks or activities

to be performed. The tasks are interrelated by precedence constraints that

enforce them to be started only if their predecessors were accomplished. The

structure of this problem can be depicted as an acyclic graph where nodes

represent tasks and arcs represent precedence relations. Thus, the objective

of the RCPS problem is to find a suitable assignment of the resources to the

Multi-Objective Resource-Constrained Project Scheduling problems: A survey16

tasks such that the constraints are fulfilled and in order to optimize some

predefined goals or objectives [4] [33]. There are several objectives to be op-

timized. We can enumerate some of these objectives, stated in the literature

as below [21] [4] [26] :

• The minimum makespan: is the most used and applied objective of a

general project scheduling problem. It reduces the time to complete

the entire project, in other words, is defined as the total time span

between the start and the end of the project;

• The cost minimization : has attracted a lot of attention due to its

practical significance. It consists in reducing the cost of the resources

used and include the case where tasks may be performed in several

mode resulting in different costs;

• The quality maximization: maximize the quality of the project, i.e

improve the quality of the product and services.

1.2.2 Definition of a Course Of Actions (COAs)

We define a project M as a set of n ordered tasks T related by a set of

predecessors Pi, with i = 1, ..., n. To be executed, each task needs a combi-

nation of resources c. The couple (Task ti, Resource c) constitute an action

denoted by aic. Hence, a COA can be represented by a set of tasks to be

accomplished, in such a way the constraints of precedence relationships be-

tween tasks and resources availability are fulfilled [4] [21]. A COA = (aic,

Pi), the COA can be modelled as follows in figure (1.1):

Multi-Objective Resource-Constrained Project Scheduling problems: A survey17

Figure 1.1: The course of actions

1.2.3 Definitions of planning and scheduling

In the literature, the terms planning and scheduling are binded. Thus, the

distinction between them are usually ambiguous. In other words, scheduling

is the determination of suitable allocation of resources to tasks over time and

taking into account the constraints of the problem. As for planning, is the

generation of a sequence of tasks in order to accomplish some goals and

respecting the constraints of the problem [31].

Multi-Objective Resource-Constrained Project Scheduling problems: A survey18

1.2.4 Notation

T : the set of tasks.

K : number of resource.

n : number of task.

ti : the task i.

Pi : the set of predecessors of task i.

Rj : the available quantity of resource of type j.

rj : the resource of type j.

ri,j : the quantity of resource j, j ∈ K, required to task i.

di : the duration of task i.

si : starting time of task i.

fi : finishing time of task i with fi= si + di.

CFj : the fixed costs of resource of type j.

CVj : the in-use costs of resource of type j.

cj : the cost of the resource j.

xij =
{

1 if ti is realized by resource j

0 otherwise

1.2.5 Mathematical formulation

Generally, the most decision problems are multiobjective in nature and we

have to optimize several objectives at the same time. The most frequently

objectives used in the scheduling and resource allocation problems are the

makespan (Cmax), the net present value, the cost, reliability, probability of

success.

The multiobjective RCPSP is defined as the way to assign a set of tasks to

a set of resources with limited capacity in order to optimize M objectives

simultaneously.

Thus, the mathematical formulation can be stated as follows:

Multi-Objective Resource-Constrained Project Scheduling problems: A survey19

Min Cmax (1.1)
...

Min Cost

Subject to:

n∑

i=1

xij rij ≤ Rj , j = 1, . . . , K (1.2)

si ≥ Maxp∈Pi (sp + dp) (1.3)

xij ∈ {0, 1} (1.4)

Equations (1.1) are the objective functions to optimize. The resources avail-

ability constraint (1.2), means that each task i is performed by rij quantity

of resource j that can’t exceed the available quantity Rj . Equation (1.3)

is the predecessor constraint, guarantees that each task i starts if all their

predecessors Pi have been finished. Constraint (1.4) defines the decision

variables, where:

xij=
{ 1 if resource j contributes to the realization of task i.

0 otherwise.

1.2.6 An illustrative example

We have a mission with n tasks n = 4 related by a set of predecessors Pi

and two renewable resource type r1 and r2 which are available with r1 = 4

units and r2 = 5 units each period. To be executed, each task needs a

resource allocation. The solution consists in finding a feasible allocation of

available resources to the set of tasks such that the makespan is minimized,

and the constraints of precedence relationships between tasks and resources

availability are fulfilled. Hence, we have to find the vector ν of the finishing

time of all the tasks ν = (f1, . . . , f4).

Multi-Objective Resource-Constrained Project Scheduling problems: A survey20

In this respect, each task i ∈ T has a duration time di and resource require-

ment ri,j. We suppose that Pi be the set of predecessors of task i, then, task

i must not be started before all its predecessors are finished, i.e fp ≤ si if

tp ∈ Pi. We assume that task 1 must be performed by the r1, task 2 and 3

can be performed by r1 or r2 and task 4 requires r1 and r2. The following

table summarizes the example data:

task j Pi di r1 r2

1 - 3 2 -

2 1 4 3 4

3 1 2 4 3

4 2,3 1 1 4

The example can be formulated as follows:

Min Cmax = Max
4∑

i=1

fi (1.5)

subject to:

4∑

i=1

ri,j ≤ Rj , j = {1, 2} (1.6)

fp ≤ fi − di, i = 1, . . . , 4; tp ∈ Pi (1.7)

fi ≥ 0 i = 1, . . . , 4 (1.8)

Equations (1.5) is the objective function: minimize the finish time of the

project. The resources availability constraint (1.6). Constraint (1.7) en-

forces the precedence relationships between tasks. Constraint (1.8) defines

the decision variables.

The structure of the problem can be represented as an oriented graph with

tasks as nodes and precedence constraints as edges:

Multi-Objective Resource-Constrained Project Scheduling problems: A survey21

Figure 1.2: An illustrative example of the RCPS problem with n = 4 and

k = 2

The objective is to construct a COAs such that the makespan is minimized:

Min Cmax =
∑4

i=1 fi.

The optimal solution Cmax = 8, with the vector ν = (3, 7, 5, 8).

Multi-Objective Resource-Constrained Project Scheduling problems: A survey22

Figure 1.3: The optimal solution for the illustrative example

1.3 The classification of resource-constrained project

scheduling problem

We present in this section a brief survey on the variants of the RCPS prob-

lem. We can find in the literature: the single mode, multi-mode, with non-

regular objective functions, Stochastic feature, bin-packing-related RCPSP

and multi-RCPSP

1.3.1 Single mode RCPSP

For the single-mode RCPSP (SM-RCPSP), each task has a single execution

mode. In other words, for each activity: the processing time and its require-

ments for a set of resources are assumed to be fixed in advance, and only

one execution mode is available [38]. The set of tasks is constrained by the

Multi-Objective Resource-Constrained Project Scheduling problems: A survey23

precedence relationships, for example the task i must be completed before

starting the task j. we distinguish two different precedence relationships:

in the first one task j can start at any time following completion of task i,

in the second one task j must start within some time window following the

completion of task i. We call these latter restrictions General Precedence

Relationships (GPR).

1.3.2 Multi-mode RCPSP

The multi-mode RCPSP (MM-RCPSP) is defined as a RCPS where each

task has to be processed in one of several modes. Each mode implies a

different options in terms of cost, processing time, amount of a particular

resource for achieving the task [38]. For example: a single technician can

finish a given job in 2 days is mode 1, whereas, two technicians can finish

the same job in 1 day is the mode 2. So, the job can be completed by either

mode 1 or mode 2 with different values in terms of cost and time. There are

two different classification of resources used to complete tasks: renewable

or non-renewable. Non-renewable resources are exhausted after a certain

amount of consumption, while renewable resources have the same amount

of availability in every period.

1.3.3 RCPSP with non-regular objective functions

The regular objective function is one in which the objective function is never

made worse by reducing the completion time of a job without increasing the

completion time of any other job [38]. However, a non-regular objective

function don’t respect this property. Because the value of the objective

function can actually increase by reducing the completion time of an activity,

and so these are non-regular objective functions.

Multi-Objective Resource-Constrained Project Scheduling problems: A survey24

1.3.4 Stochastic RCPSP

In this problem, the processing time of each task/activity and the resource

(cost) requirement are considered as a random variables following some prob-

ability distribution [8]. In this case, instead of minimizing the makespan, we

consider the minimization of the expected makespan. Many interdependent

activities are often represented in a project graph, and activity completion

times are highly interdependent, the probability distribution of the total

makespan is often difficult or impossible to characterize and often leading

to activity independence assumptions for tractable analysis. This indepen-

dence assumptions can provide misleading results in practice [8] [38].

1.3.5 Bin-packing-related RCPSP

A bin-packing problem can be described as follows: given a standard bin

size and a set of items, the objective is to assign each item into a bin while

minimizing the total number of bins used. A bin-packing-related RCPSP

refers to a special kind of resource-constrained project scheduling problem

that can be seen as analogous to a bin-packing problem. Many resource-

constrained project scheduling problems can be viewed as a generalization

of the basic bin-packing problem. The analogy between the bin packing

and RCPS problems can be explained as follows: The resource availability

represents the bin size, while a tasks resource consumption needs represent

an item size. In the RCPSP, we can modelize each period as a bin into which

we can pack different tasks. We can also make the following assumptions:

each task takes less than one period of resource consumption and every task

must be fully completed within a single day, so, minimizing makespan of

this RCPSP is equivalent to minimizing the total number of bins used in an

equivalent bin-packing problem [38].

Multi-Objective Resource-Constrained Project Scheduling problems: A survey25

1.3.6 Multi-RCPSP

In the multi-resource-constrained project scheduling problem (M-RCPSP),

a job may require a set of operations, or a set of resources. For a given

operation, various resources can be used in parallel. In other words, to

be executed each task/job might select any one of these resources. Where

successive resources are needed in series and if a task select a given resource

then it is not allowed to use another resource before completing processing on

the first one. These problems are often called machine-scheduling problems.

In the manufacturing area, a resource is equivalent to a machine that can

only process one job at any time. Machine and job scheduling characteristics

can be classified to several categories [38]:

1. Identical machines in parallel.

2. Machines in parallel with different speeds: the speed of machine i is

vi for all jobs.

3. Unrelated machines in parallel: speed of machine i for job j is vij .

4. Flow shop: machines are in series; every job has to be processed on

each of the machines in the same sequence.

5. Job shop: a job can visit any subset of the machines in any order.

1.4 Multi-modes and multi-objective RCPSP

The multi-objective RCPSPs are considered NP -hard optimization problems

and can be solved, in a polynomial time, by using a heuristic procedure. In

the literature, there are various categories of RCPSPs. Therefore, in recent

years the number of algorithms proposed to solve the uni-objective RCPS are

increased tremendously. About the multi-objective RCPS problems there

are few papers in the literature. For instance, Guitoni et al. [5] [4] presented

a method consists in modelling the military Operational Planning Process

Multi-Objective Resource-Constrained Project Scheduling problems: A survey26

(OPP) as a multiple modes RCPSP. Belfares et al. [4] proposed a Progressive

Resource Allocation (PRA) method based on the Tabu Search metaheuristic

to solve the multi-mode RCPS problem with three objectives: minimize the

cost, maximize the reliability and maximize the probability of success. The

OPP is composed of five stages:

1. Initiation stage: reception of a mission (mission is a set of tasks).

2. Orientation stage: the commander proceed to analyse the mission and

prepare the aimed to realize.

3. Course of action development stage: the staff generate the planning

or the Course Of Actions (COAs) suited to the commander’s guidance

and intent, i.e. the process of planning consists in first of all to identify

the tasks to realize, their requirement in resource and their precedence

relationships.

4. Plan development stage: analysis and comparison of the COAs.

5. Plan review stage: the choose of the best COA.

In fact, due to it fundamental role in the generation of a good COAs

according to the commander’s guidance and estimates, the operational plan-

ning process (OPP) should be efficient. Therefore, Belfares et al. [4] focused

on the COA development stage. During this stage, the staff should identify

the assigned tasks to perform the mission. To be executed, each task needs

resources and assets allocation. The couple (task, resource) constitute an

action.

A COA can be represented by a set of tasks to be accomplished, in such a

way the constraints of precedence relationships between tasks and resources

availability are fulfilled. The COA planning can be modeled as a multiple

mode RCPSP (Is defined in the previous section). In their work, Belfares

et al. [4] are concerned with the multi-objectives aspect of a multiple mode

RCPSPs. The aim is to find suitable resource allocation for given COA

Multi-Objective Resource-Constrained Project Scheduling problems: A survey27

schedule [5]. So, the problematic of their paper is: Given a set of limited

resources/capabilities, what is the best allocation for a given task schedule

according to several objectives?

1.4.1 Resolution of the multi-mode RCPSP with the PRA

procedure

To find a good allocation of resources, Belfares et al. [4] propose a Pro-

gressive Resource Allocation methodology based on the tabu search method

and the pareto optimization technique. This latter strategy has attracted

the interest of researchers and is deeply used in the multicriteria framework

[4]. Furthermore, the optimization method PRA is based on a posteriori

approach i.e. various solutions are found and then, the decision maker (the

commander) select the most suitable. The goal is to find the largest number

of well diversified efficient solutions. For that, an iterative filtering or/and

a choice process might then be carried out with the decision maker to select

the most suitable solutions (COA planning). Belfares et al. [4] used the

Multi-criteria Filtering Procedure (MFP) and the Dominance Rule (DR) to

filter and choose the solutions generated by their proposed procedure. We

present an overview of the MFP: let A a subset of non-dominated solutions

and let Card(A) the user-defined cardinality of this subset. The MFP:

• Step 1: The Disjunctive Method: retains all the solutions that score a

maximal value on at least one objective Fi.

• Step 2: Number of solutions retained ≺ Card(A). If not go to Step 4.

• Step 3: The Conjunctive Method: applied to reach Card(A).

• Step 4: End of MFP.

We can modeled the PRA procedure as shown in figure (1.4):

Multi-Objective Resource-Constrained Project Scheduling problems: A survey28

Figure 1.4: The Progressive Resource Allocation procedure

1.4.2 Main features of the PRA approach

PRA (Progressive Resource Allocation) approach is proposed by Belfares et

al. [4] to find an efficient Course Of Actions planning. The PRA method

uses the concepts of Tabu Search (TS) metaheuristic. Due to its simplicity

and efficiency to solve NP -hard optimization problems, TS was broadly used

by researchers in different realms. The TS was well suited for tackling the

RCPSPs. The adaptation of this approach to the PRA method is presented

as follows:

The PRA method deals with management of tabu list. Belfares et al. [4]

define two tabu list: the first list is the tabu resources, is a static list in

which we prevent the use of a generic resource twice in the same schedule

and the second list is the tabu tasks, is a dynamic list due to aspiration

criteria, in which the assignment of resource ri,k to task tj is not allowed if

this combination presents a dominated COA solution.

Multi-Objective Resource-Constrained Project Scheduling problems: A survey29

Definition of the neighborhood: is all the possibilities of allocating specific

resource of a generic set. The definition of neighborhood based on the best-

scored allocation. Links between the PRA method and the TS approach

can be stated in this table (1.1):

TS PRA method

TS is a local improvement method. the improvement is done on each objective

to escape local optimum.

Accept sometimes a non-improving solutions Non-dominated solutions are retained.

in order to escape local optimum.

Table 1.1: Links between TS and PRA method

Local search in the neighborhood is a succession of intensification and di-

versification phases.

The intensification phase: explore profoundly the neighbors (the set of generic

resource) of the each current solution. And this is defined as a direction of

search.

The diversification phase: with each direction, we improve the multi-objective

environment of search with the examination of the objective functions. It is

outlined in figure (1.5):

Multi-Objective Resource-Constrained Project Scheduling problems: A survey30

Figure 1.5: The intensification and diversification stages

1.4.3 Description of the PRA algorithm

The notation:

EGR : a set of generic resources.

EF : a set of objective functions.

Rk : generic resource of type k.

Fi : an objective function.

rik : a specific resource i of a generic resource of type k.

Description of the algorithm:

The Progressive Resource Allocation algorithm contains five steps:

Step 1: choose randomly the generic resources from EGR.

Multi-Objective Resource-Constrained Project Scheduling problems: A survey31

Step 2: we remove the specific resource from the current solution and place

it in the depot to be available for a new allocation.

Step 3: allocation of the best scored resource according to the objective

function chosen from EF .

Step 4: check if all objectives are considered for the current solution in

order to diversify the solutions.

Step 5: intensify the search by checking if all the generic resources are con-

sidered.

The PRA is illustrated as follow :

• Initialization:

- Consider a feasible solution

• Iterative process:

At iteration i

Step 1:

- Choose randomly a generic resource Rk from EGR, EGR=EGR\{Rk}
Step 2:

- Remove from the current solution all rik ∈ Rk and place them in

their corresponding depot

Step 3:

- Choose objective Fi from EF , EF =EF \{Fi}
- Construct a new solution accordingly

Step 4:

- Check if all the objectives are performed EF = ∅. Otherwise return

to step 3 (diversification)

Step 5:

- Check if all the generic resources are changed: EGR = ∅. Otherwise

Multi-Objective Resource-Constrained Project Scheduling problems: A survey32

return to step 1 (intensification)

1.5 Conclusion

Multiobjective RCPS problem is one of the most difficult optimization prob-

lem. This difficulty arises from the fact that we have to optimize several

objectives simultaneously, with some of them are generally conflicting and

heterogeneous. In fact, the RCPSP modelize situations where we have to

generate plan and to optimize the use of scarce resources.

We presented in this chapter the definition and the classification of the

RCPSP.

Thus, the manager in the real world should take into consideration the as-

pect of environment. That’s why, planners must predict uncertain outcomes

to success their plans and to avoid potential damage. In this context, the

contingency planning is viewed primordial to catch the instantly evolution

of the environment. In the next chapter we propose a survey of contingency

planning.

Chapter 2

Contingency planning

2.1 Introduction

Classical plans assume complete and accurate information of the planning

process and about the state of the world. Actually, the environment is

characterized by incomplete and uncertain information due to presence of

unpredictable and incontrollable events. In this respect, the classical ap-

proach will be inefficient and researchers should take into consideration the

aspect of the environment within the planning process. To handle and to

surround situations where there are incomplete and uncertain information

about the state of the environment, we use contingency planning. The con-

tingency planning consists in providing flexible plan able to face unforeseen

events [7] [36].

In this chapter, we start by stating the definition of the contingency plan-

ning and its necessity for the project scheduling. Next, the classification of

contingency plans will be presented. Finally, we will propose an overview of

contingency plans.

33

Contingency planning 34

2.2 Definition of contingent plan

The planning process consists in generating feasible course of action the

so-called ’plan’ which its execution would allow the accomplishment of the

tasks. The plan to be executed can lead to several results and this stems

mainly from not only the unpredictable events but also the imperfection of

the agent executer beside the influence of competitors. Hence, the planning

managers should take into consideration environmental information, natu-

ral and man-made state, resources constraints,...to develop a comprehensive

and flexible plan. So, contingent plan provides flexibility to face unforeseen

events due to the evolutive environment [7] [21]. The contingent plan can

be modeled as follows in figure (2.1):

Figure 2.1: The contingency planning

As shown in figure (2.1), each plan developed must consider unpredictable

events, globalization and competitors to generate the appropriate result.

Contingency planning 35

2.3 Need for contingency planning

Managers need good plans to increase their profits and to optimize the use

of their scarce resources. Recently, there appear new obstacles affecting

plans, as, incomplete information, presence of exogenous and unpredictable

events, accompanied by the uncertainty and complexity of the environment.

All these events are the result of globalization and the growing number of

competitors. In this respect, contingent plan are primordial to avoid the

above mentioned problems, and to avoid harming expensive human and

material resources.

However, classical plans consider only a set of actions that change the state of

the world deterministically. This plans are blocked in many real situations.

That’s why, more robust plans are needed to consider the uncertain aspect

of the environment.

2.4 The classification of contingency plans

Many research were developed to improve classical plans. So, many ap-

proaches are presented to catch environment uncertainty. In this context,

there are three categories of planning under uncertainty: Conditional plan,

Probabilistic plan, and Probabilistic and Conditional plan. In this section,

we will present with more details and give some examples of these plans.

2.4.1 Conditional plans

The planning agent, during the execution time, can observe the state of the

world in order to use conditional plans, i.e. generate plans that have the

structure of branches (If-then Else). The fundamental question in condi-

tional plans is how many contingencies that should be identified in order

to avoid unforeseen events during the execution of the plan and to reach to

the desirable goals [34]. Thus, we should enumerate and anticipate all the

possible conditions. Among conditional plans we can cite CASSANDRA,

Contingency planning 36

PlanPKS, CNLP.

CNLP plan is an extending of the SNLP plan (classical plan) that constructs

conditional plans. CNLP is a branching plan that testing the conditions then

deciding whether branch to tackle [6].

2.4.2 Probabilistic plans

In classical plans, the plan is considered as a sequence of deterministic ac-

tions which its execution contribute to a single outcome. The execution of an

action ai in the state si can lead to the deterministic state si+1, this transfor-

mation is called a transition function and denoted as follow: f(ai, si) = si+1.

However, in the probabilistic plans this function is replaced by a transition

probabilities Pai(si+1|si) [6] and the execution of an action can lead to sev-

eral outcomes.

Figure 2.2: The probabilistic plan

Contingency planning 37

The probabilistic plan can be viewed as a program that takes as input a set

of states, a set of actions and an initial state and search for a goal state with

higher probability of success. Thus, the crucial result of the probabilistic

plan is to reach a goal state with a probability that exceeds a certain thresh-

old. Among probabilistic plan we can cite BURIDAN, MAXPLAN.

2.4.3 Probabilistic and Conditional plans

This kind of plan can be considered as a combination of probabilistic and

conditional plan where it generates conditional plans in stochastic domains.

In other world, the observation states are coded as probabilistic outcomes

then we construct the conditional plan.

2.5 An illustrative case

Consider the planning problem of moving computers and printers from the

old laboratory (location A) to the new laboratory (location B). Our objec-

tive is to move the equipment unbroken to the new laboratory.

If we consider the classical plan, we consider only a set of state: {equipment

in location A (the initial state), equipment unbroken in location B (the final

state)} and a set of actions to be executed { move the equipment from A to

B}. The planning process can be illustrated by the figure (2.3):

Contingency planning 38

Figure 2.3: Classical plan

Figure 2.4: Stochastic plan

Contingency planning 39

If we consider uncertain outcomes such as the weather conditions that could

be assessed as rainy or sunny. In this case the deterministic or classical

plan will be inefficient to reach the goal. That’s why the situation can be

modelized using probabilistic or stochastic plan as shown in figure (2.4).

An other approach can be used to reach the goal by applying conditional

plan. As shown in figure (2.5), the conditional plan consists in testing the

possible states, here we are considered just the state of weather, in order to

take the appropriated action (as protect the equipment from the rain).

Figure 2.5: Conditional plan

Contingency planning 40

2.6 Evaluation of contingency plans

In classical planning, the execution of the plan contributes to a single out-

come. However, in contingency planning execution of the plan can lead to

several results. Each result evaluated by the preferences of the project man-

ager. In other words, the evaluation of a plan is done by the expected utility

of it or the probability of success.

2.7 A survey of contingency plans

We need contingency to face random changes, disturbances and presence of

uncertain events about the state of the environment. For that, the planning

manager should be able to avoid outcomes and uncertainty. Throughout

this section we propose an overview of contingency plans.

2.7.1 C-Shop plan

C-Shop (Conditional-Shop) is an extending of the classical plan Shop. C-

Shop is a conditional plan that takes as an input a set of belief states, a

list of tasks to achieve and a domain description and the output is a plan

which is evaluated by a probability of success. C-Shop allows to code domain

knowledge through procedures in order to provide a description how to solve

the planning problem and to achieve goals. The main elements used in C-

Shop are as follows [7]:

• Belief states: the uncertainty about the state of the environment is

modeled by using belief states. Thus, we associate a set of observations

for each belief state. This observations are used during plan execution

in order to determine the condition to branch on.

• Methods: methods are used in C-Shop to control search and to provide

the necessary information of how to generate and to decompose the

tasks in primitive tasks.

Contingency planning 41

• Operators: operators are used by the methods in order to achieve tasks

with conditional effects and information obtained during execution.

Thus, operators are applied to execute primitive tasks in a given belief

states.

2.7.2 C-MaxPlan

C-MaxPlan is a conditional and probabilistic plan that generates conditional

plan in probabilistic domains. C-MaxPlan transforms the planning problem

into a stochastic satisfiabilistic problem. The objective of this plan is to find

plan with higher probability of success [29].

2.7.3 Cassandra plan

Cassandra is a partial-order conditional plan. It proceeds by splitting the

plan into a set of branches, one for each possible outcome. This plan uses

explicit decisions steps that permit to the agent executing the plan to de-

cide which plan branch to follow. Thus, Cassandra finds plans that permits

to decide between courses of action that will succeed in different contin-

gencies. The representation of the decisions steps in Cassandra provides to

the agent plan information during execution of the plan [36]. Cassandra’s

representation of contingency plans based on three essential components:

• An action representation that supports uncertain outcomes;

• A plan;

• A system of labels for keeping track of which elements of the plan are

intervened in which contingencies.

2.8 Conclusion

There is a growing need for contingent tools in combinatorial optimization

problems, because they allow an efficient and feasible course of actions facing

Contingency planning 42

the variation of the outside environment that can affect the objectives of the

plan during the execution phase. Thus, generation of contingent plans is a

difficult task. As a matter of fact, the process of developing a contingent

plan is classified as NP -hard problem and in order to solve it in a polynomial

time the researchers preferred the use of approximate approaches.

Hence, in the next chapter, we propose a survey of metaheuristics.

Chapter 3

Metaheuristics: An Overview

3.1 Introduction

Multi-objective optimization problems are characterized by several objec-

tives functions that should be simultaneously optimized. These objectives

are often conflicting. To solve this NP -hard combinatorial optimization

problems, both exact and heuristic algorithms have been developed. The

exact algorithms are essentially based on the Branch and Bound method.

These algorithms are different one from another according to the way of

generating the upper bound [30]. Due to their exponential time complex-

ity, exact algorithms are limited to small size instances. Contrarily to this

exact methods, the metaheuristics are powerful techniques used for solv-

ing a large number of NP -hard combinatorial optimization problems. For

that, heuristic approaches can be beneficial when tackling complex combi-

natorial optimization problems. Hence, heuristics algorithms are designed

to produce near-optimal solutions for large problems instance and it is the

only way to solve problems quickly and efficiently. Several algorithms based

on metaheuristics approach have been developed, for example: Algorithms

based on Tabu Search (TS) approach, Genetic Algorithms (GA), Ant Al-

gorithms (AA), Memetric Algorithms (MA), Particle Swarm Optimization

43

Metaheuristics: An Overview 44

(PSO), Shuffled Frog Leaping Algorithms (SFLA). This evolutionary algo-

rithms are inspired from different natural processes [14]. In this chapter, we

describe an overview of Tabu Search, Genetic Algorithm and Ant System

metaheuristics and we present their main principle and characteristics.

3.2 Tabu Search

The Tabu Search metaheuristic was first introduced by F.Glover in 1986

and its roots go back to 1970’s [18]. This technique can be described as

an iterative method based on a local search process [19]. Up-to-date, this

method has shown a remarkable efficiency to solve a large kind of combi-

natorial optimization problems. Due to its flexibility, this technique can

beat many NP -hard optimization problems. Combinatorial optimization

problems were solved by Tabu Search , as, Krichen [27] applied the multi-

objective Tabu Search algorithm for the multiobjective knapsack problem ,

Brucker et al. [3] propose a Tabu Search algorithms to solve the uniobjective

RCPS problem.

3.2.1 TS: preliminaries

Tabu Search is considered as a local search optimization procedure which

moves at each iteration to the best neighbor of the current solution. In order

to avoid cycling back to solutions already visited, TS approach forbids moves

to recently visited solutions by using a flexible memory in which its stored

the history of the search process. TS allows the acceptation of solutions

with inferior value of the objective function in order to escape from local

optima. This approach based on many ingredients. The use of flexible

memory can be viewed as the essential features of TS approach, beside the

use of a neighborhood search method.

• The use of memory: TS uses the notion of memory to store some

information related to the exploration of the solution space and the

Metaheuristics: An Overview 45

attributes of more efficient solutions found. This information will be

used to guide and to orient the neighborhood search procedure and to

avoid the risk of cycling process.

• The neighborhood search procedure: The neighborhood search proce-

dure is an iterative method based on the local search process. For each

solution i we define a set of neighbors noted N(i), and the move to the

solution j is done by choosing the solution among N(i), this choice is

guided by information collected during the search process. This move

will be stored in the tabu list to prevent cycling. So, the neighbor-

hood search procedure is an improvement method. We can accept

non-improving solutions, in order to escape from a local optimum.

• Intensification and diversification: The intensification favor the explo-

ration of new solutions with good features. As mentioned before, the

use of memory allows the search to be guided in a multiobjective envi-

ronment. So, the good solutions are stored in order to examine their

neighborhoods and to intensify the search procedure. The diversifica-

tion encourage the search process to explore unvisited regions and to

generate diverse solutions.

• The stopping criteria: The TS method is not a self stopping approach.

Hence, with the function of the time searching, the criteria of stopping

should be determined. This criteria can be fixed either through a

certain number of iterations or through the non-amelioration of the

good solution within certain number of iterations.

3.2.2 The algorithm

The outline Tabu Search algorithm are summarized as follows:

• Step 1: Generate an initial feasible solution;

• Step 2: Generate the set of the neighborhood of the current solution;

Metaheuristics: An Overview 46

• Step 3: Choose the best neighbor;

• Step 4: Update the tabu list;

• Step 5: Update the set of efficient solutions;

• Step 6: Check if stopping criterion is met.

3.3 Genetic Algorithm

The Genetic Algorithms (GAs) were inspired by natural biological evolu-

tion. GAs were developed based on the Mendel’s rules and the fundamental

principle of Charles Darwin and have been developed and proposed by John

Holland at the university of Michigan in 1970’s [20]. Contrarily to TS, which

is considered as sequential search method starts from an initial feasible solu-

tions and attempt to improve it by moving to the neighbor of the solution,

GA is a stochastic search method based on the mechanisms of natural se-

lection and natural genetics in biological evolution [13]. This method work

with a random population of solutions. GAs have been applied to a wide

variety of combinatorial optimization problems and have been proved their

efficiency. The first step of the optimization process using GA is to code

the parameters of the objective functions. Then, solutions are represented

as an array or a string, called chromosome. Each chromosome is evaluated

and measured by a fitness functions. The improvement of the solutions at

each generation is done by using the principle of the fittest process.

3.3.1 Adaptation of biological evolution

GA consists to encode a solution to a string called chromosome. Each chro-

mosome composed of a set of elements called genes. Then, GA apply re-

combination operators to these solutions through crossover and mutation

operators to produce offspring chromosomes. Thus, three natural operators

are used for exploitation of the solution space: [14]

Metaheuristics: An Overview 47

• Reproduction operators: consists of copying pairs of individual strings

according to their fitness values. In the reproduction process we select

the best individuals with higher fitness value in order to contribute in

the next generation.

• Crossover operation: in order to maintain diversification and to gener-

ate differential individuals, crossover operator creates an offspring that

contains a combination of genes from its parents. Thus, the crossover

process consists to combine the best features of each chromosome by

exchanging the genetic material between two individuals.

• Mutation operators: this operator used to diversify the solutions and

to avoid stagnation around local optima. The mutation process con-

sists to change position by modifying a 1 to a 0 and vice versa. Thus,

this process contributes to produce new points in the solution space.

3.3.2 Difference and analogy between GAs and traditional

methods

GAs differs from traditional methods in some ways. GAs work with a coding

of the parameter of a specific problem, however, traditional methods work

with the natural parameters themselves. To evaluate the solution quality

GA requires only a fitness function. By contrast, traditional methods re-

quire auxiliary information like derivatives or local search procedures.

The analogy between GAs and traditional methods is summarized in the

following table (3.1):

Metaheuristics: An Overview 48

GA Traditional Methods

Chromosome Solution

Parameters are coded Parameters are formulated

Fitness function Objective function

Generation Iteration

Using the fitness process Using a local search process

Best-fit solution Near-optimum solution

Population of solutions Set of efficient solutions

Table 3.1: Analogy between GA and Traditional Methods

3.3.3 The algorithm

The parameter used in the GA are: population size, number of generation,

crossover rate and mutation rate.

• Step 1: Generate a random population ofN solutions or chromosomes;

• Step 2: Evaluate each chromosome by calculating the fitness function;

• Step 3: Select two parents or chromosome a and b according to their

fitness function value;

• Step 4: Select an operator crossover or mutation;

Generate an offspring c = crossover (a and b) or

Generate an offspring c = mutation (a and b);

• Step 5: Evaluate the offspring c by the fitness function;

• Step 6: If c is better then replace the worst chromosome by c;

• Step 7: Check if stopping criterion is met.

Metaheuristics: An Overview 49

3.4 Ant System

As the name suggests, the Ant System (AS) metaheuristic was built on the

observation of the behavior of real ants while they are searching for food.

Indeed, a colony of ants seems very easily able to find shortest paths be-

tween nests and food sources. The observation of this phenomenon allowed

researchers to notice that, during their movements from nests and food

source, ants deposit a chemical substance called pheromone on the path and

other ants can smell this substance and thus choose the path with higher

concentration of pheromone to go through. Over time, pheromone accumu-

late faster on the shorter path because ants using the shortest path will be

back faster. This substance evaporates by time and makes less desirable

path more difficult and less reinforced.

3.4.1 The Natural Archetype

It is easily observable that natural ants are collectively capable to find the

shortest paths between their nest and a food source. Thus, while walking

ants drop a substance called pheromone. Other ants are able to smell this

leftover of their fellows and tend to choose a path with a higher pheromone

concentration. Consequently pheromone trails are established and after

some time all ants of the colony will walk on the these route due to the

high pheromone accumulation.

This process is graphically illustrated in figure (3.1). When an obstacle is

placed on the trail the ants don’t have any idea where to go. Consequently

they try to find a way around the obstacle and since they cannot determine

which of the two routes is shorter, approximately, ants arrive at a decision

point will choose path A or B with equal probability (0.5), thus, half of them

will choose the shorter path and the other half will take the longer one (A1).

Ants will continue to drop pheromone on the two paths. Ants that have

chosen the shorter path will arrive much faster to the other side of the ob-

stacle, therefore the quantity of pheromone accumulate and increase more

Metaheuristics: An Overview 50

faster on the shortest path than on the longer one and influencing other

ants to follow this path (A2). After a short period, all the ants of the colony

will choose the shorter path because of the higher pheromone concentration

(A3). Thus, the whole colony was able to find the shortest path between the

nest and the food source by the cooperation through the pheromone trail.

Figure 3.1: How real ants find the shortest path

3.4.2 Background

The AS is a multi-agent metaheuristic which has been successfully applied

to several NP -hard combinatorial optimization problems. The Ant Colony

Optimization (ACO) showed very good results since its first application

by Dorigo in 1992 in his Ph.D thesis as a metaheuristic approach to solve

the Traveling Salesman Problem (TSP), that’s why, it was recently applied

to various problems such as the Quadratic Assignment Problem, Vehicle

Routing Problem [17], Graph Coloring Problem [9], Portfolio selection prob-

Metaheuristics: An Overview 51

lem [11], etc.

Dorigo and Di Caro present the ACO metaheuristic and they defined a

common model for discrete optimization problems and described the ACO

metaheuristic as a colony of ants asynchronously moving through states of

the problem by applying a stochastic decision policy. While ants are moving,

partial solutions are being built and evaluated. The evaluation of partial so-

lutions defines the update of pheromone trails to make. This pheromone

information will direct the search of the future ants [12].

3.4.3 A brief description of the metaheuristic

The main motivation for using ACO metaheuristic by researchers is the

adaptable character of the latter which makes of it a very useful tool to

tackle a wide variety of combinatorial optimization problems, as well as

the simplicity of the model on which the method is based. The real ant

colony phenomenon described above inspired researchers to develop a new

metaheuristic. This metaheuristic is especially suited to find solutions for

difficult optimization problems. The ACO metaheuristic is composed of ar-

tificial ants that cooperate to find good solution.

In ACO metaheuristic, a colony of cooperating agents searches for a good

solution to an optimization problem. Each agent or ant can already find a

solution or at least a part of solution on its own but the optimal solution

can not be reached individually. According to the problem considered, ants

are given a starting state and they move through a sequence of neighbor

states trying to find a shortest path. Moves are based on a stochastic deci-

sion policy directed by the ants’internal state, the pheromone trails and the

environment information. Generally, the amount of pheromone deposited is

proportional to the quality of a move an ant has made. Thus, better solu-

tion is obtained with more pheromone depositing. After an ant has found

a solution, it dies. The main tenet of the ACO metaheuristic is the use of

Metaheuristics: An Overview 52

a priori information concerning the problem data combined called heuristic

information with a posteriori information concerning the structure of pre-

vious solutions obtained called pheromone trail. This combination is the

stochastic decision policy called transition rule.

• The Pheromone trail: Cooperation and indirect communication be-

tween ants is the basic tenet to find good solutions quality to difficult

optimization problems, and this is through the pheromone trail. It is

considered as a numeric variable where each artificial ant of the colony

can read or write information concerning the problem representation.

• The transition rule: It is applied to determine the next position of

the ant and it is based on two parameters: the pheromone trail which

represents the posteriori information and a heuristic information that

represents the priori information. In This respect, each ant of the

colony apply the transition rule in order to choose the next state to

move to. Thus, the transition rule is a stochastic function which in-

fluences the process of selection the next state.

• Pheromone update: The pheromone update is essential and basic phe-

nomenon to avoid stagnation situation, i.e. in which all ants build

at each cycle the same solution, and to motivate the exploitation and

exploration of the search space.

The analogy between Real Ants and Artificial Ants can be summarized in

this table (3.2):

Metaheuristics: An Overview 53

Artificial Ants Real Ants

Searching the solution space Searching their environment to find food

Equipped with local heuristic function Ants exchange information via pheromone

to guide their search

Use of a priori information Randomly

Use of a posteriori information Pheromone trail

Change a numeric information Deposit a chemical substance called pheromone

Artificial ants die after finding a solution Real ant still alive

Table 3.2: Analogy between real ants and artificial ants

3.4.4 The algorithm

The steps of the Ant Colony algorithm are summarized as follows:

• Step 1: Initialize the pheromone trails and parameters;

Assigning Ants to the starting node;

• Step 2: For each Ant Do

- Move to the next node by applying the transition rule;

- Perform a locale update;

• Step 3: Perform a global update;

• Step 4: Check if stopping criterion is met.

3.5 Conclusion

We presented in this chapter an overview of three metaheuristic approaches

namely: the Tabu Search approach based on a local search procedure for

neighbors, the Genetic Algorithms inspired from the principle of the natural

process of biological evolution and finally, the Ant System metaheuristic that

consists in a constructive method based on the ants behaviors to find the

Metaheuristics: An Overview 54

shortest route between their nest and a food source. These metaheuristics

technique were extensively used by the researchers in multicriteria frame-

work and represent efficient tools to tackle the multiobjective combinatorial

optimization problems. In this respect, we will based on the Ant System

metaheuristic to tackle the multi-objective RCPS problem. In the next

chapter we will describe the problem and we will present the adaptation of

this metaheuristic.

Chapter 4

An Ant based approach for

multi-objective RCPS

problem

4.1 Introduction

We study in this chapter a new RCPS problem characterized by:

- A multi-objective aspect.

- A contingency in the availability of resources.

- A variety of alternatives for tasks to be achieved: the multi-mode feature.

This problem can be formulated as a COA planning and it is classified as

NP -hard problem [3] [5]. To solve this problem, it is suitable to apply meta-

heuristics since it generates a good sample. In fact, the solution consists

in assigning the available resources to each task in order to optimize the

objective functions while satisfying a set of constraints. In this context, we

propose to model the COA planning as a Multi-Objective RCPS (MORCPS)

problem. Since the RCPS is a scheduling and resources allocation problem

and which tries to find suitable resources allocation for a given COA sched-

ule in order to optimize several objectives. To help the project manager

55

An Ant based approach for multi-objective RCPS problem 56

and to cope with the problem of planning with incomplete and uncertain

information, our contribution consists in developing a new method based

on the Ant System metaheuristic and multi-objectives concepts to handle

uncertainty and to solve the MORCPS problem, we are interested here by

the multi-mode RCPS problem [38] besides the aspect of contingency plan-

ning [6]. Hence, we define our problematic as follows: Given a set of limited

and non-deterministic resources, what is the efficient, feasible and best COA

planning/resources allocation according to several predefined goals?

4.2 Problem statements

The RCPS problem can be stated as a set of tasks, related by successor

and predecessor constraints and where each task requires for its realization

a various combinations of resources, to be assigned to a set of resources of

limited capacity, where each resource can be used by various tasks. A re-

source can be human, material or financial and its availability is uncertain

and is considered as a non-deterministic variable. In this respect, the mis-

sion is to allocate the necessary and available resources to the tasks over

time optimizing several objectives and taking into account the evolutionary

aspect of the environment besides the constraints of the problem. An Ant

Algorithm is applied in order to construct an efficient and feasible COAs.

The problem can be defined as:

• A set of tasks: where each task is characterized by a processing time

di and can be executed by a combination of resources. The tasks are

categorized as follows:

- Strongly constrained tasks: are tasks with precedence and successor

constraints and must respond to the time restriction as the maximum

duration and the earliest starting time.

- weekly constrained tasks: are tasks without precedence constraints

but must respond to the time restriction.

An Ant based approach for multi-objective RCPS problem 57

- floating tasks: are tasks without precedence and successor constraints.

• A set of resources to allocate: due to the evolutive aspect of the envi-

ronment the availability of resources is considered as a non-deterministic

and it is handled according to a probabilistic variable Pj . Where Pj

represent the probability of availability of resource j.

• A set of constraints to satisfy: to be feasible and realizable, each solu-

tion or COA must respect and satisfy the constraints of the problem

such precedence constraints, resources availability,....

• A set of objectives to optimize: the performance of any approach pro-

posed to solve a multi-objective combinatorial optimization problem is

assessed based on their solutions’quality beside the computational ex-

ecution time. Thus, the evaluation of the solutions’quality is according

to the optimization of the objective functions.

The problem can be represented as an oriented graph, such graph allows

the possibility to specify the combination of resources and the precedence

constraint between tasks as follows in figure (4.1):

An Ant based approach for multi-objective RCPS problem 58

Figure 4.1: the structure of the RCPS problem

In this graph, the nodes identify tasks and their resources’combination and

the edges represent the precedence relationship between them. Indeed, task

2 can be achieved by using the combination of resources R1 and R2 or the

R3 and R4. This can only been achieved if task 1 has already been finished.

An Ant based approach for multi-objective RCPS problem 59

4.2.1 Notation

The notation and parameters used in our research are the following:
N : number of tasks.

ti : the task i.

T : the set of tasks {ti, i = 1,. . . ,N }.
k : number of resources.

Mi : number of modes that task i can be performed in.

|m| : number of resources of the mode m.

PRi : the set of predecessors of task i.

PSi : the set of successors of task i.

Rj : the available quantity of resource of type j.

rj : the resource of type j.

qijm : the quantity of resource of type j required to task i being

performed in mode m .

dim : the duration of task i being performed in mode m .

si : starting time of task i.

Pj : the probability of availability of resource j.

li : finishing time of task i with li= si + dim.

am
i : elementary action is the task ti being realized by the mode m.

COA : the courses of action {am
i ,i = 1,. . . ,N } .

CVj : the in-use costs of resource of type j.

cj : cost of resource j.

τij : the amount of pheromone where task i is realized by the resource j.

τ : is the pheromone matrix.

ηij : is a priori probability of availability of resource j used for task i.

Cmax : the makespan Cmax=Max
∑N

i=1 li.

Pij : the probability that resource j successfully realize task i.

xijm =
{ 1 if ti is realized by resource j using mode m.

0 otherwise.
f : number of ants.

|PE| : number of potentially efficient solutions.

An Ant based approach for multi-objective RCPS problem 60

4.2.2 Mathematical formulation of the problem

A COA is a set of elementary actions am
i where each action is the realiza-

tion of task i by the combination of resource m. The RCPS problem consists

in scheduling a set of tasks with their resources in order to optimize a set

of objectives and taking into account precedence constraints and resources

availability. The evaluation of a given COA is according to the objective

functions values.

Every task ti has a processing time dim and a time window t ∈ [¯si, fi
¯
] rep-

resenting the earliest starting time and latest ending time. Each task might

begin if their predecessors tp ∈ PRi are finished. More precisely, each task

can have several predecessors and so it starts at si equal to the maximum

of finish time of all its predecessors: si = MAX(
∑

p fp) where p represents

the index of predecessors tasks of ti.

Every resource rj characterized by an availability calendar representing its

available quantities over time, as shown in figure (4.2), and has specific char-

acteristics such as: the probability of availability Pj and in-use cost CVj .

Thus, for each resource rj assigned to task ti, we have:

A cost: cij = CVj ∗ qijm.

An Ant based approach for multi-objective RCPS problem 61

Figure 4.2: Availability calendar

An Ant based approach for multi-objective RCPS problem 62

The problem can be formulated as follows:

Minimize Cmax = Max
N∑

i=1

li (4.1)

Minimize
N∑

i=1

Mi∑

m=1

k∑

j=1

cij xijm (4.2)

Maximize 1/N
N∑

i=1

(
Mi∑

m=1

k∑

j=1

Pij xijm/
Mi∑

m=1

k∑

j=1

qijm) (4.3)

Subject to:

N∑

i=1

Mi∑

m=1

xijm qijm ≤ Rj, j = 1,. . . ,k (4.4)

si ≥Maxp∈PRi(sp+(
Mp∑

m=1

(
k∑

j=1

xpjm/|m|) dpm)), i = 1,. . . ,N (4.5)

Mi∑

m=1

1/|m|
k∑

j=1

xijm = 1, i = 1,. . . ,N (4.6)

xijm ∈ {0, 1}, i = 1,. . . ,N, m = 1,. . . ,Mi, j = 1,. . . ,k

(4.7)

The multi-objective RCPS problem consists in optimizing three objectives

simultaneously:

- Minimize the makespan Cmax equation (4.1);

- Minimize the COA cost equation (4.2);

- Maximize the probability of success of the COA equation (4.3).

Under a set of constraints denoted by equations (4.4 - 4.7); The resources

availability constraint (4.4), means that each task i is performed by qijm

quantity of resource j that can’t exceed the available quantity Rj. Equation

(4.5) is the predecessor constraint, guarantees that each task ti starts if all

An Ant based approach for multi-objective RCPS problem 63

their predecessors tp ∈ PRi have been finished. Constraint (4.6) ensures

that exactly one mode is assigned to each task. Constraint (4.7) represents

the decision variables, where:

xijm=
{

1 if task i is realized by resource j using mode m.

0 otherwise.

A solution to this problem can be viewed as sequences of synchronization

tasks and resources, where each sequence corresponds to the realization of

a given task by a combination of resources/mode. Thus, a sequence is an

elementary action am
i = (ti, m).

Figure 4.3: A solution structure to the RCPS problem

An Ant based approach for multi-objective RCPS problem 64

4.3 The Ant based approach

The AS is a multi-agent metaheuristic starts from null solution and builds at

each cycle a feasible solution. It is inspired by the behavior of real ants when

they forage for a food source and can be considered as a set of ants cooperat-

ing to find good solution. This metaheuristic is an iterative, stochastic and

constructive approach and has provided an attractive compromise between

the computational time and effort and the quality of the solution space. It

was applied to a wide number of optimization problems, especially the single

objective ones. In an attempt to find a sequence of realizable actions that

allow an efficient utilization of scarce resources, optimizing several objec-

tive functions and predict unforeseen events, we will develop a new method

based on the Ant System metaheuristics to optimize this problem. Thus,

we have to solve an NP -hard multi-objective optimization problem, That’s

why, An Ant Algorithm is applied.

The main motivation for using this latter approach is its adaptable character

which makes of it a very useful tool to tackle a wide variety of combinatorial

optimization problems, as well as it is simplicity to be developed and in

order to extend it for multi-objective problems and next there are few Ant

algorithm developed to solve the RCPS problem. In this context, the ele-

ments of the Ant System approach will be adapted for use in our developed

method.

4.3.1 The adaptation of the Ant System

For solving RCPS problem diverse method are proposed in literature, in this

section we will propose an adaptation of the Ant System approach to our

method as follows:

• Pheromone trail: pheromone trail has a high influence during the

constructive phase, for that, The trail τij corresponds to the quantity

of trail deposit when task i is executed by resource j.

An Ant based approach for multi-objective RCPS problem 65

• Heuristic information: ηij is considered as a priori information and

it is computed by some heuristic function to indicate the desirably of

moving from state i to state j. In our method, and due to the uncertain

aspect of the availability of the resources, the heuristic information

indicates the average of the probabilities of availability of resources

j. Let us illustrate with this example: suppose that the quantity

available of resource j is q1 with probability p1 and q2 with probability

p2. Hence, the heuristic information is:

ηj = ((p1 ∗ q1) + (p2 ∗ q2))/(q1 + q2).

• Transition rule: is a stochastic search function influences and stimu-

lates the ants’decisions during the construction process. This function

is directed (i) by available pheromone trail τij , (ii) by a heuristic func-

tion ηj and (iii) by a specific data of the problem.

4.3.2 The implementation strategy for the Multi-Objective

RCPS problem

Our method starts with null solution and then each ant builds the solution

in n iterations, where at each iteration one task is selected from the list of

non-achieved tasks to be realized by a combination of resources. The choice

of the resources is guided and directed by the problem characteristics and the

available pheromone trail. And because we have to tackle a multi-objective

combinatorial optimization problem we are defined two ACS colonies, the

ACS-time colony and the ACS-cost colony, to allow each one the optimiza-

tion of different objective functions. The goal of ACS-cost colony is to search

the COAs with the minimum cost and maximum probability of success, and

the goal of the ACS-time colony is to minimize the makespan of the project.

In this respect, each colony has its own pheromone matrix and each ant of

a given colony builds its own solution using only pheromone and heuristic

information of its colony. The algorithm can be outlined in terms of the

following features :

An Ant based approach for multi-objective RCPS problem 66

1. Initialization phase: initiate the pheromone matrix. The initial amount

of the pheromone is initialized to small positive value τ0. We have used two

pheromone matrices:

- Pheromone matrix task-resource MI : given n tasks and m resources

τij =
{
τ0 if resource rj contributes to the realization of task ti.

0 otherwise.

τij =




τ0 ... 0 τ0

0 τ0 ... 0

0 ... 0 τ0

τ0 0 ... 0




- Pheromone matrix task-task MII : given n tasks

τiu=
{
τ0 if task tu is a floating task.

0 otherwise.

τiu =




0 ... τ0 τ0

τ0 0 ... 0

0 ... 0 τ0

τ0 0 ... 0




2. Construction phase: the two Ant colonies are activated simultaneously

and uses independent pheromone trails:

- the ACS-cost: the goal is to minimize the cost function and to maximize

the probability of success. Each ant of the colony use the pheromone matrix

MI and applies the transition rule Pij to choose the adequate combination

of the resources j to be assigned to a given task i. The transition rule of

assigning task i to resource j is Pij = τij ∗ ηj/
∑

l∈ℵj
(τil ∗ ηl) where the ℵj is

neighborhood set of the combination of resources.

- the ACS-time: the goal is to minimize the total duration of the project

(the makespan) Cmax. Each ant choose randomly the combination of re-

sources to be assigned to a task ti and simultaneously use the pheromone

An Ant based approach for multi-objective RCPS problem 67

matrix MII and applies the transition rule Piu to obtain a neighbor by the

selection of floating task tu to be realized at the same period that ti. Where

Piu = τiu/(du ∗
∑

v∈ℵi
τiv) with ℵi is the set of neighborhood of tasks i and

du the processing time of the floating task u.

3. Updating phase : the two pheromone matrices are updated locally and

globally.

- local update: during the construction phase and after building a solution,

the pheromone trail intensity decreases over time to avoid convergence of

the algorithm to local optimum and favoring the exploration of not visited

areas of the search space. τij = (1− ρ)τij, where ρ is a parameter determin-

ing the evaporation rate.

- global update: this procedure is applied at the end of the construction

phase. Only the best solutions are allowed to deposit pheromone in order to

generate new solutions in the neighborhood of these preferred ones and to

favorite the diversification. τij = τij + ρ(1/S∗), where S∗ is the best value

for respective matrix and objective.

4. Filtering process: this procedure is applied in order to select the po-

tentially efficient solutions. In other words, we eliminate all the dominated

solutions and we retain only the non dominated one.

An Ant based approach for multi-objective RCPS problem 68

The following chart summarizes the four phases of the Ant based algorithm:

Figure 4.4: General scheme of the Ant based method

An Ant based approach for multi-objective RCPS problem 69

4.3.3 The global algorithm

• Initialization:

- Initialize the pheromone matrix MI

- Initialize the pheromone matrix MII

- assign the ants to the starting task

-Ψ: set of potentially efficient solutions(Ψ← ∅)
-ψt: set of feasible solutions according to the ACS-time (ψt ← ∅)
-ψc: set of feasible solutions according to the ACS-cost (ψc ← ∅)
-f : number of ants of each colony

• Iterative Process:

at iteration i

Step 1:

-for each ant f

- Perform ACS-cost(f,MI)

- Perform ACS-time(f,MII)

- ψc ← ψc ∪ ψc
i

- ψt ← ψt ∪ ψt
i

end for each

- Ψ← ψt ∪ ψc

Step 2:

- perform global updating

Step 3:

- filtrate Ψ in order to have only the set of potentially efficient solu-

tions

Step 4:

- If stopping criterion is met, stop

- Else i← i+ 1 go to step 1

An Ant based approach for multi-objective RCPS problem 70

4.3.4 The ACS-cost

The ACS-cost is concerned to optimize the use of scarce resources.

• Initialization:

- Initialize pheromone matrix task-resource MI

- Assign the ants to the starting task

- A is the set of waiting tasks (A← ∅)
- T the set of tasks

• Iterative process:

At iteration i

Step 1:

- Choose task tj ∈ T , T ← T\{tj}
- Check the constraint of precedence and go to Step 2

- A← tj

Step 2:

- Construct a solution by applying the transition rule

- Store the generating sequences in ψc

- Perform a local update

Step 3:

- Perform a global update

- Step 4:

- If T = ∅ and A = ∅ then stop

- Else i← i+ 1 go to Step 1

4.3.5 The ACS-time

The ASC-time is used to minimize the makespan Cmax by changing the

position of the floating tasks.

An Ant based approach for multi-objective RCPS problem 71

• Initialization:

- Initialize pheromone matrix task-resource MII

- Assign the ants to the starting task

- A is the set of waiting tasks (A← ∅)
- T the set of tasks

• Iterative process:

At iteration i

Step 1:

- Choose task tj ∈ T , T ← T\{tj}
- Check the constraint of precedence and go to Step 2

- A← tj

Step 2:

- Construct a solution by applying the transition rule

- Store the generating sequences in ψt

- Perform a local update

Step 3:

- Perform a global update

- Step 4:

- If T = ∅ and A = ∅ then stop

- Else i← i+ 1 go to Step 1

4.3.6 A description of soft and hard environments

The Ant Algorithm is implemented using C and the development environ-

ment is the Visual C++ 6.0. The input data are stored in the set of files.

The access to these data was done by using the ’fopen()’ procedure.

The computer code was executed on a Pentium 4 with 256 Mo of RAM and

a CPU of 2.53 GHz.

An Ant based approach for multi-objective RCPS problem 72

4.4 Examples

4.4.1 Example 1 (n = 6)

In this section, we will illustrate the Ant Algorithm by applying an example.

The inputs to the algorithm are represented in table (4.1), which corresponds

to a set of tasks to be accomplished by a various combinations of resources.

For example, task t2 can be processed by three ways of resources combina-

tion: the first consists in Using 3 unities of R1 combined with 2 unities of

R3, the second consists in Using 3 unities of R2 combined with 2 unities of

R4 and the third consists in Using 5 unities of R4.

Tasks combinations of resources and quantities

t1 R1(2),R2(1) R4(4) -

t2 R1(3),R3(2) R2(3),R4(2) R4(5)

t3 R1(2),R2(1) R3(3) -

t4 R3(2),R4(2) R1(4) -

t5 R2(3),R4(1) R3(2) -

t6 R1(1),R2(1) R4(2) -

Table 4.1: A RCPS problem with n = 6 and k = 4

The above example can be modeled as an oriented graph shown in fig-

ure (4.5), illustrating successor and predecessor constraints, where nodes

represent tasks and edges correspond to the precedence relationship between

tasks.

An Ant based approach for multi-objective RCPS problem 73

Figure 4.5: The structure of the RCPS problem n = 6 and k = 4

Applying the Ant Algorithm to the example in table (4.1), and varying the

number of ants, we obtain the solutions enumerated below:

An Ant based approach for multi-objective RCPS problem 74

number of ants CPU time(s) ACS-cost ACS-time

2 0




45

148

0.7







30

150

0.66




5 0




45

148

0.71







30

150

0.65




10 0




45

142

0.62







30

148

0.72




30 1




45

124

0.63







30

150

0.72




50 2




45

124

0.53







30

150

0.72




100 5




45

135

0.38







30

150

0.66




One of the solution obtained in the table




30

150

0.66


 corresponds to ACS-time

algorithm. The total duration of the project (the makespan):

Cmax= max
∑6

i=1 li=30.

The cost of the utilization of the resources by the tasks:
∑6

i=1

∑4
j=1

∑Mi
m=1 cij xijm = 150.

The probability of success:

1/6
∑

i∈6(
∑

m∈Mi

∑
j∈4 Pijxijm/

∑
m∈Mi

∑
j∈4 qijm) = 66%

4.4.2 Example 2 (n = 11)

We consider a RCPS problem with 11 tasks and 12 resources,

(
n = 11

k = 12

)
,

with the following data:

An Ant based approach for multi-objective RCPS problem 75

Tasks Predecessors combinations of resources and quantities

t1 - R2(1),R3(2) R4(1),R6(2) R9(2) R12(1)

t2 t1 R2(3),R6(2) R3(1),R5(1) R11(1) R12(2)

t3 t2 R1(3),R3(1) R5(2),R7(3),R8(1) R10(3) R11(1)

t4 t3 R1(1),R2(2) R4(1),R6(1),R8(1) R9(1) -

t5 t3 R1(1),R2(2) R4(3),R7(4) R10(2) -

t6 t1,t5 R5(1),R6(3) R11(1) - -

t7 t4,t5,t6 R1(3),R3(1) R9(3),R11(2) - -

t8 - R2(1),R5(2) R10(1) - -

t9 - R1(2),R3(2) R11(1) - -

t10 - R2(2),R4(2) R6(2),R7(1) R9(1) R12(2)

t11 - R3(2),R5(2) R10(3) R12(1) -

Table 4.2: A RCPS problem with n = 11 and k = 12

The solution produced by our method to the above example is represented

as shown in the following table:

An Ant based approach for multi-objective RCPS problem 76

number of ants CPU time(s) ACS-cost ACS-time

2 0




21

208

0.88







17

169

0.95




5 0




21

208

0.88







18

167

0.64




10 1




21

178

0.71







18

136

0.51




30 6




21

161

0.81







17

146

0.82




50 11




21

178

0.91







18

185

0.66




One of the solution is




21

178

0.91


 it corresponds to ACS-cost algorithm. The

total duration of the project (the makespan):

Cmax= max
∑11

i=1 li=21.

The cost of the utilization of the resources by the tasks:
∑11

i=1

∑12
j=1

∑Mi
m=1 cij xijm = 178.

The probability of success:

1/11
∑

i∈11(
∑

m∈Mi

∑
j∈12 Pijxijm/

∑
m∈Mi

∑
j∈12 qijm) = 91%.

In the following figure (4.6) we represent the variation of the number of effi-

cient solutions in accordance with the number of ants. We noticed that the

number of solution rises when the number of ants rises. For example, for 10

ants for each colony we have 11 non dominated solutions and for 30 ants we

have 39 non dominated solutions.

An Ant based approach for multi-objective RCPS problem 77

Figure 4.6: Chart of potentially efficient solutions corresponding to the num-

ber of ants n = 11

4.4.3 Example 3 (n = 50)

We consider a RCPS problem with n = 50 tasks. Then, we have to opti-

mize the resources assignments in order to minimize the cost, the makespan

and to maximize the probability of success. The cost and the probability of

success depends on the chosen combination of resources.

Applying the Ant Algorithm to the proposed example and varying the num-

ber of resources we obtain the following table :

An Ant based approach for multi-objective RCPS problem 78

Tasks Resources number of ants |PE| CPU time(s)

50 5 10 2 4

50 10 10 6 4

We consider the problem with 50 tasks and 10 resources,

(
n = 50

k = 10

)
, apply-

ing our ant algorithm, using 50 ants, we obtain 11 non dominated solutions

done in 20 second, which are represented in figure (4.7).

Figure 4.7: Chart of potentially efficient COAs n = 50

As shown in the figure (4.7), we can notice that if the cost decreases, the

probability of success decreases, and vice versa. Thus, we notice that we

can’t minimize the cost and maximize the probability of success simultane-

ously. We can deduce that these two non commensurable objective functions

An Ant based approach for multi-objective RCPS problem 79

are conflictual.

4.5 Case studies

We enlarge the set of problems varying the number of tasks between 6 and

250. Since the studied problems are large, we adopt a random generation

described as below:

• Initialization:

- Initialize the number of tasks T

- Initialize the number of resources K

• Iterative process:

For each task i

Step 1:

- Assign the number of modes/combinations of resources Mi

- Generate the set of successor Si

- Generate the set of predecessor PRi

Step 2:

- Generate the set of resources

- Construct the set of combination of resources.

In the following tables we report the numerical results provided by our Ant

based method:

Problems P1 P2 P3 P4 P5 P6 P7 P8 P9

Number of tasks 6 6 6 6 11 30 50 50 50

Number of resources 3 5 4 5 12 4 3 5 3

Avg.number.predecessors (1-2) (1-2) (1-2) (2-3) (1-3) (1-2) (1-2) (1-2) (2-3)

number of ants 5 5 10 10 10 10 10 10 5

CPU time(s) 0 0 0 1 1 4 5 5 2

An Ant based approach for multi-objective RCPS problem 80

Problems P10 P11 P12 P13 P14 P15 P16 P17 P18

Number of tasks 50 60 100 100 100 100 150 200 250

Number of resources 10 4 3 3 5 15 15 20 15

Avg.number.predecessors (1-2) (1-2) (1-2) (2-3) (2-3) (1-2) (1-2) (1-2) (1-2)

number of ants 10 10 10 5 10 10 10 10 10

CPU time(s) 6 10 19 4 8 8 35 60 59

4.5.1 A RCPSP with n = 100

Numerical experiments have shown that the obtained number of potentially

efficient solutions depends on the number of resources used. Thus, when the

number of resources rises the number of resources’combination rises. Hence,

the number of diversified potentially efficient solutions rises also.

Tasks Resources number of ants |PE| CPU time(s)

100 5 10 4 8

100 15 10 6 9

The following chart corresponds to the variation of the number of potentially

efficient solutions in accordance with the number of ants and this in order to

maximize the number of diversified potentially efficient solutions. Indeed,

for 100 ants we obtain 15 non dominated solutions done in 84 seconds and

for 200 ants we obtain 18 non dominated solutions done in 164 seconds.

An Ant based approach for multi-objective RCPS problem 81

Figure 4.8: Chart of potentially efficient COAs n = 100

4.5.2 A RCPSP with n = 200

Let us considered a RCPSP with n = 200 tasks. When varying the number

of resources we obtain the following table:

k number of ants |PE| CPU time(s)

1 50 1 914

5 50 9 932

8 50 11 941

15 50 14 895

20 50 16 1070

An Ant based approach for multi-objective RCPS problem 82

Thus, the example of

(
n = 200

k = 1

)
is a classical RCPS problem where corre-

sponds to the single mode RCPS problem. Each task has only one execution

mode for that we have only one potentially efficient solution. However, the

examples of k = {5, 8, 15, 20} corresponds to the multi-mode RCPS problem

where each task has several execution mode and where each mode has dif-

ferent value of the cost, the probability of success and the processing time

Cmax. For example, for k = 5 we have 9 potentially efficient solutions and

for k = 20 we have 16 potentially efficient solutions and this due to the

increased number of execution mode or resources’combination where the

number of resources rises.

4.6 Lower Bound

Generally, for the NP -hard problem it is very difficult to find the optimal so-

lutions. Thus, the solutions obtained from the heuristic methods represents

a subset of the optimal ones. Hence, we employed the lower bound (LB) in

order to frame the optimal solution of the multi-objective RCPS problem

and to calculate the Gap: average deviations of the solutions generated by

our algorithm from the lower bound value.

Gap = (Sol− LB)/LB (4.8)

For that, we establish a lower bound on the makespan and the COA cost

objectives denoted respectively by α1 and α2.

The lower bound of the makespan α1 was selected to be the critical path

length of the problem, which is equal to the technological earliest completion

time [25] [35] and the lower bound of the cost α2 was obtained by relaxing

the resources availability constraint (4.9):

An Ant based approach for multi-objective RCPS problem 83

N∑

i=1

Mi∑

m=1

xijm qijm ≤ Rj , j = 1,. . . ,k (4.9)

In the table (4.3) we drive a series of numerical examples for different size

problems. As shown in table (4.3), for the problem P3 the Gapα2 is null,

Problems α1 α2 Gapα1 Gapα2

P3 8 124 0.12 0

P5 26 68 0.23 0.13

P6 56 702 0.08 0.13

P10 44 982 0.27 0.05

P11 115 1594 0.04 0.13

P15 299 2630 0.1 0.14

P16 289 4694 0.09 0.2

P17 395 6357 0.08 0.17

P18 519 6148 0.15 0.17

Avg. Gap 0.13 0.12

Table 4.3: Average deviations from the lower bound

so the solution coincides with the lower bound α2. Hence, our algorithm

generate the optimal solution for the COA cost.

The deviation from the LB for the two objectives is relatively small, for the

objective α1 the average Gap is about 0.13 and for α2 the average Gap is

about 0.12. These values are considerably interesting.

4.7 Computational experiments

In this section, we evaluate the performance of the set of potentially effi-

cient solutions generated by our Ant algorithm denoted by AA. For that, we

compare our results with the results generated by the tabu search algorithm

An Ant based approach for multi-objective RCPS problem 84

proposed in [5] denoted by TS. |AA∗| and |TS∗| are the number of poten-

tially efficient solutions found respectively by the AA and TS methods.

Problems P3 P5 P6 P10 P11 P15 P17

Number of tasks 6 11 30 50 60 100 200

Number of resources 4 12 4 10 4 15 20

Number of ants 10 15 10 10 10 20 10

Tabu list size 4 7 9 20 10 25 25

|AA∗| 4 6 3 5 9 11 11

|TS∗| 3 3 4 6 3 9 5

Table 4.4: Comparison between the 2 methods TS and AA

The results summarized in table (4.4) indicate that our method provides

more solutions than TS for large size problems P11, P15 and P17. However,

TS finds more solutions for the problems P6 and P10.

CPU time(s) P3 P5 P6 P10 P11 P15 P17 P18

AA 1 3 9 8 28 17 181 172

TS 2 4 24 13 40 47 212 111

Table 4.5: CPU time

Table (4.5) reports the CPU running times for problems P3, . . . , P18 using

AA and TA . We can see that the AA performs better than TS for the

majority of the instances.

An Ant based approach for multi-objective RCPS problem 85

Figure 4.9: Comparison between TS(square points) and AA(triangular

points) for problem P15

We compare the quality of the results provided by the two methods as il-

lustrated by figure (4.9). We can deduce that no common solutions were

found by the two strategies. Thus, the pareto set generated by each ap-

proach is different from the other. We can notice from the figure (4.9)

that the two strategies generate incomparable sets. For example the vector(
time = 361

Cost = 2965

)
obtained by AA and

(
time = 334

Cost = 3083

)
generated by TS are

incomparable. So, a better strategy consists in combining the AA with tabu

search in order to get a better set of potentially efficient solutions.

An Ant based approach for multi-objective RCPS problem 86

4.8 Conclusion

We proposed in this chapter the RCPS problem with contingency planning

and three objective functions: minimize the cost, maximize the probability

of success and minimize the makespan. We proposed an Ant Colony based

metaheuristic to get the set of potentially efficient solutions. We imple-

mented our algorithm in C language and generated the solutions for prob-

lems varying from 6 to 250 tasks and 4 to 20 resources. Our method consists

in finding a set of COAs optimizing the objective functions and satisfying a

set of constraints. We defined two Ant colonies system to handle the multi-

plicity of the objective functions. The first colony is concerned to optimize

the COA cost and the probability of success, for the second colony is de-

veloped to minimize the makespan. In order to approximate and to frame

the optimal solution, we developed the lower bounds on the makespan and

the COA cost objectives. The deviation from the lower bounds for the two

objectives is relatively small.

General conclusion

The multi-objective Resource-Constrained Project Scheduling Problem

is an NP -hard and complex problem due to its combinatorial aspect. In this

research, we studied the multi-objective RCPS problem with contingency

and we developed a new approach based on the Ant System metaheuristic

in order to approximate the set of efficient solutions.

Our approach consists in generating two sets of artificial ants, some of them

are about optimizing a single objective and other try to optimize multi-

ple objectives. Each ant of the first colony moves in the sense to search

a solution with minimum cost and maximum probability of success. How-

ever, the other ants of the second colony minimize the total duration of the

project. These two colonies use independent pheromone trails. We adapted

all the components of the Ant System metaheuristic as the transition rule,

the pheromone trail and the heuristic information according to our problem

settings. Experimental results show that the adaptation of this metaheuris-

tic gives satisfactory results and the required time is relatively brief.

Finding an efficient solution for the multi-objective RCPSP is very difficult

even impossible for large size instances. Consequently, we have calculated

the lower bounds of the makespan and the cost objectives in order to frame

the optimal solution. We noticed that our set of potentially efficient so-

lutions is very coherent with these lower bounds. The average gap of the

generated solutions is not far from the lower bound.

87

Bibliography

88

Bibliography

[1] Abbasi.B, Shadrokh.S, Arkat.J [2006]: “Bi-objective resource-

constrained project scheduling with robustness and makespan criteria”,

to appear in Applied Mathematics and Computation.

[2] Al-Fawzan.M.A and Haouari.M [2005]: “A bi-objective model for ro-

bust resource-constrained project scheduling”, International Journal of

production economics Vol.96; pp.175-187.

[3] Baar.T, Brucker.P and Knust.S [1999]: “Tabu Search Algorithms and

Lower Bounds for the Resource-Constrained Project-Scheduling prob-

lem”. In: S.Voss, S.Martello, I.Osman and C.Roucailor (eds):Meta-

Heuristics: Advances and Trends in Local Search Paradigms for Op-

timization, Kluwer Academic Publishers; pp.1-18.

[4] Belfares.L, Klibi.W, Nassirou.Lo and Guitouni.A [2007]: “Multi-

objectives Tabu Search based Algorithm for Progressive Resource Al-

location”, European Journal of Operational Research Vol.177; No.3;

pp.1779-1799.

[5] Ben Abdelaziz.F and Guitouni.A [2001]: “Méthode interactive pour la

génération des suites d’actions”, Technical Report, Institut Supréieur

De Gestion, Tunisia.

[6] Blythe.J [1999]: “An overview of Planning Under Uncertainty”, Man-

agement Science Vol.38; pp.1803-1818.

89

Bibliography 90

[7] Bouguerra.A and Karlsson.L [2002]: “Hierarchical Task Planning Un-

der Uncertainty ”, AI magazine; pp.37-54.

[8] Choi.J, Realff.M.J and Lee.J.H [2004]: “Dynamic programming in a

heuristically confined state space: a stochastic resource-constrained

project scheduling application”, Computers and Chemical Engineering,

Vol.28; pp.1039-1058.

[9] Costa.D and Hertz.A [1997]: “Ants Can Colour Graphs ”, The Journal

of the Operational Research Society, Vol.48, No.3; pp.295-305.

[10] Demeulemeester.E and Herroelen.W [1992]: “A branch and bound pro-

cedure for the multiple resource-constrained project-scheduling prob-

lems”, Management Science Vol.38; pp.1803-1818.

[11] Doerner.K.F, Gutjahr.W.J, Hartl.R.F, Strauss.C and Stummer.C

[2004]: “Pareto ant colony optimization with ILP preprocessing in mul-

tiobjective project portfolio selection ”, to appear in European Journal

of Operational Research.

[12] Dorigo.M and Di Caro.G [1999]: “Ant Algorithms for Discrete Opti-

mization ”, Artificial life, Vol.5, No.2; pp.137-172.

[13] Dowsland Kathryn.A [1996]: “Genetic Algorithms-A tool for OR? ”,

The Journal of the Operational Research Society, Vol.47, No.4; pp.550-

561.

[14] Elbeltagi.E, Hegazy.T and Grierson.D [2005]: “Comparison among five

evolutionary-based optimization algorithms ”, Advanced Engineering

Informatics; pp.1-11.

[15] Feng.C, Liu.L and Scott.A.B [1997]: “Using Genetic Algorithms to solve

Construction Time-Cost Trade-Off Problems ”, Journal of computing

in civil engineering Vol.11, No.3; pp.184-189.

Bibliography 91

[16] Gagné.C, Gravel.M and Price.W.L [2001]: “A Look-ahead addition to

the ant colony optimization metaheuristic and its application to an

industrial scheduling problem ”. 4th Metaheuristics International Con-

ference .

[17] Gambardella.L.M, Taillard.E and Giovanni.A [1999]: “A Multiple Ant

Colony System for Vehicule Routing Problems with time windows ”. In

: D.Corne, M.Dorigo and f.Glover (eds): New Ideas in Optimization,

McGraw-Hill, London, UK; pp.63-76.

[18] Glover.F [1986]: “Future paths for integer programming and links to

artificial intelligence”, Computers and Operations Research, Vol.13;

pp.533-549.

[19] Glover.F [1990]: “Tabu Search: A Tuturial”, Interfaces 20:4 July-

August; pp.74-94.

[20] Goldberg.D.E [1989]: “Genetic Algorithms in Search, Optimization and

Machine Learning”, Addison-Wesley Publishing Company.

[21] Hajjem M’hirsi.S [2004]: “Planning Under Uncertainty : Contingent

Plan ”, Mémoire de DEA, Institut Supréieur De Gestion, Tunisia.

[22] Joshua Knowles.D [2001]: “Local-Search and Hybrid Evolutionary Al-

gorithms for Pareto Optimization ”, PhD thesis, Departement of com-

puter Science, University of Reading UK.

[23] kolisch.R, Sprecher.A and Drexl.A [1995]: “Characterization and gen-

eration of a general class of Resource-Constrained Project Scheduling

problems”, Management Science, Vol.41, No.10; pp.1693-1703.

[24] kolisch.R and Hartmann.S [1999]: “Heuristic algorithms for the

Resource-Constrained Project Scheduling problem: Classification and

computational analysis”, In: J.Weglarz (eds): Project Scheduling: Re-

Bibliography 92

cent Models, Algorithms and Applications, Kluwer Academic Publish-

ers, Berlin; pp.147-178.

[25] kolisch.R and Hartmann.S [2000]: “Experimental evaluation of state-of-

the-art heuristics for the resource-constrained project Scheduling prob-

lem”, European Journal of Operational Research Vol.127; pp.394-407.

[26] kolisch.R and Padman.R [2001]: “An Integrated Survey of Determinis-

tic Project Scheduling”, OMEGA International Journal of Management

Science, Vol.29, No.3; pp.249-272.

[27] Krichen.S [1997]: “A Multiobjective Tabu Search Algorithm for Knap-

sack Problems with Multiple Objectives ”, Mémoire de DEA, Institut

Supréieur De Gestion, Tunisia.

[28] Landa Silva.J.D, Burke.B.K and Petrovic.S [2003]: “An Introduction to

Multiobjective Metaheuristics for Scheduling and Timetabling”. Tech-

nical Report, Automated Scheduling, Optimization and Planning Re-

search Group School of Computer Science and IT, University of Not-

tingham, UK.

[29] Majercik.S.M and Littman.M.L [1999]: “Contingent Planning Under

Uncertainty via Stochastic Satisfiability”, To appear in the Proceedings

of the Sixteenth National Conference on Artificial Intelligence.

[30] Martello.S and Toth.P [1990]: “Knapsack Problems: Algorithms and

Computer Implementations”, John Wiley and Sons.

[31] Matthew.B.W [1996]: “A Genetic Algorithm for Resource-Constrained

Project Scheduling”, PhD thesis, Department of Machanical Engineer-

ing, Massachusetts Institute of Technology.

[32] Merkle.D and Middendorf.M [2001]: “A New approach to solve per-

mutation scheduling problems with Ant Colony Optimization”, Appli-

Bibliography 93

cations of Evolutionary Computing: Procceedings of EvoWorkshops;

pp.484-493.

[33] Merkle.D, Middendorf.M and Schmeck.H [2000]: “Ant Colony Opti-

mization for Resource-Constrained Project Scheduling”, Proceedings of

the genetic and evolutionary computation conference (GECCO-2000);

pp.893-900.

[34] Nifuler.O and Martha E.P [1996]: “Contingency Selection in Plan Gen-

eration”, papers for the 1996 American Association for Artificial Intel-

ligence.

[35] Patterson.J.H and Huber.W.D [1974]: “A Horizon-Varying, Zero-One

Approach to Project Scheduling”, Management Science Vol.20, No.6;

pp.990-998.

[36] Pryor.L and Collins.G [1996]: “Planning for Contingencies: A Decision-

based Approach”, Journal of Artificial Intelligence Research; pp.287-

339.

[37] Wei Feng.C, Liu.L and Scott Burns.A [1997]: “Using Genetic Algo-

rithms to solve Construction time-cost Trade-Off problems”, Journal of

computing in civil engineering; pp.184-189.

[38] Yang.B, Geunes.J, William.J and OBrien [2001]: “Resource-

Constrained Project Scheduling: Past Work and New Directions ”,

Technical Report, Departement of Industrial and systems Engineering,

University of Florida.

Appendix A

An example with 100 tasks

94

An example with 100 tasks 95

Tasks Predecessors combinations of resources and quantities

t1 - R1(3),R4(2) R3(5),R2(1)

t2 t1 R3(2),R7(5) R2(2),R4(3)

t3 t1 R1(2),R2(4) R6(3),R7(1)

t4 t1 R5(5),R4(2) R3(1),R6(2)

t5 t2,t4 R9(5),R10(2) R8(6)

t6 t3,t4 R8(1),R5(3) R1(5),R9(2)

t7 t2 R7(4),R8(3) R2(2),R3(2)

t8 t5 R9(5),R11(2) R8(3),R10(3)

t9 t6 R4(5),R5(5) R3(2),R8(1)

t10 t6,t7 R11(3),R1(7) R7(7)

t11 t8 R5(4),R6(5) R2(2),R3(2)

t12 t8,t10 R5(3),R1(3) R4(5),R2(2)

t13 t9 R7(2),R8(1) R6(3),R8(5)

t14 t10 R3(1),R5(3) R1(6),R10(2)

t15 t12,t11 R11(3),R13(2) R14(5)

t16 t13 R12(3),R13(2) R14(2),R16(2)

t17 t12 R3(2),R7(3) R12(5),R14(2)

t18 t14 R4(5),R11(2) R8(6),R13(3)

t19 t15 R15(2),R16(3) R2(10)

t20 t16 R1(5),R2(3) R11(3),R16(5)

t21 t18,t17 R3(4),R2(3) R10(2),R15(1)

t22 t17 R8(5),R9(10) R3(4),R10(3)

t23 t20 R1(3),R2(6) R4(3), R7(2)

t24 t19,t21 R3(5),R4(1) R10(5), R12(5)

t25 t22 R6(2),R8(5) R7(4),R10(2)

t26 t25 R4(5),R11(9) R1(2) ,R10(2)

t27 t23,t24 R3(2),R4(3) R5(3),R6(3)

t28 t24 R6(5),R7(2) R10(3),R16(4)

t29 t26,t27 R3(5),R5(2) R10(11)

An example with 100 tasks 96

Tasks Predecessors combinations of resources and quantities

t30 t27 R2(1),R4(3) R3(2),R4(2)

t31 t28 R5(2),R7(4) R4(5),R8(4)

t32 t28 R1(3),R3(2) R16(6)

t33 t30 R1(3),R5(3) R7(1),R8(3)

t34 t29,t32 R6(5),R8(5) R3(2), R5(4)

t35 t33 R7(4),R5(2) R16(5)

t36 t33 R9(3),R10(4) R16(2)

t37 t34 R7(5) R5(3)

t38 t35,t36 R6(6),R13(4) R3(3) ,R5(4)

t39 t36 R8(4),R13(2) R5(2),R6(2)

t40 t37 R11(3) R3(3),R16(1)

t41 t38 R15(3),R16(1) R1(2),R4(2)

t42 t38 R16(5) R8(3),R15(5)

t43 t39 R8(3),R9(2) R10(1),R16(3)

t44 t40 R4(3),R5(3) R8(5)

t45 t42 R3(2),R7(1) R6(3),R14(3)

t46 t42,t43 R14(2),R16(1) R1(5),R3(2)

t47 t41,t44 R15(4),R16(1) R1(5),R3(2)

t48 t45 R7(1),R8(2) R10(3)

t49 t46,t47 R8(1),R9(2) R6(3),R10(1)

t50 t48,t49 R5(5),R6(3) R9(2)

t51 t49 R15(3) R6(2),R8(3)

t52 t48 R1(5),R5(3) R15(2),R16(7)

t53 t51 R3(3),R4(4) R20(5)

t54 t50 R20(3),R19(3) R3(1),R5(2)

t55 t52 R15(5),R18(3) R19(2)

t56 t53 R7(2),R17(2) R5(3),R15(3)

t57 t54,t55 R15(2),R20(3) R1(2)

t58 t55 R3(5),R4(5) R6(2),R7(2)

An example with 100 tasks 97

Tasks Predecessors combinations of resources and quantities

t59 t54 R10(2),R17(2) R20(2)

t60 t57 R14(5),R17(3) R4(3) ,R5(3)

t61 t58 R1(2),R4(2) R2(2),R5(3)

t62 t59 R6(6) R11(2),R12(5)

t63 t60 R20(4),R19(3) R17(5)

t64 t61 R17(2),R18(2) R8(10)

t65 t61 R5(2),R19(5) R7(5)

t66 t62 R7(3),R8(2) R13(5),R20(4)

t67 t64 R9(2),R10(3) R11(3),R16(5)

t68 t63 R16(3) R12(5),R14(2)

t69 t65 R10(2),R18(3) R11(2)

t70 t66 R20(5) R19(5)

t71 t67 R5(5),R7(8) R2(3)

t72 t68 R1(5),R2(4) R5(20) ,R8(3)

t73 t69 R4(4),R2(2) R10(6)

t74 t70 R20(5) R10(7)

t75 t71, t72 R5(2),R6(7) R8(9)

t76 t73 R2(3),R6(4) R19(10)

t77 t73 R3(4),R8(3) R5(12)

t78 t74 R1(1),R2(2) R12(5),R14(2)

t79 t75 R4(3),R9(2) R17(3)

t80 t78 R11(2),R17(1) R20(5)

t81 t77, t76 R13(3),R20(2) R1(10)

t82 t80 R4(10) R5(2)

t83 t79 R5(3),R7(2) R4(2) ,R10(5)

t84 t79 R1(3),R4(2) R3(5),R2(1)

t85 t81 R3(2),R7(5) R2(2),R4(3)

t86 t83 R1(2),R2(4) R6(3),R7(1)

t87 t82 R1(2),R2(4) R6(3),R7(1)

An example with 100 tasks 98

Tasks Predecessors combinations of resources and quantities

t88 t84 R9(5),R10(2) R8(6)

t89 t85 R8(1),R5(3) R1(5),R9(2)

t90 t82 R7(4),R8(3) R2(2),R3(2)

t91 t86 R9(5),R11(2) R8(3),R10(3)

t92 t87 R3(1),R5(3) R3(2),R8(1)

t93 t88, t89 R2(1),R4(6) R3(10) ,R7(2)

t94 t90 R2(3),R3(3) R1(5),R4(5)

t95 t92 R8(10),R9(2) R7(4),R5(3)

t96 t94 R3(2),R8(2) R5(5),R6(3)

t97 t93 R5(2),R6(2) R2(5),R3(1)

t98 t96 R1(5),R2(5) R4(2),R5(4)

t99 t97, t98 R3(4),R6(3) R5(2),R7(2)

t100 t99 R5(1),R6(3) R2(2),R7(4)

