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Abstract

This thesis addresses two important issues in reasoning and decision mak-
ing under uncertainty. At �rst, we have developed compilation-based infer-
ence methods dedicated to possibilistic networks. In fact, we have adapted
the standard approach initially proposed for Bayesian networks into a pos-
sibilistic framework and we have re�ned it using local structure. We have
also proposed a new encoding strategy, called possibilistic local structure, ex-
clusively useful in a qualitative framework. Moreover, we have implemented
a purely possibilistic approach based on transforming possibilistic networks
into possibilistic knowledge bases. Our second contribution consists in ex-
tending our inference approaches to possibilistic causal networks in order to
e�ciently compute the impact of both observations and interventions. We
have confronted, in particular, mutilated-based approaches and augmented-
based ones. Finally, we have explored the decision-making aspect under
compilation by extending our results on compiling possibilistic networks to
e�ciently evaluate possibilistic in�uence diagrams. An experimental study
evaluating the di�erent approaches studied in this thesis is also presented.

Résumé

Cette thèse traite deux problèmes importants dans le domaine du raison-
nement et de la décision dans l'incertain. En premier lieu, nous dévelop-
pons des méthodes d'inférence basées sur la compilation pour les réseaux
possibilistes. En e�et, nous commençons par adapter au cadre possibiliste
l'approche de base proposée, initialement, pour les réseaux Bayésiens et nous
la ra�nons, ensuite en utilisant la notion de structure locale. Nous proposons
aussi une nouvelle stratégie de codage appelée structure locale possibiliste
appropriée dans le cadre qualitatif. Nous implémentons, par ailleurs, une
méthode purement possibiliste basée sur la transformation des réseaux pos-
sibilistes en bases de connaissances possibilistes. Notre deuxième contribu-
tion consiste à étendre nos approches d'inférence dans le cadre des réseaux
causaux a�n de calculer l'e�et des observations et des interventions d'une
manière e�cace. Nous confrontons, en particulier, des approches basées sur
la mutilation et celles basées sur l'augmentation. Finalement, nous étu-
dions l'aspect décisionnel sous compilation en étendant nos résultats portant
sur la compilation des réseaux possibilistes a�n d'évaluer les diagrammes
d'in�uence possibilistes. Une étude expérimentale évaluant les di�érentes
approches étudiées dans cette thèse est également présentée.
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General introduction

Graphical models are powerful models for representing and analyzing uncer-
tain information. They are characterized by their clarity and their e�cient
management and storage of the information. Bayesian networks [32, 67] are
studied under the broader class of probabilistic graphical models. Within the
most prominent topics of Bayesian networks, we are, in particular, interested
in inference which determines how the realization of speci�c values of some
variables a�ects remaining variables, known to be NP-complete except for
singly connected networks [25]. Recently, inference has been studied using
new techniques, namely knowledge compilation [23, 24, 30, 82] which con-
sists in preprocessing a propositional theory only once in an o�-line phase,
in order to make frequent on-line queries e�cient [21].

Besides standard probabilistic networks, several non classical graphical
models were studied to handle some particular situations which may compro-
mise the application of probabilistic models, for instance when all numerical
data are not available. We are, in particular, interested in the possibility
theory framework [39, 42] which o�ers a natural and simple model to handle
uncertain information numerically or qualitatively. This leads to two di�er-
ent ways to de�ne the possibilistic counterpart of Bayesian networks, namely
product-based possibilistic networks and min-based possibilistic networks.

Few works have addressed the inference problem in possibilistic networks
[1, 11, 20, 46, 48] and most of them are based on a message passing mech-
anism and considered as a direct adaptation of probabilistic inference algo-
rithms [56, 58, 67]. Despite its interest in the probabilistic case, the idea
of compilation has not been explored to possibilistic inference. The aim
of this thesis is to study possibilistic inference under compilation in both
ordinal and numerical settings by handling min-based possibilistic networks
and product-based possibilistic networks. Computing the impact of external
events coming from outside the system, known as interventions, is also stud-
ied for possibilistic causal networks under a compilation framework. The
decisional aspect using compilation will be also explored via possibilistic in-
�uence diagrams.
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2 General introduction

In the �rst part of this thesis, Chapter 1 gives essential background on
possibility theory. It is also devoted to the presentation of two powerful
models for representing and analyzing uncertain information in the possibil-
ity theory framework, namely graphical and logical-based representations.
Chapter 2 introduces knowledge compilation and target compilation lan-
guages, in particular, the one used in our proposals, namely DNNF.

The second part is dedicated to our compilation-based inference algo-
rithms. Our focus is, at �rst, on min-based possibilistic networks since the
minimum operator has speci�c properties (e.g. idempotency) which are dif-
ferent from the product operator used in both Bayesian and product-based
possibilistic networks. More precisely, we develop in Chapter 3 compilation-
based inference methods dedicated for min-based possibilistic networks. The
basic idea of such inference consists in encoding the initial network into a
propositional base, usually a conjunctive normal form (CNF) and compiling
it into a target compilation language that guarantees a polynomial inference.
In fact, we propose a possibilistic adaptation of the standard probabilistic in-
ference approach of [30] and a purely possibilistic inference method based on
the transformation of possibilistic networks into possibilistic knowledge bases
[12]. The possibilistic adaptation does not take into account any numerical
value in the encoding phase. In other terms, it associates a propositional
variable per parameter, regardless of its value.

Our idea in Chapter 4 consists in re�ning such encoding by dealing with
speci�c values of parameters. In fact, two types of encoding strategies are
explored. The �rst one, named local structure and used in both probabilistic
and possibilistic networks, consists in assigning one propositional variable per
equal parameters per possibility table. This encoding strategy does not take
into account speci�c features of possibility theory such as the ordinal nature
of uncertainty scale, which motivates us to propose a new encoding strategy,
named possibilistic local structure and dealing with equal parameters from a
global point of view. This latter is exclusively useful for min-based possibilis-
tic networks since it exploits the idempotency property of the min operator.
Finally, the speci�city of binary variables is taken into consideration to re�ne
the n-ary encoding (when n = 2) and explore compilation-based inference in
min-based binary possibilistic networks.

In Chapter 5, we study handling interventions under compilation. In-
deed, the concept of intervention is of major importance to have a complete
and coherent causal analysis in a dynamic framework. It is an external event
that forces some variables to have some particular values [69]. There are two
ways to handle interventions using possibilistic causal networks [17]. The
most intuitive one, called mutilation, consists in ignoring relations between
the intervened variable and its direct causes. The rest of the network remains
intact. Hence, causal inference resides in applying the inference algorithm to
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the mutilated possibilistic network. A di�erent but equivalent approach to
represent intervention in possibilistic causal networks, called augmentation,
is to consider it as an additional variable into the system. Our contribution
in this Chapter is to extend inference approaches proposed in the previous
chapters and propose mutilated-based approaches and augmented-based ap-
proaches aiming to compute the e�ect of both observations and interventions
in an e�cient manner in possibilistic causal networks.

Chapter 6 goes beyond min-based possibilistic networks. In fact, it
concerns compiling product-based possibilistic networks while emphasizing
on similarities and di�erences between product-based possibilistic networks,
min-based possibilistic networks and Bayesian networks. It also explores the
decisional aspect under compilation. We deal, in particular, with the possi-
bilistic counterpart of standard in�uence diagrams [54], namely possibilistic
in�uence diagrams [47] which model decision makers preferences on a se-
quence of decisions in a compact way. Our idea is to extend our results on
compiling possibilistic networks to e�ciently evaluate possibilistic in�uence
diagrams and generate optimal strategies.

Finally, Chapter 7 provides the experimental study aiming to compare
results of our approaches.
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Chapter 1

Logical and graphical

representations of possibilistic

knowledge

1.1 Introduction

Uncertain information should be modeled in most real-world problems using
the appropriate tools. For instance, the standard probability theory has
proved its e�ciency when all numerical data are available. Nevertheless,
such theory, as good as it is, is not suitable when dealing with the case
of total ignorance [43]. Moreover, experts are generally unable to provide
precise numerical values representing imperfect information.

Several non-classical theories of uncertainty have come into challenge to
deal with uncertain and imprecise data such as Evidence theory [75, 76, 77],
Spohn's ordinal conditional functions [78, 79] and Possibility theory [39, 38,
85] issued from fuzzy sets theory [57, 84]. We are, in particular, interested in
the Possibility theory which is a convenient uncertainty framework o�ering a
natural and a simple model to handle uncertain information. It is considered
as an appropriate framework for experts to express their opinions about
uncertainty either numerically using possibility degrees or qualitatively using
a total pre-order on the universe of discourse.

Several graphical and logical-based methods have been proposed to rea-
son with uncertain information. In this chapter, our focus will be on both
logical-based representations by means of possibilistic knowledge bases and
graphical-based representations, in particular, possibilistic networks [20] char-
acterized by their clarity and their e�cient management and storage of un-
certain information. These latters are viewed as counterparts of probabilis-

5
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tic Bayesian networks [32, 67] which are in their turn studied under the
broader class of probabilistic graphical models. Possibilistic networks can
be considered very practical when experts cannot provide numerical values
or information is qualitative. Existing works on possibilistic networks focus
on inference which remains an NP-complete problem as in the probabilistic
framework [25].

This chapter is organized as follows: Section 1.2 introduces some no-
tations and de�nitions used in this chapter. Section 1.3 is devoted to the
presentation of prominent concepts relative to possibility theory. Section
1.4 and 1.5 present the logical and graphical representations of possibilistic
knowledge, namely possibilistic knowledge bases and possibilistic networks.

1.2 Notations and de�nitions

We �rst give some notations and de�nitions.

• V = {X1, X2, ..., XN} is a set of variables,

• DXi = {xi1, ..., xin} denotes the �nite domain associated with the vari-
able Xi.

• xij denotes any instance of Xi. When there is no ambiguity, we use xi
instead of xij .

• X,Y, ..., Z denote subsets of variables from V ,

• DX = ×
Xi∈X

DXi denotes the Cartesian product of domains of variables

in X,

• x denotes any instance of X, if X = {X1, ..., Xn} then x = (x1, ..., xn),

• Ω = ×
Xi∈V

DXi denotes the universe of discourse, which is the Cartesian

product of all variable domains in V ,

• Each element ω ∈ Ω is called an interpretation, a possible world or
a state of Ω. Depending on the context, we use one of the following
notations:
- either tuples: ω = (x1, ..., xN )
- or conjunctions: ω = x1 ∧ ... ∧ xN , then ω[Xi] = xi.

• φ, ψ, ϕ denote the subclasses of Ω (called events) and ¬φ denotes the
complementary set of φ i.e., ¬φ = Ω− φ,
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• φ∧ψ (resp. φ∨ψ) denotes the intersection (resp. the union) of φ and
ψ.

The following notations concern networks. Let V = {X1, X2, ..., XN} be
a �nite set of variables. Let E be a part of V × V . Then,

• A network is a couple G= (V,E) where V is the set of nodes composing
G and E corresponds to the set of edges connecting some pairs of nodes
in V ,

• An oriented edge is called arc. An arc from Xi to Xj is denoted by
Xi → Xj ,

• A direct network is a network in which all edges in E are oriented,

• In an arc Xi → Xj , the node Xi is the parent of Xj and the node Xj

is the child of Xi,

• The set of parents of a node Xi is denoted by Ui = {U1, U2, ..., Um}
where m is the number of parents of per Xi,

• ui, uij denote, respectively, possible instances of Ui and Uij ,

• A root is a node with no parents,

• A leaf is a node with no children,

• Two nodes linked by an edge (resp. arc) are said to be adjacent,

• A path in a directed network is a sequence of nodes from one node to
another using the arcs,

• A cycle is a path visiting each node once such that the �rst and the
last node are the same,

• A loop is an undirected cycle,

• A DAG Directed Acyclic Graph is an oriented network without cycles,

• A singly connected DAG or polytree is a DAG which contains no loops,

• A multiply connected DAG is a DAG which can contain loops.
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1.3 Possibility theory

The probability theory, which dates from the 17th century, is a classical the-
ory that enables representing and quantifying uncertain information. It has
been involved in several real world areas, for instance management, economy,
industry, etc. However, such theory, that does not consider the situation of
total ignorance, can be only used when the expert provides precise numer-
ical values. This situation is not always feasible, which has motivated the
development of alternative uncertainty frameworks.

Several non classical theories of uncertainty have been proposed in order
to deal with uncertain and imprecise data such as fuzzy sets theory [84],
spohn's ordinal conditional functions [78, 79], possibility theory [38], etc.
We are, in particular, interested in possibility theory introduced at �rst by
Zadeh [85] and then developed by Dubois and Prade [38]. It o�ers a �exible
tool for representing uncertain information. In what follows, we present
possibility theory concepts.

1.3.1 Possibility distribution

The basic building block in the possibility theory is the concept of possi-
bility distribution π, which is a mapping from the universe of discourse Ω
to the unit interval [0, 1]. This latter, called possibilistic scale, encodes our
knowledge on the real world. Contrary to the standard probability theory,
the possibilistic scale could be interpreted in twofold: a numerical interpre-
tation when values have a real sense and an ordinal one when values only
re�ect a total pre-order between the di�erent states of the world.

The degree π(ω) represents the compatibility of ω with available pieces
of information. By convention, π(ω) = 1 means that ω is totally possible,
and π(ω) = 0 means that ω is an impossible state. If π(ω) > π(ω′), this
means that ω is preferred to ω′.

Possibility theory is driven by the principle of minimal speci�city. It
states that a possibility distribution π is more speci�c than π′ if and only if
∀ω ∈ Ω, π(ω) ≤ π′(ω) [83]. In other terms, π is more informative than π′.
In the possibility theory framework, there are two extreme cases, namely:

• Complete knowledge: ∃ω0, π(ω0) = 1 and π(ω) = 0 ∀ω 6= ω0.

• Total ignorance: ∀ω ∈ Ω, π(ω) = 1.

A possibility distribution π is said to be normalized if there exists at
least one totally possible state. Formally:

∃ ω ∈ Ω, π(ω) = 1 (1.1)
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Example 1.1. Let us consider that we submit a scienti�c paper to an in-
ternational conference. After reviewing, the paper can be rejected or ac-
cepted for either a conference or a poster. Then, the universe of discourse
related to the submitted paper after reviewing can be de�ned as follows: Ω =
{accepted_conference, accepted_poster, rejected}.

Assuming that a reviewer gives its judgment denoted by Jd in the form
of a possibility distribution de�ned as follows:
π(Jd = accepted_conference) = 1,
π(Jd = accepted_poster) = 0.5,
π(Jd = rejected) = 0.1.

The possibility distribution given by the reviewer is normalized since
max(1, 0.5, 0.1)= 1.

Given a joint possibility distribution π on Ω, we can derive marginal
distributions relative to subsets of variables using the maximum operator
i.e., ∀X ⊆ V,∀x ∈ DX , we have:

π(x) = max
ω∈Ω
{π(ω) : ω[X] = x} (1.2)

Given n joint possibility distributions π1,...,πn, on Ω1,...,Ωn, then the
joint possibility distribution on Ω1 × ... × Ωn can be derived by combin-
ing them. In [13, 40], the combination of possibility distributions has been
de�ned in several ways. We are, in particular, interested in two forms of
combination depending on the interpretation of the possibilistic scale, i.e.,
in an ordinal setting, we use the minimum operator to combine di�erent
distributions. However, in a numerical setting, the product operator should
be used.

1.3.2 Possibility and necessity measures

The probability theory uses only the probability measure P . The probability
of the complement ¬φ of an event φ is fully determined from the probability
of φ, i.e., P (¬φ) = 1 − P (φ). This means that if φ is not probable, then
¬φ is necessarily probable. This is not the case in possibility theory since
if we know that "it is not possible that φ is true", this does not imply that
"¬φ is possible" but it leads to a stronger conclusion i.e., "it is necessary
that ¬φ". Conversely, "it is possible that φ is true" does not entail anything
about the possibility nor the impossibility of ¬φ. Thus, possibility theory
discriminates between the concepts of possibility (plausibility) and necessity
(certainty) of an event. Let us now de�ne these two dual measures:
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Possibility measure

Given a possibility distribution π, we can de�ne a mapping grading the
possibility measure of any subset φ ⊆ Ω by:

Π(φ) = max
ω∈φ

π(ω). (1.3)

Π(φ) is called the possibility degree of φ. It evaluates at which level φ
is consistent with our knowledge represented by π. For instance, Π(φ) = 1
makes this event possible but does not exclude ¬φ. However, we conclude
that only the event φ can be realized if Π(¬φ) = 0.

Table 1.1 gives main properties of possibility measures.

Π(φ) = 1 and Π(¬φ) = 0 φ is certainly true
Π(φ) = 1 and Π(¬φ) ∈]0, 1[ φ is somewhat certain
Π(φ) = 1 and Π(¬φ) = 1 total ignorance (φ is unknown)
Π(φ) > Π(ψ) φ is a priori more plausible than ψ
max(Π(φ),Π(¬φ)) = 1 φ and ¬φ cannot be both impossible
Π(φ ∨ ψ) = max(Π(φ),Π(ψ)) decomposability axiom (disjunction axiom)
Π(φ ∧ ψ) ≤ min(Π(φ),Π(ψ)) conjunction axiom

Table 1.1: Possibility measure Π (case of normalized possibility distributions)

Example 1.2. Let us consider Example 1.1 such that the review process of
the submitted paper is double blind. Then, if we want to know the possibility
degree to have an accepted paper. We can say that it is fully possible, i.e., its
possibility degree is equal to 1 since we have not yet received reviews and we
have no information that contradicts paper's acceptance.

Necessity measure

The dual of the possibility measure is the necessity measure de�ned by
∀φ ⊆ Ω:

N(φ) = 1−Π(¬φ) = min
ω 6∈φ

(1− π(ω)) (1.4)

N(φ) is called the necessity degree of φ. It corresponds to the certainty
degree associated with φ. In other terms, N evaluates at which level φ is
certainly implied by our knowledge represented by π. Let us illustrate the
relation between N and Π. If N(φ) > 0, this implies that Π(φ) = 1. This
means that φ is completely possible before being somewhat certain. This
property ensures the following inequality N(φ) ≤ Π(φ).

Main properties of necessity measures are summarized in Table 1.2.
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N(φ) = 1 and N(¬φ) = 0 φ is certain
N(φ) ∈]0, 1[ and N(¬φ) = 0 φ is somewhat certain
N(φ) = 0 and N(¬φ) = 0 total ignorance (φ is unknown)
min(N(φ), N(¬φ)) = 0 the unique relation existing between

N(φ) and N(¬φ)
N(φ ∧ ψ) = min(N(φ), N(ψ)) conjunction axiom

Table 1.2: Necessity measure N (case of normalized possibility distributions)

Example 1.3. Assuming that we received all reviews such that the overall
rate is equal to 9 of 10. Then, if my friend asks me: Do you think the paper
will be rejected? I will say No since it is impossible to reject a paper having
a very high rate. This is equivalent to say that it is necessary (certain) that
the paper is accepted.

1.3.3 Quantitative and qualitative settings

There are two settings in the possibility theory framework, namely a quanti-
tative setting when we deal with a numerical interpretation of the possibilistic
scale and a qualitative setting when the ordinal interpretation is considered.

In the quantitative setting of possibility theory, possibility degrees should
take signi�cant and precise values in the unit interval [0, 1]. Interestingly
enough, the value of each possibility degree should be escorted by a justi�-
cation. However, in most situations, experts cannot provide exact numerical
values of possibility degrees. Indeed, it is generally easier and natural for
experts to unveil that one situation is more plausible than another instead
of associating a particular numerical possibility degree for each situation as
probabilities, possibilities in the quantitative setting, kappa functions etc.
The possibility theory framework o�ers the �exibility for experts by model-
ing uncertainty in a qualitative way.

The basic idea of the qualitative representation is to equip the referential
Ω with a total pre-order denoted by ≥π, instead of the unit interval [0, 1].
≥π corresponds to a plausibility relation on Ω which enables us to express
that some situations are more plausible than others. Three cases can be
identi�ed:

• ω =π ω
′: ω is as plausible as ω′,

• ω >π ω′: ω is more plausible than ω′,

• ω <π ω′: ω is less plausible than ω′.
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Example 1.4. The plausibility relation relative to the possibility distribution
given by the reviewer of Example 1.1 is as follows:
Jd = accepted_presentation >π Jd = accepted_poster >π Jd = rejected.

We give in what follows some de�nitions of plausibility relations:

• Most plausible states: Given ϕ = {ω1, .., ωn} ⊆ Ω, the most plausible
state(s) in the set ϕ is de�ned by max(ϕ) s.t.

max(ϕ) = {ωi : ωi ∈ ϕ, 6 ∃ ωj ∈ ϕ s.t. ωj >π ωi} (1.5)

• Least plausible states: Given ϕ = {ω1, .., ωn} ⊆ Ω, the least plausible
state(s) in the set ϕ is de�ned by min(ϕ) s.t.

min(ϕ) = {ωi : ωi ∈ ϕ, 6 ∃ ωj ∈ ϕ s.t. ωi >π ωj}. (1.6)

In the qualitative setting, the qualitative possibility distribution, de-
noted by πQ, is equipped by a �nite and totally ordered scale denoted by
L = {a0 = 1, a1, ..., an, an+1 = 0} such that a0 > a1 > ... > an+1. Such
distribution is called qualitative possibility distribution. It is a function that
associates for each interpretation ω ∈ Ω an element from L. Therefore,
some states are considered more plausible than others without mentioning
any numerical value. It is important to point out that even in a qualitative
setting, the possibilistic scale can be numerical. For instance, in the follow-
ing scale L = {0, 0.1, 0.2, 0.3, ..., 1}, only the order relation between values is
signi�cant, and not their real values.

Example 1.5. Let us continue with Example 1.1. The possibility distribution
can be represented qualitatively by the reviewer as follows:
πQ(Jd = accepted_presentation) = a0,
πQ(Jd = accepted_poster) = a5,
πQ(Jd = rejected) = a9.

From πQ, we can deduce that Jd = accepted_presentation is more plau-
sible than Jd = accepted_poster, which in its turn more plausible than
Jd = rejected since a0 = 1 > a5 = 0.5 > a9 = 0.1.

1.3.4 Possibilistic conditioning

Conditioning consists in revising our initial knowledge, encoded by a possibil-
ity distribution π, by the arrival of a new certain piece of information φ ⊆ Ω.
In a possibilistic framework, conditioning di�ers depending on whether the
available information is qualitative or quantitative. A panoply of de�nitions
of possibilistic conditioning was proposed [36, 39, 53]. In what follows, we
focus on Hisdal's [53], Dubois and Prade's [39] and Dempster's [75] de�ni-
tions.
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Product-based conditioning

The product-based conditioning, also known as Dempster's rule of condi-
tioning [75] is de�ned by:

Π(φ ∧ ψ) = Π(φ|ψ).Π(ψ) (1.7)

Thus, the impact of an event ψ on our knowledge associated to φ is
computed as follows:

Π(φ |p ψ) =
Π(φ ∧ ψ)

Π(ψ)
(1.8)

The impact of ψ on each interpretation ω ∈ Ω is de�ned by:

Π(ω |p ψ) =

{
π(ω)
Π(ψ) if ω |= ψ

0 otherwise
(1.9)

Conditioning using the necessity measure is given by: N(φ | ψ) = 1 −
Π(¬φ | ψ).

Min-based conditioning

In a qualitative framework, min-based conditioning is de�ned by the quali-
tative counterpart of the Bayesian rule de�ned by [39, 53]:

Π(φ ∧ ψ) = min(Π(φ|ψ),Π(ψ)) (1.10)

The well known de�nition of min-based conditioning using the minimum
speci�city principle is expressed by:

Π(φ |m ψ) =

{
Π(φ ∧ ψ) if Π(φ ∧ ψ) < Π(ψ)
1 if Π(φ ∧ ψ) = Π(ψ)

(1.11)

When φ ∧ ψ is inconsistent, then Π(φ ∧ ψ) = 0. If we want to compute
the impact of ψ on each ω ∈ Ω, then min-based conditioning is de�ned by:

Π(ω |m ψ) =


π(ω) if π(ω) < Π(ψ) and ω |= ψ
1 if π(ω) = Π(ψ) and ω |= ψ
0 otherwise

(1.12)

Conditioning using the necessity measure is given by: N(φ | ψ) = 1 −
Π(¬φ | ψ).
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rate quality π(rate,quality) π(rate,quality|mψ) π(rate,quality|pψ)

high good 0.9 1 1
high bad 0.2 0.2 0.2

0.9 = 0.22

low good 0.6 0 0
low bad 0.7 0 0

Table 1.3: Joint possibility distribution after conditioning

Example 1.6. Let us consider two variables relative to the quality of the pa-
per and its overall rate such that quality = {good, bad} and rate = {high, low}.
The joint distribution is given in Column 3 of Table 1.3.

Considering now that we receive a fully certain piece of information in-
dicating that the overall rate is high. Then, ψ = {high ∧ good, high ∧ bad}
and Π(ψ) = max(0.9, 0.2) = 0.9 using Equation (1.2). Using Equation (1.9)
(resp. (1.12)), the qualitative (resp. quantitative) possibility distribution of
Table 1.3 will be transformed into a new distribution presented in Column 4
(resp. 5) of Table 1.3.

1.4 Possibilistic knowledge bases

The possibility theory framework o�ers di�erent formats for representing
knowledge either in a logical manner in terms of a possibilistic knowledge
base or in a graphical manner using a possibilistic directed acyclic graph
(DAG). This section details the logical-based representation.

Possibilistic logic [37, 59] can be viewed as an extension of classical logic
where we assign to each formula a weight that re�ects the degree of cer-
tainty with respect to other formulas. It provides a simple format that turns
to be useful for handling qualitative uncertainty. The concept of a possibilis-
tic knowledge base, which is a set of weighted formulas, is a well-used and
developed compact logical-based representation of a possibility distribution.
Formally:

Σ = {(αi, ai), i = 1, . . . , k, ai 6= 0} (1.13)

where k denotes the number of formulas in Σ, αi is a propositional for-
mula, and ai its weight belonging to ]0, 1]. Each possibilistic logic formula
(αi, ai) expresses that αi is certain to at least the level ai, or more formally by
N(αi) ≥ ai, where N is the necessity measure associated to αi. The higher
is the degree associated with a formula the more certain it is. Formulas with
a necessity degree equal to 0 are not explicitly represented in the possibilistic
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knowledge base. In other terms, only beliefs which are somewhat accepted
are explicitly represented.

De�nition 1.1. Let Σ be a possibilistic knowledge base and α ∈ [0, 1]. We
call the α-cut (resp. strict α-cut) of Σ, denoted by Σ≥α (resp. Σ�α) the set
of classical formulas in Σ having a certainty degree at least equal to (resp.
strictly greater than) α.

The inconsistency degree of a possibilistic knowledge base Σ, denoted by
Inc(Σ) is de�ned by:

Inc(Σ) = max{ai : Σ≥ai |= ⊥} (1.14)

where Σ≥ai corresponds to the set of possibilistic formulas having a
weight greater or equal than ai. Inc(Σ) = 0 means that Σ is consistent.
Lang [59] proposed an algorithm to compute the inconsistency degree of Σ
with a complexity equal to log2 n SAT where n is the number of di�erent
degrees involved in Σ and SAT is the propositional satis�ability test.

The inconsistency degree can be also computed using the necessity mea-
sure. In fact, Inc(Σ) corresponds to the smaller necessity degree of the
contradiction ⊥ computed from the possibilistic knowledge base Σ.

Example 1.7. Let us consider the following possibilistic knowledge base
Σ = {(a, 0.5), (b, 0.3), (¬a ∨ ¬b, 0.2)}. The inconsistency degree of this base
is Inc(Σ) = 0.2.

From a possibilistic knowledge base, a syntactic possibilistic entailment
has been de�ned as follows:

De�nition 1.2. Let Σ be a consistent possibilistic knowledge base and (αi, ai)
a possibilistic formula, αi is entailed from Σ to degree ai denoted by Σ |=
(αi, ai), i� Σ≥ai ∪ {¬αi} is inconsistent.

When Σ is inconsistent, then (αi, ai) is a non-trivial consequence of Σ if
and only if:
(i) Inc(Σ ∪ {(¬αi, 1)}) > Inc(Σ),
(ii) Inc(Σ ∪ {(¬αi, 1)}) ≥ ai.

Possibilistic knowledge bases can be considered as compact representa-
tions of possibility distributions. Indeed, each possibilistic knowledge base
induces a unique possibility distribution [37] such that ∀ ω ∈ Ω,

πΣ(ω) =

{
1 if ∀(αi, ai) ∈ Σ, ω |= αi

1−max {ai : (αi, ai) ∈ Σ and ω 2 αi} otherwise
(1.15)
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This means that the possibility degree associated to each interpretation
ω corresponds to computing the maximum certainty degree of the formulas
that are not satis�ed by ω.

The possibility distribution πΣ associated with a possibilistic knowledge
base Σ can be found by combining local possibility distributions associated
to each possibilistic formula using the minimum operator. In fact, the possi-
bility distribution associated with a possibilistic formula (αi, ai) denoted by
π(αi,ai) is de�ned as follows: ∀ω ∈ Ω:

π(αi,ai)(ω) =

{
1− ai if ω 2 αi
1 otherwise

(1.16)

Thus, the possibility distribution πΣ can be viewed as the result of the
combination of π(αi,ai), ∀(αi, ai) ∈ Σ. Formally, ∀ω ∈ Ω,

πΣ(ω) = min
i=1,...,k

π(αi,ai)(ω) = min {1− ai : ω 2 αi} (1.17)

Example 1.8. Let us consider the same variables used in Example 1.6 and
the following possibilistic knowledge base represented by:
Σ = {(low ∨ good, 0.9), (high ∨ bad, 0.5), (high ∨ good, 0.2)}. Then, the joint
possibility distribution πΣ associated with Σ is given by Table 1.4.

rate quality πΣ(rate,quality)

high good 1
high bad 0.1
low good 0.5
low bad 0.8

Table 1.4: Joint possibility distribution of Example 1.8

Two knowledge bases Σ and Σ′ are said to be equivalent if and only if they
have the same associated possibility distributions [12]. Formally, ∀ω ∈ Ω,

πΣ(ω) = πΣ′(ω) (1.18)

Subsumption simpli�es possibilistic knowledge bases by removing (or
adding) some formulas without lose of information as follows:

De�nition 1.3. Let (αi, ai) be a possibilistic formula in Σ. (αi, ai) is said to
be subsumed by Σ if Σ and Σ\(αi, ai) are two equivalent possibilistic knowl-
edge bases.
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Subsumed formulas are redundant formulas that can be deleted or added
to a possibilistic knowledge base without changing its possibility distribution.

Example 1.9. Let us consider the following possibilistic knowledge base Σ =
{(a, 0.5), (¬a ∨ b, 0.4), (¬a ∨ ¬b, 0.3), (a ∨ ¬b, 0.4)}. The possibilistic formula
(a ∨ ¬b, 0.4) is subsumed by Σ since Σ and Σ\ {(a ∨ ¬b, 0.4)} are equivalent
and yield to the same possibility distributions.

There are two kinds of possibilistic inference:

• Deduction of formulas: A formula α is a logical consequence of a pos-
sibilistic knowledge base Σ, denoted by Σ |= α if and only if N(α) > 0
where N is the necessity degree of α computed from πΣ.

• Deduction of formulas with certainty degrees: A possibilistic formula
(αi, ai) is a logical consequence of a possibilistic knowledge base Σ,
denoted by Σ |= (αi, ai) if and only if N(αi) ≥ ai > 0.

1.5 Possibilistic networks

Bayesian networks are probabilistic graphical models that are used for mod-
elling domains incorporating uncertainty [67]. They were successfully ap-
plied in several areas [80, 81]. The power of these graphical models is not
only based on their e�cient reasoning with several variables, but also their
ability to help humans in understanding better the domain. This is mainly
due to their comprehensible representation by using dependencies between
variables.

Bayesian networks can be only used when the expert is able to provide
precise numerical values, which is not always possible in practice. For this
reason, in the case of non-numerical data, one can resort to possibilistic
networks, which are the possibilistic counterpart of Bayesian networks in the
possibility theory framework.

In the possibility theory framework, the two interpretations of the possi-
bilistic scale o�er two de�nitions of conditioning, namely a min-based condi-
tioning using the minimum operator and a product-based conditioning using
the product operator. Due to the existence of two de�nitions of possibilis-
tic conditioning, there are two ways to de�ne the counterpart of Bayesian
networks: product-based possibilistic networks which are very close to the
probabilistic ones and min-based possibilistic networks characterized by a
di�erent behavior when comparing them to probabilistic ones [46]. There
are also possibilistic causal networks in which edges encode not only depen-
dencies between variables but also direct causal relationships [16].
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Most of possibilistic works focus on the inference topic while assuming
that the model exists. In this section, we present possibilistic networks.
Before, we give a recall on Bayesian networks. Possibilistic causal networks
will be detailed in Chapter 5.

1.5.1 Recall on Bayesian networks

A Bayesian network [67], denoted by BN , over a set of variables V has two
components, namely:
- A graphical component composed of a directed acyclic graph (DAG) G=
(V,E) where V denotes a set of nodes representing variables and E a set of
edges re�ecting the independence relations relative to the application area.
- A numerical component consisting in a quanti�cation of di�erent links in
the DAG by a conditional probability distribution of each node Xi in the
context of its parents (Ui). Such conditional probabilities should respect the
following normalization constraints for each variable Xi:

• if Ui = ∅ (i.e., Xi is a root), then the a priori probability relative to Xi

should satisfy:

∑
xi

P (xi) = 1

• if Ui 6= ∅, then the relative conditional probability relative to Xi in the
context of its parents Ui should satisfy:

∑
xi

P (xi | Ui) = 1

Given a Bayesian network, the global joint probability distribution over
the set V = {X1, ..., XN} can be expressed as a product of the N initial
conditional probabilities via the following probabilistic chain rule:

p(X1, ..., XN ) =
∏

i=1..N

P (Xi | Ui) (1.19)

Example 1.10. Let us consider the Bayesian network BN , depicted by Fig-
ure 1.1, having two binary variables A and B. The joint probability distri-
bution of BN is given by Table 1.5.

Inference in Bayesian networks is considered the primary task of graphical
models. It determines how the realization of speci�c values of some variables
E ⊆ V , called evidence and denoted by e, a�ects remaining variables. More



Chapter 1: Logical and graphical representations of possibilistic knowledge 19

A

B

ai P(ai)
a1 0.4
a2 0.6

P(bj|ai) a1 a2
b1 0.4 0.2
b2 0.6 0.8

Figure 1.1: A Bayesian network

A B P(A) P(B|A) p

a1 b1 0.4 0.4 0.16
a1 b2 0.4 0.6 0.24
a2 b1 0.6 0.2 0.12
a2 b2 0.6 0.8 0.48

Table 1.5: Joint distribution of BN

explicitly, we compute for any variable of interest Xi ∈ V the probability
P (xi | e), ∀xi ∈ DXi .

Considering that a joint probability distribution is available, then in-
ference can be performed using marginalization. Unfortunately, this is not
realistic even if the Bayesian network contains a small number of variables.
A key solution that avoids computing the whole joint distribution relative
to a Bayesian network is to perform local computations using probabilistic
inference algorithms. The inference task in Bayesian network is known to
be NP-complete [25] except for singly connected networks.

The fundamental exact probabilistic inference algorithm was proposed
by Kim and Pearl [58] and Pearl [66, 67] for singly connected networks. It
consists in combining information deriving from parents and children of the
variable of interest via a message passing mechanism. When the focus is on
multiply connected networks, this algorithm does not give the correct be-
liefs. For multiply connected networks, the junction tree method introduced
by Lauritzen and Spiegelhalter [60] and re�ned by [56] is considered as the
standard probabilistic inference approach. Its main idea consists in trans-
forming the initial Bayesian network into a junction tree which is a tree of
variables clusters. Messages are transmitted between clusters allowing the
computation of marginal distributions in two passes. More details on this
algorithm will be given in its possibilistic adaptation (see subsection 1.5.3).
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1.5.2 Representation of possibilistic networks

As in Bayesian networks, a possibilistic network over a set of variables V is
characterized by:
- A graphical component composed of a Directed Acyclic Graph (DAG) G.
- A numerical component consisting in a quanti�cation of each node in the
context of its parents using a conditional possibility distribution (denoted by
CΠTi). The set of all CΠTi is denoted by CΠT . Such conditional distribu-
tions should respect the following normalization constraints for each variable
Xi using the marginalization operator, namely: the maximum operator.

• if Ui = ∅ (i.e., Xi is a root), then the a priori possibility relative to Xi

should satisfy:
max
xi

Π(xi) = 1, ∀xi ∈ DXi

• if Ui 6= ∅, then the conditional distribution of Xi in the context of its
parents should satisfy:

max
xi

Π(xi | Ui) = 1,∀xi ∈ DXi , Ui ∈ DUi

If Xi is a binary variable, then max(Π(xi | Ui),Π(¬xi | Ui)) = 1.

Product-based possibilistic networks

A product-based possibilistic network over a set of variables V , denoted by
ΠG∗, is a possibilistic network appropriate for a numerical interpretation of
the possibilistic scale [0, 1]. In such networks, conditionals are de�ned using
product-based conditioning expressed by Equation (1.9).

The joint distribution relative to a product-based possibilistic network,
denoted be π∗, can be computed in the same manner than Bayesian networks
via the following product-based chain rule:

De�nition 1.4. (Product-based chain rule) Given a product-based possi-
bilistic network ΠG∗, the global joint possibility distribution over the variable
set V = {X1, X2, ..., XN} can be expressed as the product of the N initial a
priori and conditional possibilities via the following product-based chain rule:

π∗(X1, ..., XN ) =
∏

i=1..N

Π(Xi | Ui) (1.20)

where
∏

is the product operator.
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Min-based possibilistic networks

A min-based possibilistic network over a set of variables V , denoted by
ΠGmin, is a possibilistic network appropriate for an ordinal interpretation of
the possibilistic scale. Conditionals are de�ned using min-based conditioning
of Equation (1.11).

The joint distribution relative to a min-based possibilistic network, de-
noted by πmin, can be computed via the following min-based chain rule:

De�nition 1.5. (min-based chain rule) Given a min-based possibilistic
network ΠGmin, the global joint possibility distribution over the variable set
V = {X1, X2, ..., XN} can be expressed as the minimum of the N initial a
priori and conditional possibilities via the following min-based chain rule:

πmin(X1, .., XN ) = min
i=1..N

Π(Xi | Ui) (1.21)

In [12], authors have provided a transition of min-based possibilistic net-
works into standard possibilistic logic bases.

Example 1.11. Let us consider the possibilistic network, depicted by Figure
1.2, containing two binary variables A and B. The joint possibility distribu-
tions of ΠG∗ and ΠGmin are represented in Table 1.6.

A

B

ai Π(ai)
a1 1
a2 0.4

Π(bj|ai) a1 a2
b1 1 0.8
b2 0.8 1

Figure 1.2: A small possibilistic network

A B Π(A) Π(B|A) π∗ πmin

a1 b1 1 1 1 1
a1 b2 1 0.8 0.8 0.8
a2 b1 0.4 0.8 0.32 0.4
a2 b2 0.4 1 0.4 0.4

Table 1.6: Joint distributions of ΠG∗ and ΠGmin
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1.5.3 Inference in possibilistic networks

One of the most interesting treatments that can be applied for possibilistic
networks is to evaluate the impact of a certain event on the remaining vari-
ables. Such process can be achieved using inference algorithms consisting
on computing a-posteriori possibility distributions of each variable Xi given
an evidence e. Possibilistic inference algorithms proposed in literature are
mainly a direct adaptation of exact methods [20, 46]. In fact, the proposed
algorithms for product-based possibilistic networks are very similar to prob-
abilistic algorithms since they share the same operator. This is not the case
when using the minimum operator. Indeed, this operator has special prop-
erties, such as idempotence, which can be used to avoid direct adaptations.
In what follows, we present the standard inference algorithm in junction
trees associated to min-based possibilistic networks, that will be used in the
experimental study.

The principle of this inference method is similar to the probabilistic
method in junction trees presented in [56]. Indeed, it is based on the trans-
formation of the initial DAG into a junction tree, denoted by JT, which will
be used during the inference process. Once the building of the junction tree
is achieved, the inference process can start through three stages. The �rst
step of initialization allows to quantify the junction tree using initial distri-
butions and incorporate evidence into variables. The second step of global
inference allows to ensure global coherence of the junction tree through a
collect phase and and a distribute phase of messages between clusters. In
other words, this step provides exact marginals. Finally, the last step of
response to queries provides marginals relative to on di�erent variables.

Step S1: Building the junction tree

Principal steps to construct a junction tree given a DAG can be summarized
as follows [55]:

� Moralization of the initial network : allows to create a non oriented
network by dropping the direction of existing edges and adding undirected
edges between the parents of each variable. The moral network is denoted
by MG.

� Triangulation of the moral network : This step aims to identify sets of
variables that can be grouped into clusters, denoted by Ci. Note that it is
important to �nd an optimal triangulation that minimizes the size of clusters
to allow local computations. This problem is known as NP-complete [25].

� Building the junction tree: The triangulated network is transformed
into a junction tree where each node represent a cluster of variables and
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each edge is labeled with a separator, denoted by Sij , corresponding to the
intersection of its adjacent clusters.

Example 1.12. Let us consider the possibilistic network of Figure 1.3. Fig-
ure 1.4 depicts the junction tree associated to the DAG of Figure 1.3 com-
posed of two clusters: C1 = {ABC} and C2 = {BCD} and their separator
S12 = {BC}.

A

B C

D

a1 1
a2 0.9

b1 a1 1
b1 a2 0
b2 a1 0.4
b2 a2 1

c1 a1 0.3
c1 a2 1
c2 a1 1
c2 a2 0.2

d1 b1 c1 1

d1 b1 c2 1

d1 b2 c1 1

d1 b2 c2 1

d2 b1 c1 1

d2 b1 c2 0

d2 b2 c1 0.8

d2 b2 c2 1

Figure 1.3: A possibilistic network

ABC BCDBC

Figure 1.4: The junction tree associated to the DAG of Figure 1.3

Step S2: Initialization

Once the junction tree is constructed, this step transforms the initial con-
ditional possibility distributions into local joint distributions attached to
clusters and separators. More speci�cally, for each cluster Ci (resp. sepa-
rator Sij) of MG, we assign a potential πtCi

(resp. πtSij
) where t is relative

to the inference step. In particular, t = I (resp. t = C) corresponds to the
initialization step (resp. global coherence).
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These potentials allow to associate a joint possibility distribution to the
junction tree, denoted by πtJT and de�ned by:

πtJT (X1, . . . , XN ) = min i=1...m πtCi
(1.22)

where m is the number of clusters in JT.

The initialization step can be summarized as follows:

� For each cluster Ci, assign a uniform distribution: πICi
← 1.

� For each separator Sij , assign a uniform distribution: πISij
← 1.

� For each variable Xi, choose a cluster containing Xi ∪ Ui and update
its local possibility distributions: πICi

← min(πICi
,Π(Xi|Ui)).

Example 1.13. Let us re-consider the possibilistic network of Example 1.12.
After the initialization step of the junction tree of Figure 1.4, local possibility
distributions of clusters and the separator are given by:
- πC1(ABC) = Π(A).Π(B|A).Π(C|A),
- πC2(BCD) = Π(D|BC),
- πS12 = 1.

Step S3: Global inference

Before presenting the global inference step, we introduce the concept of global
coherence in junction trees.

De�nition 1.6. Let Ci and Cj two adjacent clusters in a junction tree J T
and Sij its separator. The edge between Ci and Cj is said to be stable or
coherent if:

max
Ci\Sij

πtCi
= πtSij

= max
Cj\Sij

πtCj
(1.23)

where max
Ci\Sij

πtCi
is the marginal distribution of Sij de�ned from πtCi

. If

all edges are coherent, then J T is said to globally coherent.

The global inference is performed by a message passing mechanism be-
tween clusters until reaching the global consistency of the junction tree.
Given a junction tree with m clusters, the global inference algorithm begins
by choosing an arbitrary cluster to be the pivot node and then performing
2 ∗ (m− 1) messages passes, divided into two phases:
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• A collect-evidence phase in which each cluster passes a message to
its adjacent cluster in the pivot direction, beginning with the clusters
farthest from the pivot (which correspond to leaves).

• A distribute-evidence phase in which each cluster passes messages to
its adjacent clusters away from the pivot direction, beginning with the
pivot itself. In this phase messages circulate from the pivot until the
leaves are reached.

If a cluster Ci sends a message to its adjacent cluster Cj , then the po-
tentials of Ci, Cj and their separator Sij are updated as follows:

1. Save the same potential for Ci

πt+1
Ci
← πtCi

. (1.24)

2. Assign a new potential to Sij

πt+1
Sij
← max

Ci\Sij

πtCi
. (1.25)

3. Assign a new potential to Cj :

πt+1
Cj
← min(πtCj

, πt+1
Sij

). (1.26)

When the global coherence of the junction tree is guaranteed, the poten-
tial of each cluster corresponds to its local distribution.

Step S4: Response to queries

The junction tree resulting from the previous step is globally coherent, which
means that the potential of each cluster encodes the same local distribution.
Thus, computing the marginal relative to each variable Xi ∈ V can be
established by marginalizing the potential of any cluster as follows:

Π(Xi) = max
Ci\Xi

πCCi
(1.27)

Example 1.14. Considering the possibilistic network of Figure 1.3. Local
possibility distributions of clusters (after global inference) are given in Table
1.7. The possibility distribution associated to the junction tree is equivalent
to the one of the initial network. For instance, πAJ(a1, b2, c1, d2) = 0.3.
Computing the marginal distribution of D, we should choose a cluster con-
taining this variable (C2 in this case): Π(D) = maxBC πC2(DBC). We
obtain Π(d1) = 1 and Π(d2) = 0.8.
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A B C πC1(ABC) D B C πC2(DBC)

a1 b1 c1 0.3 d1 b1 c1 0.3
a1 b1 c2 1 d1 b1 c2 1
a1 b2 c1 0.3 d1 b2 c1 0.9
a1 b2 c2 0.4 d1 b2 c2 0.4
a2 b1 c1 0 d2 b1 c1 0.3
a2 b1 c2 0 d2 b1 c2 0
a2 b2 c1 0.9 d2 b2 c1 0.8
a2 b2 c2 0.2 d2 b2 c2 0.4

Table 1.7: Local possibility distributions of clusters

Handling the evidence

The inference algorithm in junction trees can be easily extended to take
into consideration an evidence e corresponding to a set of instantiated vari-
ables, i.e., for each variable Xi ∈ V , it allows to compute Π(Xi ∧ e) instead
of Π(Xi). For this reason, the evidence related to each variable Xi should
be encoded using the following distribution ΛXi :

ΛXi(xi) =


1 if Xi is not instantiated
1 if Xi is instantiated for xi
0 if Xi is instantiated but not for xi

(1.28)

To handle the evidence e, we should extend the inference procedure by
transforming the initialization step so that to incorporate any certain in-
formation. Indeed, we should encode the evidence e as a likelihood (using
(1.28)), then, we incorporate it into the junction tree by adding these two
steps to the initialization procedure:
- For any instantiated variable Xi, encode the observation Xi = xi as a like-
lihood ΛXi using Equation (1.28).
- Identify a cluster Ci containing Xi: πICi

← min(πICi
,ΛXi).

Through global inference and under the assumption that we have an
evidence e, the potential of any cluster Ci encodes Π(Ci∧e). Then, when we
marginalize any cluster potential πCCi

into a variable Xi (s.t Xi ⊆ Ci) using
Equation (1.27), we obtain the possibility measure of Xi and e:

Π(Xi ∧ e) = max
Ci\Xi

πCCi
(1.29)

However, our goal is to compute Π(Xi | e), this value can be easily ob-
tained from Π(Xi ∧ e) by applying the de�nition of min-based conditioning
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as follows:

Π(Xi | e) =

{
Π(Xi ∧ e) ifΠ(Xi ∧ e) < Π(e) = max

Xi

Π(Xi ∧ e)

1 otherwise
(1.30)

1.6 Conclusion

In this chapter, we have presented two representations of uncertain informa-
tion in the possibility theory framework, namely the logical-based represen-
tation using possibilistic knowledge bases and the graphical-based one using
possibilistic networks. These latters, which are the possibilistic counterpart
of standard Bayesian networks, can be namely product-based ones in a nu-
merical setting and min-based in an ordinal setting. We have, especially,
emphasized on the well known inference problem. Next chapter will focus
on an important research topic, namely knowledge compilation.
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Knowledge compilation

2.1 Introduction

Knowledge representation consists in storing what an agent knows in a
knowledge base, typically using a logical formalism. Such base is then
used, through speci�c querying algorithms, to extract information implic-
itly stored in it. Problems in logic are known among computer scientists
for their high computational complexity, for instance deduction in a logical
formalism. Knowledge compilation is one of the techniques that has been
proposed for addressing such computational di�culties [21].

Knowledge compilation has been acknowledged for a few years as an
important research topic [27]. According to this approach, the reasoning
process is split into two phases: an o�-line compilation phase in which the
propositional theory is compiled into some target language and an on-line
query-answering phase where the compiled base is used to e�ciently answer
a set of queries. One of the key aspects of any compilation approach is the
target compilation language into which the propositional theory is compiled.

This Chapter is organized as follows: Section 2.2 brie�y outlines the basic
elements of propositional logic. Section 2.3 introduces knowledge compila-
tion. Section 2.4 is dedicated to the knowledge compilation map of [34].
Section 2.4 is devoted to the most succinct target compilation language,
namely Decomposable Negation Normal Form.

2.2 Propositional logic

Propositional logic is a knowledge representation and reasoning formalism.
It is within the simplest logics but expressive enough for many applications.

28



Chapter 2: Knowledge compilation 29

It is used to express statements to which we assign the so-called truth values:
true or false and no other possible value. Such truth is vocalized in light of a
possible world. In this section, we succinctly present syntactic and semantic
aspects that are necessary for understanding knowledge Compilation.

2.2.1 Syntax

From a syntactic point of view, the propositional variable represents the
central element in propositional logic. Also called proposition or atom, a
propositional variable is a boolean variable subject to take two truth values,
namely True (>) or False (⊥). A literal l is either a propositional variable,
called a positive literal, or its negation, called a negative literal.

Let P be a �nite set of propositional variables, denoted by tiny letters
a, b, · · · . The language of a propositional logic, denoted by L, is constructed
over the set of propositional variables P , boolean constants True (>) and
False (⊥), logical connectors (negation (¬), conjunction (∧), disjunction (∨),
implication (→), equivalence (↔) 1) and parentheses. Elements of L are
propositional formulas, also called well-formed formulas. They are formed
using a set of propositional variables and can be de�ned in the following way:

1. Each propositional variable as well as > and ⊥ are propositional for-
mulas,

2. If α and β are propositional formulas, then so are (¬α), (α∨β), (α∧β),
(α→ β), (α↔ β).

3. Propositional formulas are only obtained using (1) and (2).

In the remaining, we denote by vars(α) the propositional variables relative
to the formula α.

Propositional formulas can be represented graphically using Directed
Acyclic Graphs (DAG) where every leaf node is labeled by >, ⊥ or a lit-
eral and every internal node is labeled by a connector. Such DAG, called
boolean circuit, is considered as a compact representation since it allows to
reuse redundant sub-formulas rather than re-writing them twice.

Relying on literals, a clause is a �nite disjunction of literals (in particular
the constant ⊥, when the set of literals is empty) and a term is a �nite
conjunction of literals (in particular the constant >, when the set of literals
is empty).

1Connectors ∧, ∨, → and ↔ have the same priority, while the negation connector (i.e.,
¬) has the higher priority over all connectors.
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A propositional formula α is said to be in a Conjunctive Normal Form
(CNF) i� α is a conjunction of clauses. α is said to be in a Disjunctive
Normal Form (CNF) i� α is a disjunction of terms. Let us illustrate basic
de�nitions of propositional logic.

Example 2.1. Let a, b, c, d ∈ P :
� α = (a→ b) ∧ (c ∧ d) is a propositional formula belonging to L,
� vars(α) = {a, b, c, d},
� a ∨ b is a clause and ¬a ∧ ¬b is a term.
� (a ∨ b) ∧ (¬c ∨ d) is a CNF formula,
� (a ∧ b) ∨ (¬c ∧ d) is a DNF formula.

2.2.2 Semantic

From a semantical point of view, the interpretation represents the central
element in propositional logic. Formally, an interpretation is a mapping
assigning a truth value to each propositional variable of a formula pertaining
to a language L. Let us consider two propositional formulas α and β, an
interpretation I should verify the following:
� I(>) = True,
� I(⊥) = False,
� I(¬α) = True i� I(α) = False,
� I(α ∧ β) = True i� I(α) = I(β) = True,
� I(α ∨ β) = False i� I(α) = I(β) = False,
� I(α⇒ β) = False i� I(α) = True and I(β) = False,
� I(α⇔ β) = True i� I(α) = I(β).

Table 2.1, called truth table, synthesizes truth values of ¬α, α∧β, α∨β,
α⇒ β and α⇔ β depending on those of α and β.

I(α) I(α) I(¬α) I(α ∧ β) I(α ∨ β) α⇒ β α⇔ β

False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Table 2.1: Interpretations of ¬α, α ∧ β, α ∨ β, α⇒ β and α⇔ β

Let α be a propositional formula, then an interpretation I is a model of
(or satis�es) α i� I(α) = True. and I is a counter-model of (or falsi�es) α
i� I(α) = False. Concepts of validity, satis�ability and unsatis�ability are
de�ned in what follows:
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De�nition 2.1. gg
� A propositional formula α is satis�able i� it admits at least one model.
� A propositional formula α is unsatis�able i� it does not admit any model.
� A propositional formula α is valid (i.e., tautology) i� it does not admit any
counter-model.
� A propositional formula α is invalid i� it admits a counter-model.

Example 2.2. Let a and b be two propositional variables, then:
� The formula a ∨ ¬a is valid,
� The formula a ∨ b is invalid and satis�able,
� The formula a ∧ b ∧ ¬b is unsatis�able.

Previously, we focused on the knowledge representation aspect in proposi-
tional logic. We switch now to the reasoning aspect which consists on making
new formulas from initial formulas. The central question is: From a certain
amount of knowledge, what can we deduce? and How can we deduce? Other
important questions follow: The reasoning principle is it correct? What I
have deduced, is it really real? and is it Complete? Are we able to deduce
everything?

The principle of logical reasoning is the relation of logical consequence
between statements, which sets out that a statement follows logically from
another statement. Formally, logical deduction in propositional logic can be
de�ned as follows:

De�nition 2.2. gg
Let α and β be two propositional formulas. Then:
� β is a logical consequence of α, denoted by α � β i� each model of α is a
model of β.
� α and β are logically equivalent, denoted by α ≡ β, i� α � β and β � α
(i.e., α and β have exactly the same models).

The truth table is a certain way to check the validity of a logical deduc-
tion. However, its main drawback resides in the fact that it is not e�ective in
practice since we can enumerate 2pv interpretations to �nd a model, where
pv is the number of propositional variables present in the considered set of
formulas. Logical deduction can actually be established without knowing
truth values associated to manipulated propositional variables. The funda-
mental result in automatic proving, knows as refutation theorem, states that
α is a logical consequence of β (i.e., α � β) i� α ∧ ¬β is unsatis�able.

2.3 Principle of knowledge compilation

Knowledge compilation is a common technique for propositional logic knowl-
edge bases. It is a mapping from a given knowledge base (typically in a rep-
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resentation language) into a special form of propositional bases, from which
queries can be answered e�ciently. Such mapping consists in splitting query
answering of a particular problem into two phases [21]:

• O�-line reasoning : In the �rst phase, knowledge bases are preprocessed
using the so-called target compilation languages in order to obtain the
data structures the most appropriate for a given application. Such a
phase is very expensive but it has to be performed only once.

• On-line reasoning : In the second phase, queries are answered e�ciently
using the output of the �rst phase.

The key motivation behind knowledge compilation is to shift the extra
load of work of the on-line phase to the o�-line phase in order to alleviate the
treatments needed to get responses to queries. Given an input knowledge
base not very often subject to change, it is compiled once in the o�-line
phase. Accordingly, the computational overhead of compilation is amortized
over all on-line queries, as if a student studying for an exam have not slept
for a week in order to master the subject it revises and therefore be able to
respond to questions, regardless of their di�culties.

The following example illustrates the compilation principle [61]:

Example 2.3. Let us consider the table of logarithms introduced during the
17th century storing pairs < x, log10(x) > where x is a real number. Such
table can be considered as a compiled form since it improves many com-
putations. For instance, assuming that we want to compute the value of
x = 5

√
1234. Since 5

√
1234 = (1, 234 ∗ 103)

1
5 , we get that log( 5

√
1234) =

log((1, 234 ∗ 103)
1
5 ) = log10(1,234)+3

5 . To get the value of log10(1, 234), it is
enough to look for the row of the real number 1, 234, i.e., < 1, 234, 0.09131516 >
and compute 5

√
1234 = 0.618263032. Finally, the value of x is obtained from

the logarithm table by looking for 5
√

1234. Hence, x is equal to 4.152054371
since we �nd < 4.152054371, 0.618263032 > in the table. We can remark
that the generation of logarithm table is a tedious task but once obtained, the
computational e�ort spent in the o�-line phase is amortized over all on-line
computations.

A problem is said to be compilable as de�ned in [21] if:

1. The data structure generated in the o�-line phase should �ll a polyno-
mial space with respect to the size of the input knowledge base,

2. The algorithm of the on-line phase should be sound (each query that
can be answered using the initial base should be also answered using
the compiled base) and complete (only queries that can be answered
in the initial base can be answered using the compiled base),
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3. The algorithm answering the query should run in a polynomial time in
its inputs.

It is prominent now to de�ne a representation language and a target com-
pilation language. In fact, a representation language is quali�ed as natural
since humans can use it with some ease either by reading or writing. For
instance, the Conjunctive Normal Form (CNF) language is a popular repre-
sentation language. While a target compilation language does not need to be
suitable for human speci�cation and interpretation, but should be tractable
enough to permit a polytime reasoning. Formally, a language is said to be a
target compilation language if it permits a polytime clausal entailment test.

The standard knowledge compilation methods have focused mostly on
target compilation languages which are variations on DNF and CNF formu-
las, such as Prime implicates (PI). This language has been quite in�uential
in computer science and arti�cial intelligence. Formally, PI is the subset of
CNF in which each clause entailed by the formula is entailed by a clause that
appears in the formula; and no clause in the formula is entailed by another.
A dual of PI, Prime Implicants (IP), can also be de�ned as a subset of DNF
in which each term entailing the formula entails some term which appears
in the formula; and no term in the formula is entailed by another term.

Other subsets of CNF are also interesting for knowledge compilation
audience, for instance the set HORN-CNF of Horn CNF formulas, i.e., con-
junctions of clauses containing at most one positive literal. In these standard
knowledge compilation methods, it has been considered mostly clausal en-
tailment queries, i.e., checking if a clause is a logical consequence of a knowl-
edge base or not. In [34], Darwiche and Marquis have studied a relatively
large number of target compilation languages and evaluated them across the
following two important dimensions:

• Degree of tractability : the class of logical operations (transformations
and queries) they support in a polynomial time,

• Succinctness also called space e�ciency : the size of the smallest for-
mula needed to represent a propositional theory.

2.4 Knowledge compilation map

Darwiche and Marquis [34] proposed a knowledge compilation map to choose
the most suitable target compilation language that supports the required set
of queries and transformations for a particular application. In this section,
we present the target compilation language used for this thesis (i.e., DNNF),
its succinctness and the set of polytime operations it supports.
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2.4.1 Target compilation languages

Target compilation languages explored in [34] are derived from the Negation
Normal Form (NNF) language, which is formally de�ned as the set of propo-
sitional formulas constructed from literals, > and ⊥ using only conjunctions
∧ and disjunctions ∨. Figure 2.1 depicts the inclusion relation between lan-
guages where the root is the NNF language and an edge L1 → L2 denotes
that L1 is a subset of L2.

  

NNF

d-NNF f-NNFDNNFs-NNF

BDD d-DNNF

FBDD CNFDNFsd-DNNF

OBDD

OBDD< PIIPMODS

Figure 2.1: Knowledge compilation map [34]

The NNF language is not quali�ed as a target compilation language (un-
less P=NP) [65] but many of its subsets are. We are, in particular, interested
in a number of these subsets where each subset is obtained by imposing fur-
ther conditions on NNF, e.g. decomposability, determinism and smoothness
de�ned as follows [27]:

• Decomposability: for each conjunction α ∧ β, α and β do not share
variables, i.e., vars(α) ∩ vars(β) = ∅.

• Determinism: for each disjunction α∨β, α is incoherent with β, i.e.,
α ∧ β |= ⊥.

• Smoothness: for each disjunction α ∨ β, α and β share the same
variables, i.e., vars(α) = vars(β).

The properties of decomposability, determinism and smoothness lead to
a number of interesting subsets of NNF de�ned as follows:
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• The DNNF language is the subset of NNFs satisfying decomposability.

• The d-NNF language is the subset of NNFs satisfying determinism.

• The s-NNF language is the subset of NNF satisfying smoothness.

• The language d-DNNF is the subset of NNFs satisfying decomposabil-
ity and determinism.

• The language sd-DNNF is the subset of NNFs satisfying decomposabil-
ity, determinism and smoothness.

The following example illustrates NNF and its subsets by imposing de-
composability, determinism and smoothness.

Example 2.4. Figure 2.2 represents an NNF formula. Note that we do not
orient edges since the children of each node are below it. This NNF formula is
decomposable (i.e., a DNNF) since its and-nodes satisfy the decomposability
property. For instance, the marked and is decomposable since its right ((c ∧
d)∨ (¬c∧¬d)) and left (¬a∧ b)∨ (¬b∧ a)) conjuncts do not share variables.

V

Ʌ

V V

Ʌ Ʌ

¬a b ¬b a c ¬d d ¬c

Ʌ

V VV VV V

ɅɅɅɅɅɅ ɅɅɅɅɅɅ

a,b a,b

Figure 2.2: An NNF formula

Consider the or-node marked in Figure 2.2, having two children which
correspond to the following sub-formulae: ¬a∧b and a∧¬b. The conjunction
of these two sub-formulas is logically contradictory, therefore the or-node is
deterministic and so are the other or-nodes in Figure 2.2. In this case, the
DNNF is deterministic (i.e., a d-DNNF).

The same or-node marked in Figure 2.2 has two children, each of which
mentions variables a and b, hence this or-node is smooth and so are the
other or-nodes in Figure 2.2. In this case, the d-DNNF is smooth (i.e., a
sd-DNNF).
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2.4.2 Succinctness

Succinctness, also called space e�ciency, is considered as an important as-
pect that needs to be considered when choosing a target compilation lan-
guage for a task. It tells us the compactness of formulas in di�erent lan-
guages. Formally [50]:

De�nition 2.3. A language L1 is said to be at least as succinct as L2,
denoted by L1 ≤ L2 i� there exists a polynomial p such that for every formula
α in L2, there exists an equivalent formula β in L1 where |β| ≤ p |α| and
|α|, |β| denote the sizes of α and β, respectively.

The relation ≤ is a pre-ordering. The relation strictly more succinct ≺
can be de�ned as follows: L1 ≺ L2 i� L1 ≤ L2 and L2 � L1.

Darwiche and Marquis have studied the succinctness criteria of the dif-
ferent languages studied in [34] and summarized results in Figure 2.3.

  

NNF

DNNF

d-DNNFsd-DNNF CNF

DNF
FBDD

OBDD<

OBDD

MODS

IP

PI

=

Figure 2.3: Succinctness relation between target compilation languages [34]
(An edge L1 → L2 indicates that L1 is strictly more succinct than L2, while
L1 = L2 indicates that L1 and L2 are equally succinct. Dotted arrows
indicate unknown relationships)

With the exception of NNF and CNF, all other languages depicted in
Figure 2.3 qualify as target compilation languages. NNF and CNF are repre-
sented given their importance. Moreover, with the exception of PI language,
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DNNF is the most succinct among all target compilation languages studied
in [34]. It is well known that PI is not more succinct than DNNF, but we do
not know whether DNNF is more succinct than PI.

Between DNNF and MODS, there is a succinctness relation: DNNF ≺
d-DNNF ≺ FBDD ≺ OBDD ≺ OBDD≺ ≺ MODS. By imposing de-
composability on NNF, we have DNNF. By adding determinism on DNNF,
we obtain d-DNNF. FBDD is obtained by imposing decision property. When
we add the ordering property we have OBDD and OBDD≺ (any total or-
dering for OBDD and a speci�c one for OBDD≺). Adding each of these
properties reduces language succinctness. However, adding smoothness to
d-DNNF does not alter its succinctness since d-DNNF and sd-DNNF are
equally succinct.

2.4.3 Logical queries and transformations

In evaluating the suitability of a target compilation language to a particular
application, the succinctness of the language must be balanced against the
set of queries and transformations that it supports in polytime. We consider
in this part a number of queries, each of which returns valuable information
about a propositional theory, and then identify target compilation languages
which provide polytime algorithms for answering such queries.

A query is an operation that returns information about a theory without
changing it. A transformation, on the other hand, is an operation that
returns a modi�ed theory, which is then operated on using queries. Many
applications require a combination of transformations and queries. Table 2.3
(resp. 2.4) contains the set of queries (resp. transformations) of each target
compilation of the knowledge map of [34].

Notation Query Notation Transformation

CO consistency CD conditioning
VA validity FO forgetting
CE clausal entailment SFO singleton forgetting
IM implicant check ∧ C conjunction
EQ equivalence check ∧ BC bounded conjunction
SE sentential entailment ∨ C disjunction
CT model counting ∨ BC bounded disjunction
MT model enumeration ¬ C negation

Table 2.2: Notations for queries and transformations
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L CO VA CE IM EQ SE CT ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√
◦

√
◦ ◦ ◦ ◦

√

d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √ √
? ◦

√ √

sd-DNNF
√ √ √ √

? ◦ ◦ ◦
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦

√ √

OBDD
√ √ √ √ √

◦ ◦ ◦
OBDD<

√ √ √ √ √ √ √ √

DNF
√

◦
√

◦ ◦ ◦ ◦
√

CNF ◦
√

◦
√

◦ ◦ ◦ ◦
PI

√ √ √ √ √ √
◦

√

IP
√ √ √ √ √ √

◦
√

MODS
√ √ √ √ √ √ √ √

Table 2.3: Subsets of the NNF language and their corresponding polytime
queries (

√
means 'satis�es' ◦ means 'does not satisfy unless P=NP' and ?

means 'unknown') [34]
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L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
NNF

√
◦

√ √ √ √ √ √

DNNF
√ √ √

◦ ◦
√ √

◦
d-NNF

√
◦

√ √ √ √ √ √

s-NNF
√

◦
√ √ √ √ √ √

f-NNF
√

◦
√

• • • •
√

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?
sd-DNNF

√
◦ ◦ ◦ ◦ ◦ ◦ ?

BDD
√

◦
√ √ √ √ √ √

FBDD
√

• ◦ • ◦ • ◦
√

OBDD
√

•
√

• ◦ • ◦
√

OBDD<
√

•
√

•
√

•
√ √

DNF
√ √ √

•
√ √ √

•
CNF

√
◦

√ √ √
•

√
•

PI
√ √ √

• • •
√

•
IP

√
• • •

√
• • •

MODS
√ √ √

•
√

• • •

Table 2.4: Subsets of the NNF language and their corresponding polytime
transformations (

√
means 'satis�es', • means 'does not satisfy', ◦ means

'does not satisfy unless P=NP' and ? means 'unknown') [34]
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2.5 DNNF language

In this section, we focus on the DNNF language, the most succinct tar-
get compilation language among all target compilation languages studied in
[34], with the exception of language PI. The DNNF language is character-
ized by the decomposability property on the Negation Normal Form (NNF)
language. Establishing decomposability lies at the heart of many tractable
languages in propositional logic. Given decomposability, one can conceive
polytime algorithms for many queries and transformations that are known
to be generally intractable.

2.5.1 DNNF's operations

In this subsection, we are, in particular, interested in conditioning, literal
conjoin, satis�ability, entailment, forgetting and model counting.

Conditioning and literal conjoin

Let α be a propositional formula. Let ρ be a consistent term. Then, condi-
tioning α on ρ denoted by α|ρ generates a new formula where each literal l
of α is replaced by > if l is consistent with ρ, and by ⊥ otherwise.

Example 2.5. Let us consider the DNNF α = (¬a ∧ ¬b) ∨ (b ∧ c). Then,
conditioning α on b simpli�es to c as follows: α|b = (¬a ∧⊥) ∨ (>∧ c) = c.

Conditioning corresponds to restriction in the literature of Boolean func-
tions. The main application of conditioning is due to a theorem, which says
that α ∧ ρ is satis�able i� α|ρ is satis�able [26, 27]. Conditioning also plays
a key role in building compilers that enforce decomposability.

The operation of literal conjoin takes a DNNF α, a consistent term ρ
and returns a DNNF which is equivalent to α ∧ ρ. Even if α and ρ may be
two DNNFs, their conjunction α∧ ρ may not be a DNNF since α and ρ may
share variables. Due to conditioning, DNNF supports literal conjoin. In fact,
by conditioning a formula α on ρ, a new formula is generated that does not
reference any literal from ρ. The conjunction of the conditioned formula α|ρ
and the term ρ is equivalent to α ∧ ρ. Formally, Conjoin(α, ρ) = (α|ρ) ∧ ρ
is a DNNF equivalent to α ∧ ρ.
Example 2.6. Let us re-consider the DNNF α = (¬a ∧ ¬b) ∨ (b ∧ c). Let
ρ = b be a literal. Then, (α|b) ∧ b = c ∧ b is equivalent to α ∧ b.

The operations of conditioning and literal conjoin can be done in linear
time in the size of the DNNF. They are considered as the most fundamental
to DNNF applications [27].
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Satis�ability and entailment

A decomposable NNF formula ∧iαi is satis�able i� every conjunct αi is satis-
�able, while ∨iαi is always satis�able i� some disjunct αi is. The satis�ability
of a DNNF can thus be tested in linear time by means of a single bottom-up
pass over its DAG while visiting children before parents. Formally, it can
de�ned as follows [27]:

1. SAT (α) =

{
> if α is a literal l or >
⊥ if α is ⊥

2. SAT(α = ∧
i
αi)= > i� SAT(αi) is > for every i,

3. SAT(α = ∨
i
αi)= > i� SAT(αi) is > for some i.

If we have the satis�ability test, we can also de�ne an entailment test.
Speci�cally, to test whether a DNNF α entails a clause c (i.e., α |= c), we
need to test whether α ∧ ¬c is satis�able. In other terms, if α ∧ ¬c is un-
satis�able then α |= c. However, even if α and ¬c are two DNNFs, their
conjunction α ∧ ¬c is not guaranteed to be a DNNF. In this case, the con-
ditioning transformation su�ces for this purpose since α|¬c is satis�able i�
α ∧ ¬c is satis�able. Hence, to test if α |= c, we should check the satis�abil-
ity of α|¬c which is guaranteed to be a DNNF. Thanks to the conditioning
transformation that ensures a linear entailment test for DNNFs [27].

Example 2.7. Let us consider the DNNF α depicted by Figure 2.2 and the
clause c = ¬a ∨ ¬b ∨ ¬c ∨ ¬d. We want to test whether α |= c. First, we
should condition α on c′ = a∧b∧c∧d, then we should test the satis�ability of
α|c′ as shown in Figure 2.4. We can deduce that α|c′ is unsatis�able, which
means that α ∧ ¬c is unsatis�able, i.e., α |= c.

Forgetting

The key operation that is intractable is forgetting. It is also referred to
marginalization, or elimination of middle terms. Formally, let α be a propo-
sitional formula, let P be a �nite set of propositional variables Pi, then
forgetting P from α, denoted by ∃P.α (or Forget(α, P )) is a formula that
does not mention any variable Pi from P . For each formula β that does not
mention any variable (i.e., vars(β) ∩ P = ∅), we have α |= β i� ∃P.α |= β.
It can be de�ned as follows:

∃Pi.α = α|Pi ∨ α|¬Pi (2.1)
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Figure 2.4: A DNNF conditioned on a ∧ b ∧ c ∧ d

where α|Pi (resp. α|¬Pi) is the result of conditioning of α on Pi (resp. ¬Pi).
It is well known that forgetting can be performed in linear time using DNNF
by means of a single bottom-up pass as de�ned in what follows [27]:

1. Forget (α, P ) =


l if α is a literal l and vars(α) /∈ P
> if α is a literal l and vars(α) ∈ P or α is >
⊥ if α is ⊥

2. Forget (α = ∧
i
αi, P )= ∧i Forget (αi, P ),

3. Forget (α = ∨
i
αi, P )= ∨i Forget (αi, P ).

Example 2.8. Let us re-consider the DNNF α of Figure 2.2. Forgetting the
set of variables P = {a, b} from α gives the DNNF of Figure 2.5 which can
be simpli�ed to ((c∧ d)∨ (¬c∧¬d))∨ ((c∧¬d)∨ (¬c∧ d)). It is obvious that
the resulting DNNF does not mention variables a and b.

Model counting

Model counting is a very prominent query. It consists in computing the
number of models of a propositional formula. The most succinct target
compilation language that supports such query is d-DNNF. In fact, both of
decomposability and determinism properties are required to ensure model
counting in linear time. By decomposability, two sets of partial models are
multiplied by × only if they share no atoms. By determinism, two sets of
partial models are unioned only if they contain no duplicates.

Darwiche in [28] computes the number of models using a secondary struc-
ture called counting graph de�ned as a rooted DAG containing a node labeled
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Figure 2.5: A DNNF after forgetting P = {a, b}

with l for each literal l, a node labeled with + for each or-node and a node
labeled with × for each and-node in the d-DNNF. The following de�nition
shows how to perform counting operations.

De�nition 2.4. Let Nd be a node in a counting graph and S be a consistent
set of literals. Then, the value of Nd in the counting graph is de�ned as
follows:

• V AL(Nd) = 0 if N is labeled with l and ¬l ∈ S,

• V AL(Nd) = 1 if N is labeled with l and ¬l /∈ S,

• V AL(Nd) =
∏
i
V AL(Ndi) if Ndi is labeled with ×, where Ndi are the

children of Nd,

• V AL(Nd) =
∑
i
V AL(Ndi) if Ndi is labeled with +, where Ndi are

the children of Nd.

The value of the counting graph under literals S is the value of its root
under S.

Example 2.9. Let us consider the d-DNNF of Figure 2.2. Figure 2.6 depicts
its counting graph evaluated under S = {a,¬b}. The evaluation indicates that
there are two models under this set of literals as shown in the root.

2.5.2 From CNF to DNNF

The CNF language has few typical reasoning tasks which can be e�ciently
carried out on CNF representations. For this reason, one involves a com-
pilation cost to prepare for answering a large number of queries in order
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Figure 2.6: A counting graph

to amortize their cost. In this subsection, we describe how to compile a
CNF formula into DNNF using the compiler c2d [29]. Interestingly enough,
imposing decomposability on formulas consists in disconnecting the under-
lying formula into sub-formulas that do no share a variable by instantiating
enough variables using conditioning. This process is then applied recursively
until each sub-formula becomes decomposable [70].

The following theorem is the key of the compilation procedure underlying
the compiler c2d [29]:

Theorem 2.1. Case Analysis: Let α1 and α2 be two DNNF formulas. Let
α be the formula

∨
ρ

((α1|ρ)∧(α2|ρ)∧ρ) where ρ are instantiations of variables

mentioned in both α1 and α2. Then, α is a DNNF formula equivalent to
α1 ∧ α2.

The algorithm that converts a CNF formula α into a formula in DNNF
is mainly based on this theorem:

Theorem 2.2. Let α be a CNF formula, then

DNNF (α) =


c if α contains

a single clause c

∨
ρ
DNNF (α1|ρ) ∧DNNF (α2|ρ) ∧ ρ otherwise

where α1 and α2 is a partitioning of clauses in α and ρ is an instantiation
of the variables mentioned in both α1 and α2.

Let us illustrate this theorem by the following example:
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Example 2.10. Let α = (¬a ∨ b) ∧ (¬b ∨ c) such that α1 = ¬a ∨ b and
α2 = ¬b ∨ c. Then, the formula ((¬a ∨ b)|b ∧ (¬b ∨ c)|b ∧ b) ∨ ((¬a ∨ b)|¬b ∧
(¬b ∨ c)|¬b ∧¬b) = (c ∧ b) ∨ (¬a ∧¬b) is a DNNF formula equivalent to α.

It is obvious that case analysis gives us the decomposability property
since (α1|ρ) ∧ (α2|ρ) ∧ ρ do not share variables. This is due to the condi-
tioned formula (αi|ρ) that do not mention any instantiation of ρ. However,
satisfying the decomposability property is at the expense of increasing the
size of the original formula.

Let us now detail the compilation process of the compiler c2d. In fact,
given a clausal form α, c2d converts it into an equivalent DNNF by consid-
ering α as a conjunction of two sub-formulae α1 and α2 and applying the
previous property, which gives us

∨
ρ

((α1|ρ)∧(α2|ρ)∧ρ). For each ρ, if (α1|ρ)

is a clause, nothing is done, else we perform the same treatment as we have
done for α and so on for (α2|ρ).

Two key observations should be mentioned. First, the size of the result-
ing DNNF is sensitive to the splitting way of α into two sub-formulae α1

and α2. Second, the above procedure is not deterministic in the sense that
it does not specify how to split α. To make the procedure deterministic,
Darwiche proposes to use a decomposition tree, which represents a recursive
partitioning of α's clauses, de�ned as follows [27]:

De�nition 2.5. A decomposition tree T of a clausal form α is a binary tree
composed of leaves corresponding to the clauses in α and internal nodes. If
d is a leaf node in T corresponding to a clause β in α, then α(d) = {β}.

Some information should be associated to each node in the decomposition
tree. First, for each internal node d, dl and dr denote the left and right
children of d, respectively and α(d) = α(dl) ∪ α(dr). Second, vars(d) is
de�ned as the set of variables appearing in clauses α(d). Finally, vars↑(d)
denotes the set of variables associated with leaf nodes which are not in the
subtree rooted at d.

Example 2.11. Figure 2.7 depicts a decomposition tree of the CNF formula
α = (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ d). From this decomposition tree, we can
deduce that α(d1) = {¬a∨b,¬b∨c}, vars(d1) = {a, b, c}, vars↑(d1) = {c, d},
α(dl) = {¬a ∨ b} and α(dr) = {¬b ∨ c}.

The compilation of a CNF form α into a DNNF requires the construction
of a decomposition tree T and the call of DNNF (d0,>) with d0 being the
root of T , as outlined by Algorithm 1.
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Figure 2.7: A decomposition tree

Algorithm 1: DNNF(d,ρ)
Data: Node in a decomposition tree d, Term ρ
Result: DNNF representation CDNNF
begin

if d is a leaf node and α(d) = β then
CDNNF ← β|ρ

else
CDNNF ←

∨
γ(DNNF (dl|ρ ∧ γ) ∧DNNF (dr|ρ ∧ γ) ∧ γ)

where vars(γ) = (vars(dl) ∩ vars(dr))\vars(ρ)

return CDNNF

Example 2.12. Let α = (¬a∨ b)∧ (¬b∨ c)∧ (¬c∨d) be a CNF formula and
Figure 2.7 be its decomposition tree. To compile α into DNNF, we should
apply Algorithm 1 using d0 and > as parameters (i.e., DNNF (d0,>)), which
gives us:

DNNF (d0,>) = (c ∧ DNNF (d1, c) ∧DNNF (d4, c)) ∨ (¬c ∧ DNNF (d1,
¬c) ∧ DNNF (d4,¬c)).

Since d4 corresponds to a leaf node and α(d4) = ¬c ∨ d, we can deduce
that DNNF (d4, c) = (¬c∨ d)|c ≡ d and DNNF (d4,¬c) = (¬c∨ d)|¬c ≡ >.

Therefore, DNNF (d0,>) = (c ∧ d ∧ DNNF (d1, c)) ∨ (¬c ∧ DNNF (d1,
¬c)).

We shall now compute DNNF (d1, c) corresponding to (b ∧ DNNF (d2, c
∧ b) ∧ DNNF (d3, c ∧ b)) ∨ (¬b ∧ DNNF (d2, c ∧ ¬b) ∧ DNNF (d3, c ∧ ¬b)).

After simpli�cation, we have DNNF (d1, c) = b ∨ (¬b ∧ ¬a) and
DNNF (d1,¬c) = b.
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Finally, CDNNF = DNNF (d0,>) = (c ∧ d ∧ (b ∨ (¬b ∧ ¬a))) ∨ (¬c ∧ b).

CDNNF is the DNNF representation of α, from which we can point out
that conjuncts of any conjunction do not share variables.

The complexity of building DNNFs depends on the width of the used
decomposition tree, de�ned as follows [27]:

De�nition 2.6. Let d be a node in a decomposition tree T . The cluster of
d is de�ned as follows:

• If d is a leaf node, then its cluster is vars(d).

• If d is an internal node, then its cluster is (vars(d) ∩ vars↑(d)) ∪
(vars(dr) ∩ vars(dl)).

The width of a decomposition tree T is the size of its maximal cluster minus
one.

The call of DNNF (d0,>) for a clausal form α having n clauses and a
decomposition tree T with width w takes O(nw2w) time and space. There-
fore, the complexity of compiling a propositional theory into DNNF depends
crucially on the quality (width) of the decomposition tree. The construction
of good decomposition trees (ones with small widths) is still under study
[3, 27, 33].

2.6 Conclusion

In this chapter, we have at �rst outlined the basic elements of propositional
logic. Then, we have de�ned the principle of knowledge compilation which
consists in pre-processing the �xed part of an input knowledge base in an
o�-line phase in order to e�ciently respond to queries in an on-line phase.
The mapping from one base to a new base is established using the so-called
target compilation languages. Then, we have studied NNF languages and
their subsets by restricting our study to decomposability, determinism and
smoothness properties. Finally, we have mainly focused on the most succinct
target compilation language, namely DNNF. The next chapter will be de-
voted to our new framework on compilation-based inference in possibilistic
networks.
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Chapter 3

Compilation-based inference in

min-based possibilistic

networks

3.1 Introduction

As we have seen in Chapter 2, knowledge compilation consists in transform-
ing a problem o�ine into a tractable form which is then used to answer
queries online. Applications of knowledge compilation include real-world
problems, like model-based diagnosis [27], con�guration [35], planning [64],
Bayesian inference [30], etc. We are, in particular, interested in Compilation-
based inference in Bayesian networks, which has been recently under intense
investigation [23, 30, 74, 82].

The standard approach of Darwiche [30] is mainly based on encoding
the polynomial associated to the network into a Conjunctive Normal Form
(CNF) base, then retrieving answers to probabilistic inference queries in
polytime by evaluating the arithmetic circuit associated to the compiled
base. Our �rst objective in this chapter is to propose the possibilistic coun-
terpart of this approach adapted to the qualitative context and named Π-
DNNF. Then, we will develop a new purely possibilistic method, named
DNNF-PKB, based on compiling possibilistic knowledge bases associated
with possibilistic networks [12]. This latter is quali�ed as �exible since it
permits to exploit e�ciently all the existing propositional compilers. Both
of proposed approaches are based on three sequential phases, namely: en-
coding phase, compilation phase and inference phase as sketched in Figure
3.1.

The remaining of this chapter is organized as follows: Section 3.2 provides

49
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 ΠGmin

Encoding Inference
Compiled base

Evidence e 

 

Instance of 
interest x

A

B

Phase 1  Phase 3 
Π(x|e)

Compilation

Phase 2 
CNF base

Transformation
 

base

Possibilistic

3.3

3.4

Figure 3.1: Principle of possibilistic compilation-based inference approaches
(Lines annotated by 3.3 (resp. 3.4) are relative to the method Π-DNNF
(resp. DNNF-PKB), while non annotated lines are shared by both methods)

the standard probabilistic compilation-based inference approach of Darwiche
[30]. Section 3.3 presents its possibilistic adaptation using min-based pos-
sibilistic networks. Section 3.4 presents the purely possibilistic approach.
Main results of this Chapter are published in [9].

3.2 Compilation of Bayesian networks

The topic of probabilistic compilation-based inference has been recently un-
der intense investigation [23, 28, 30, 72, 73, 74, 82]. The idea behind prob-
abilistic compilation-based inference is to encode the Bayesian network into
a CNF formula and then perform weighted model counting is an e�ective
method. This latter represents a generalization of model counting in which
a weight is associated for each literal [10]. The reduction of probabilistic
inference into a problem of model counting varies across two dimensions.
The �rst dimension relates to compiling the CNF encoding of the Bayesian
network into a structure that renders weighted model counting a polytime
operation in the size of the compiled structure [23, 28, 30, 82]. The second
dimension relates to whether weighted model counting is performed using a
search algorithm on the CNF by splitting on the possible values of a chosen
variable [72, 73, 74].

In this work, we are, in particular, interested in the �rst dimension and
more precisely the standard probabilistic compilation-based inference ap-
proach [30], which is based on representing the Bayesian network using a
multi-linear function, denoted by fMLF and containing two types of vari-
ables, namely evidence indicators and network parameters, de�ned as fol-
lows:

• ∀Xi ∈ V , ∀xij ∈ DXi , we associate an evidence indicator λxij .
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• ∀Xi ∈ V , ∀xij ∈ DXi , ∀ui ∈ DUi s.t. ui = {ui1, ui2, ..., uim}, we asso-
ciate a parameter variable θxi|ui for each network parameter P (xi|ui).

The multi-linear function contains a term for each instantiation of the
network variables, and the term is the product of all indicators and parame-
ters that are consistent with the instantiation. Formally, fMLF is expressed
by Equation (3.1).

fMLF =
∑
x

∏
(xi,ui)∼x

λxiθxi|ui (3.1)

where x represents instantiations of all network variables and ui ∼ x

denotes the compatibility relationship among ui and x.

The multi-linear function fMLF of the Bayesian network represents the
probability distribution and allows to compute probability degrees of vari-
ables of interest. Namely, for any piece of evidence e which is an instantiation
of some variables E ∈ V , fMLF can be instantiated to return the probability
of e. In fact, P (e) is the result of replacing each evidence indicator λxi in
fMLF with 1 if xi is consistent with e, and with 0 otherwise.

Example 3.1. Let us consider the Bayesian network of Figure 1.1 composed
of two binary variables A and B. To represent the Bayesian network using a
multi-linear function, we should at �rst set evidence indicators and network
parameters given in Table 3.1 and Table 3.2, respectively.

Instances fMLF

a1 λa1
a2 λa2
b1 λb1
b2 λb2

Table 3.1: Instance indicators used in fMLF

Then, the MLF corresponding to this network is as follows:
fMLF = λa1λb1θa1θb1|a1 + λa1λb2θa1θb2|a1 + λa2λb1θa2θb1|a2 + λa2λb2θa2θb2|a2 .

Let us compute P (b1, a2) from fMLF . To this end, we should set λb2 and
λa1 (resp. λb1 and λa2) to 0 (resp. 1) and evaluate the reduced function as
follows: P (b1, a2) = λa2λb1θa2θb1|a2 = 1 ∗ 1 ∗ 0.6 ∗ 0.2 = 0.12.

Multi-linear functions have an exponential size as they include a term
for each instantiation of the network variables [30]. To avoid this problem,
Darwiche proposes to represent fMLF using a new structure whose size may
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Variables Probability degrees fMLF

A
P (a1) = 0.4 θa1
P (a2) = 0.6 θa2

B

P (b1|a1) = 0.4 θb1|a1
P (b1|a2) = 0.2 θb1|a2
P (b2|a1) = 0.6 θb2|a1
P (b2|a2) = 0.8 θb2|a2

Table 3.2: Network parameters used in fMLF

not be exponential and leading the inference problem e�cient. In fact, at
�rst fMLF should be encoded using the CNF propositional theory. De�nition
3.1 outlines the CNF encoding of BN , denoted by Cp∗.

De�nition 3.1. Using the set of evidence indicators and network parame-
ters, Cp∗ contains the following clauses:

• Mutual exclusive clauses:

λxi1 ∨ λxi2 ∨ · · · ∨ λxin (3.2)

¬λxij ∨ ¬λxik , j 6= k (3.3)

• Network parameter clauses:
∀ θxi|ui , we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui (3.4)

θxi|ui → λxi (3.5)

θxi|ui → λui1 , · · · , θxi|ui → λuim (3.6)

Once the CNF encoding is accomplished, it is then compiled into the
most succinct target compilation language that supports model counting,
namely d-DNNF. From this compiled base, an arithmetic circuit, denoted
by CB∗+, is extracted that implements the encoded fMLF .

De�nition 3.2. An arithmetic circuit of a compiled base CB, denoted by
CB∗+, is a valued d-DNNF where ∧ and ∨ are substituted by * and +,
respectively and each network parameter θxi|ui is replaced by the probability
degree P (xi|ui) it encodes.
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The circuit CB∗+ can be used for linear-time inference since its evaluation
after setting each evidence indicator to 1 or 0 and applying operators * and
+ in a bottom-up way corresponds to a weighted model counting problem.

Example 3.2. The CNF encoding of the Bayesian network of Figure 1.1 is
represented in Table 3.3 (20 clauses).

Variables Mutual exclusive clauses

A (λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2)

B (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

Probability degrees of A Parameter clauses of A

P (a1) = 0.4 (λa1 → θa1) ∧ (θa1 → λa1)

P (a2) = 0.6 (λa2 → θa2) ∧ (θa2 → λa2)

Probability degrees of B Parameter clauses of B

P (b1|a1) = 0.4 (λa1 ∧ λb1 → θb1|a1) ∧ (θb1|a1 → λb1) ∧ (θb1|a1 → λa1)

P (b1|a2) = 0.2 (λa2 ∧ λb1 → θb1|a2) ∧ (θb1|a2 → λb1) ∧ (θb1|a2 → λa2)

P (b2|a1) = 0.6 (λa1 ∧ λb2 → θb2|a1) ∧ (θb2|a1 → λb2) ∧ (θb2|a1 → λa1)

P (b2|a2) = 0.8 (λa2 ∧ λb2 → θb2|a2) ∧ (θb2|a2 → λb2) ∧ (θb2|a2 → λa2)

Table 3.3: The CNF encoding of BN

Suppose that we receive a certain information about A (i.e., A = a2).
Given this evidence, we will compute its impact on b1, i.e., compute P (b1|a2).
To this end, we should compute both of P (b1, a2) and P (a2) using the arith-
metic circuit resulting from compiling the CNF encoding into a d-DNNF.
Each probability degree is computed after assigning the appropriate values to
evidence indicators and applying * and + in a bottom-up way. The value on
the root of Figure 3.2 and Figure 3.3 corresponds to P (b1, a2) = 0.12 and
P (a2) = 0.6, respectively. We are now able to compute P (b1|a2) which is

equal to P (b1,a2)
P (a2) = 0.12

0.6 = 0.2.

3.3 Possibilistic adaptation of standard probabilis-

tic inference approach

In this section, we will propose a direct possibilistic adaptation of the stan-
dard probabilistic approach presented in the previous section. In this ap-
proach, denoted by Π-DNNF, the min-based possibilistic networks are en-
coded and compiled into a new circuit speci�c to the qualitative framework.
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+
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Figure 3.2: Computing P (b1, a2)

3.3.1 Encoding phase

The principle of encoding a min-based possibilistic network is to �rst trans-
form it into a Conjunctive Normal Form (CNF) base. To this end, we need
to represent instances of variables and also parameters using a set of propo-
sitional variables. More precisely, instances indicators are associated to dif-
ferent instances of network variables and parameter variables are relative to
possibility degrees. Formally, the Π-DNNF method requires two types of
propositional variables, namely:

• ∀Xi ∈ V , ∀xij ∈ DXi , we associate an instance indicator λxij .

• ∀Xi ∈ V , ∀xij ∈ DXi , ∀ui ∈ DUi s.t. ui = {ui1, ui2, ..., uim}, we asso-
ciate a parameter variable θxi|ui1,ui2,...,uim for each network parameter
Π(xi|ui1, ui2, ..., uim). Note that for any root node Xi, this parameter
corresponds to θxi .

When there is no ambiguity, we use λxi (resp. θxi|ui ) instead of λxij
(resp. θxij |ui1,ui2,...,uim).

Example 3.3. Let us consider the min-based possibilistic network ΠGmin of
Figure 1.2. To encode ΠGmin into a CNF base, we should at �rst de�ne the
set of instance indicators and parameter variables represented respectively,
in Table 4.3 and Table 4.4.

The CNF encoding of ΠGmin, denoted by Cmin, can be de�ned as follows:
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Figure 3.3: Computing P (a2)

Instances Cmin

a1 λa1
a2 λa2
b1 λb1
b2 λb2

Table 3.4: Instance indicators used in Cmin

De�nition 3.3. Using the set of instance indicators and parameter variables,
Cmin contains the following clauses:

• Mutual exclusive clauses:

λxi1 ∨ λxi2 ∨ · · · ∨ λxin (3.7)

¬λxij ∨ ¬λxik , j 6= k (3.8)

• Network parameter clauses:
∀ θxi|ui1,ui2,...,uim , we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui1,ui2,...,uim (3.9)

θxi|ui1,ui2,...,uim → λxi (3.10)

θxi|ui1,ui2,...,uim → λui1 , · · · , θxi|ui1,ui2,...,uim → λuim (3.11)



56 Chapter 3: Compilation-based inference in min-based possibilistic networks

Variables Possibility degrees Cmin

A
Π(a1) = 1 θa1

Π(a2) = 0.4 θa2

B

Π(b1|a1) = 1 θb1|a1
Π(b1|a2) = 0.8 θb1|a2
Π(b2|a1) = 0.8 θb2|a1
Π(b2|a2) = 1 θb2|a2

Table 3.5: Parameter variables used in Cmin

The encoding Cmin given in De�nition 3.3 is in a CNF form i.e., a con-
junction of all clauses induced by Equations (3.7), (3.8), (3.9), (3.10) and
(3.11) where:

• Clauses (3.7) and (3.8) state that indicator variables are exclusive, i.e.,
exactly one indicator variable for each Xi ∈ V is set to true in each
model in Cmin,

• Clauses (3.9), (3.10) and (3.11) simply encode the fact that the possi-
bility degree of xi|ui1, ..., uim (represented by the propositional formula
λxi ∧ λui1 ∧ . . . ∧ λuim) is equal (a logical equivalence ⇔ in a logical
setting) to Π(xi|ui1, ..., uim) (represented by the propositional variable
θxi|ui1,...,uim).

We call Equation (3.9) a right-side clause and Equations (3.10) and
(3.11) left-side clauses since the parameter variable θxi|ui1,...,uim appears
in the right (resp. left) -side of these Equations. The presence of these
two types of clauses is simply due to the logical equivalence⇔ between
indicator variables and parameter variables. From a logical point of
view, clauses (3.9), (3.10) and (3.11) indicate that λxi , λui1 , · · · , λuim
are set to true in a model i� the parameter θxi|ui1,ui2,...,uim is also set
to true in that model. Moreover, each θxi|ui1,ui2,...,uim only implies the
set of indicator variables compatible with it.

Example 3.4. Considering the network ΠGmin of Figure 1.2 and the set
of instance indicators and parameter variables in Tables 4.3 and 4.4, re-
spectively, then, the CNF encoding of ΠGmin using De�nition 3.3 contains
clauses of Table 3.6.

From a possibilistic point of view, we can say that Cmin recovers the
min-based joint possibility distribution.

Proposition 3.1. Let Cmin be the CNF encoding of a ΠGmin using De�-
nition 3.3. Let ω be an interpretation from Ω and λ be the conjunction of
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Variables Mutual exclusive clauses

A (λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2)

B (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

Possibility degrees of A Parameter clauses of A

Π(a1) = 1 (λa1 → θa1) ∧ (θa1 → λa1)

Π(a2) = 0.4 (λa2 → θa2) ∧ (θa2 → λa2)

Possibility degrees of B Parameter clauses of B

Π(b1|a1) = 1 (λa1 ∧ λb1 → θb1|a1) ∧ (θb1|a1 → λb1) ∧ (θb1|a1 → λa1)

Π(b1|a2) = 0.8 (λa2 ∧ λb1 → θb1|a2) ∧ (θb1|a2 → λb1) ∧ (θb1|a2 → λa2)

Π(b2|a1) = 0.8 (λa1 ∧ λb2 → θb2|a1) ∧ (θb2|a1 → λb2) ∧ (θb2|a1 → λa1)

Π(b2|a2) = 1 (λa2 ∧ λb2 → θb2|a2) ∧ (θb2|a2 → λb2) ∧ (θb2|a2 → λa2)

Table 3.6: The CNF encoding Cmin of ΠGmin

indicator variables λxi related to ω (i.e., λ ≡ ∧
xi∈ω

λxi).

Let us consider k(λ) be the result of conditioning of Cmin on λ using instance
indicators, i.e.,

λxi =

{
> if xi ∈ ω
⊥ otherwise

(3.12)

Then,

k(λ) ≡ ( ∧
(xi,ui)∈ω

θxi|ui)
∧

( ∧
(xi,ui)/∈ω

¬θxi|ui)

Note that each ¬θxi|ui should be ignored by replacing it by > since only
positive literals, i.e., θxi|ui encode possibility degrees. The resulted k(λ) is
equivalent to:

k(λ) ≡ ∧
(xi,ui)∈ω

θxi|ui

Proof 3.1. From Cmin, we deduce θxi|ui and ¬θxi|ui as follows:

• If (xi, ui) ∈ ω: From Equations (3.9), (3.10) and (3.11), we can deduce
θxi|ui as follows:

λxi ∧ λui → θxi|ui
θxi|ui → λxi
θxi|ui → λui

λxi=>=⇒
λui=>

θxi|ui

• If (xi, ui) /∈ ω: From Equations (3.9), (3.10) and (3.11), we can deduce
¬θxi|ui as follows:
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
λxi ∧ λui → θxi|ui
θxi|ui → λxi
θxi|ui → λui

λxi=⊥=⇒
λui=⊥

¬θxi|ui

Thus, k(λ) ≡ ( ∧
(xi,ui)∈ω

θxi|ui)
∧

( ∧
(xi,ui)/∈ω

¬θxi|ui). �

Let Pk(λ) the positive part of Proposition 3.1 by replacing each negative
literal ¬θxi|ui by > in k(λ), i.e.,

Pk(λ) ≡
∧

(xi,ui)∈ω

θxi|ui (3.13)

Let πCmin : Ω → [0, 1] be the possibility distribution computed from Pk(λ)
by replacing ∧ by min and each θxi|ui by Π(xi|ui).

Proposition 3.2. Let ΠGmin be a min-based possibilistic network and Cmin
its CNF encoding using De�nition 3.3. Let ω be an interpretation from Ω
and Pk(λ) be its CNF encoding resulting from incorporating ω into Cmin
using Equation (3.13). Then,

∀ω ∈ Ω, πmin(ω) = πCmin(ω) (3.14)

∀φ ⊆ Ω,Πmin(φ) = ΠCmin(φ) (3.15)

where πmin (resp. πCmin) is given by De�nition 1.5 (resp. Equation (3.13))
and Πmin (resp. ΠCmin) is derived from πmin (resp. πCmin).

Proof 3.2. By setting ¬θxi|ui to >, πCmin(ω) is computed using Pk(λ) as
follows:
πCmin(ω) = min

(xi,ui)∈ω
θxi|ui

= min
(xi,ui)∈ω

Π(xi|ui)

= πmin(ω).
Thus, Equation (3.14) is established.

This result is relative to an interpretation ω, to generalize it to an event
φ ⊆ Ω, we obtain:
max
ω|=φ

πmin(ω) = max
ω|=φ

πCmin(ω),

Thus, Πmin(φ) = ΠCmin(φ). �

This proposition is illustrated by the following example:
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Example 3.5. Let us consider the min-based possibilistic network ΠGmin of
Figure 1.2. Let ω = {a2, b1} be an interpretation from Ω and λ ≡ λa2 ∧ λb1 .
Then, conditioning Cmin on λ using Equation (3.1) results in k(λ) = (θa2 ∧
θb1|a2 ∧ ¬θa1 ∧ ¬θb1|a1 ∧ ¬θb2|a1 ∧ ¬θb2|a2). The positive part of k(λ) using
Equation (3.13) is equivalent to Pk(λ) ≡ (θa1 ∧ θb1|a2).

Given Pk(λ), we are now able to compute πCmin(ω) as follows: πCmin(ω) =
min(Π(a1),Π(b1|a1)) = min(0.4, 0.8) = 0.4 = πmin(ω) (row 3 of Table 1.6).

3.3.2 Compilation phase

The investigated query refers to an e�cient computation of a-posteriori pos-
sibility degrees given some evidence on a set of variables. The computation
process of Π(e) is mainly based on setting appropriate values to instance in-
dicators which are used to record evidence e. These indicators have the e�ect
of excluding the terms that are incompatible with the evidence, i.e., given
an evidence e, indicators incompatible with e should be excluded and those
consistent with e should be remained. Using compilation terms, the CNF
encoding associated to the min-based possibilistic network should be condi-
tioned on e and the resulting conditioned representation is then decoded on
a valued expression using min and max operators from which we e�ciently
compute Π(e). At �rst sight, the chosen target compilation language should
support conditioning. Therefore, our choice will rely on the trade-o� between
succinctness and tractability criteria. Based on this trade-o�, DNNF should
be chosen since it has been proved in [27] that it is well suited for ensuring
conditioning. The compilation from CNF to DNNF has been detailed in the
previous chapter (see section 2.5.2). The resulting compiled base is denoted
by CB.

3.3.3 Inference phase

Given the compiled base CB resulting from the previous phase, an instance
of interest x of a variable X ∈ V and an evidence e of some variables E ⊆ V ,
we should be able to e�ciently compute the e�ect of e on x, namely Πc(x|e).
Using Equation (1.11), it is clear that we should compute both of Πc(x, e) and
Πc(e). The computation process is described in depth in the following steps
in which we will compute Πc(x, e). Of course, Πc(e) should be computed in
the same spirit as Πc(x, e).

Step 1: Updating instance indicators

This step serves to record the instance of interest x and the evidence e into
instance indicators λxi . It corresponds to conditioning the compiled base
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CB on x and e. Formally:

λxi =

{
> if xi ∼ e and xi ∼ x
⊥ otherwise.

(3.16)

where ∼ denotes the compatibility relation, i.e., xi ∼ x refers to the fact
that xi and x agree on values. For instance, if we consider a1 the instance
of interest of A, then b1 ∼ a1, b2 ∼ a1, while a2 � a1. The conditioned
compiled base is denoted by [CB|x, e].

Step 2: Mapping logical representation into a numerical represen-

tation

In this step, we transform the logical compiled base resulting from the pre-
vious step into a numerical representation, named a min-max circuit and
denoted by CBminmax, from which we will be able to ensure an e�cient
possibilistic computation. By mapping, we mean:

• replacing ∨ and ∧ by max and min, respectively,

• substituting each > (resp. ⊥) by 1 (resp. 0),

• associating the possibility degree Π(xi|ui) to each propositional vari-
able θxi|ui .

De�nition 3.4. A min-max circuit of a compiled base CB, denoted by
CBminmax, is a valued sentence where ∧ and ∨ are substituted by min and
max, respectively. Each propositional variable θxi|ui is replaced by the possi-
bility degree Π(xi|ui) it encodes. Moreover, each truth value associated to an
instance indicator λxi is replaced by 1 or 0. Leaf nodes correspond to circuit
inputs (i.e., indicator and parameter variables), internal nodes correspond to
min and max operators, and the root corresponds to the circuit output.

Min-max circuits are considered a special case of Valued Negation Nor-
mal Forms (VNNFs) [44] which are valued languages used to represent a
much more general class of functions than just Boolean ones, namely those
ranging over an ordered scale. In these languages, the semantics of nodes are
changed from logical operators (such as ∧, ∨) to general operators (⊗ and
⊕). In our case, operators in min-max circuits are restricted to minimum
and maximum. The VNNF framework supports a larger family of queries,
such as optimization, etc. It also supports several transformations, namely
⊗-variable elimination (a generalization of classical forgetting by using ⊗
instead of ∨ in Equation (2.1).

In what follows, the functionmap([CB|x, e]) will be used to map [CB|x, e]
into CBminmax.



Chapter 3: Compilation-based inference in min-based possibilistic networks 61

Step 3: Computation

The last step corresponds to evaluating the min-max circuit CBminmax in
order to compute Πc(x, e). In fact, evaluation consists in applying min
and max operators in a bottom-up way and the �nal degree on the root
represents Πc(x, e). Computation using CBminmax corresponds to a max-
variable elimination operation. Proposition 3.3 proves that the possibility
degree computed using max-variable elimination and the one using the joint
possibility distribution are the same.

The impact of e on x (i.e., Πc(x|e)) is �nally computed depending on the
underlying de�nition of conditioning as outlined by Algorithm 2. It is clear
that inference is guaranteed to be established in polytime since max-variable
elimination is supported by min-max circuits. In what follows, we will use
the function evaluate(CBminmax) to evaluate CBminmax.

Algorithm 2: Inference using CBminmax
Data: CNF encoding Cmin, instance of interest x, evidence e
Result: Πc(x|e)
begin

CB ← compile(Cmin)
Int← {x, e}
Πc(x, e)← Computing (CB, Int)
Int← {e}
Πc(e)← Computing (CB, Int)
if Πc(x, e) < Πc(e) then

Πc(x|e) ← Πc(x, e)

else
Πc(x|e) ← 1

return Πc(x|e)

Algorithm 3: Computing
Data: CB, instance of interest Int
Result: Πc(Int)
begin

CB|Int← condition(CB, Int)
CBminmax ← map(CB|Int)
Πc(Int)← evaluate(CBminmax)
return Πc(Int)

Example 3.6. Let us consider the compiled base of Figure 3.4 and suppose
that we receive a certain information about B (i.e., B = b1). Given this evi-
dence, we will compute its impact on a2 (i.e., computing Πc(a2|b1)). To this
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end, we should only compute Πc(a2, b1) since Πc(b1) is equal to 1. At �rst,
we should record a2 and b1 into instance indicators by setting λa2 and λb1
(resp. λa1 and λb2) to > (resp. ⊥). Then, we map the logical compiled base
arisen from Step 1 into a min-max circuit depicted by Figure 3.5. Finally,
we apply min and max in a bottom-up fashion as shown in Figure 3.5. Thus,
Πc(a2, b1) is equal to 0.4. This value corresponds to the one of Table 1.6 us-
ing the min-based joint distribution. Now, we are able to compute Πc(a2|b1)
which is equal to Πc(a2, b1) = 0.4 since Πc(a2, b1) < Πc(b1).

V

Ʌ Ʌ

λa2θa2

V V

θb2|a2

Ʌ Ʌ

λa1 θa1 Ʌ Ʌ Ʌ Ʌ

λb2 θb2|a1 θb1|a2 λb1 θb1|a1

Figure 3.4: The compiled base CB of ΠGmin
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min min
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max maxmin min

λa1 θa1 min min min min

λb2 θb2|a1 θb1|a2 λb1θb2|a2 θb1|a1
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1100.4

0.4
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Figure 3.5: The min-max circuit CBminmax

Proposition 3.3. Let ΠGmin be a possibilistic network and CBminmax be
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its min-max circuit. Let Int be an instance of interest. Then,

Πc(Int) = ΠV E(Int) (3.17)

where Πc(Int) is computed using Algorithm 3 and ΠV E(Int) uses the
max-variable elimination process.
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Proof 3.3. ΠV E(Int) is computed by applying max-variable elimination,
denoted by max-V E, to each propositional variable Pi ∈ CBminmax which
can be either λxi or θxi|ui as follows:

• If CBminmax = min(α, β), then
max-V E(CBminmax, Pi) = min(max-V E(α, Pi),max-V E(β, Pi)).

• CBminmax = max(α, β), then
max-V E(CBminmax, Pi) = max(max-V E(α, Pi),max-V E(β, Pi)).

• If CBminmax = l and l = Pi, then
max-V E(CBminmax, Pi) = value(Pi) which corresponds to the value
that Pi encodes.

• If CBminmax = l and l 6= Pi, then max-V E(CBminmax, Pi) = l.

• If CBminmax = 1, then max-V E(CBminmax, Pi) = 1.

• If CBminmax = 0, then max-V E(CBminmax, Pi) = 0.

Thus, ΠV E(Int) = max-V E(CBminmax, Pi) = Πc(Int). �

Let us illustrate Proposition 3.3 by the following example:

Example 3.7. Let us consider an excerpt of CBminmax of Figure 3.5 corre-
sponding tomax(min(λb2 , θb2|a1),min(λb1 , θb1|a1)). Then, to compute Πc(b1),
we should substitute λb1, λb1, θb1|a1 and θb2|a1 by 1, 0, 1 and 0.8, respectively
and apply min and max operators, which results in Πc(b1) = 1. Let us check
this result using the max-variable elimination process.

By applying max-V E to each variable in CBminmax, we obtain:

1. max-V E(CBminmax, λb2)
= max(max-V E(min(λb2 , θb2|a1), λb2),max-V E(min(λb1 , θb1|a1), λb2)
= max(min(max-V E(λb2 , λb2),max-V E(θb2|a1 , λb2),min(max-V E(λb1 ,
λb2),max-V E(θb1|a1 , λb2)))
= max(min(0, θb2|a1),min(λb1), θb1|a1)
= max(0,min(λb1 , θb1|a1))
= min(λb1 , θb1|a1)

2. max-V E(CBminmax, λb1) = min(1, θb1|a1) = θb1|a1

3. max-V E(CBminmax, θb1|a1) = 1 = ΠV E(b1).

Note that ΠV E(b1) corresponds to Πc(b1) computed using Algorithm 3.
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3.4 Possibilistic approach using possibilistic knowl-

edge bases

Possibilistic logic bases and possibilistic networks are considered two di�erent
frameworks for representing knowledge. Using possibilistic logic bases, pieces
of knowledge are expressed by logical formulas according to their levels of
certainty, while possibilistic networks exhibit relationships between variables.
These representations are semantically equivalent since they lead to the same
possibility distribution. In a logical framework, data are given in terms
of necessities, while in a graphical framework, data are given in terms of
conditional possibilities [12].

In [12], authors have provided a transition of possibilistic networks into
possibilistic logic bases. In another angle, Benferhat et al. in [18] have fo-
cused on the compilation of bases under the possibilistic logic policy in order
to be able to process inference from it in a polynomial time. This is mainly
accomplished by ensuring a CNF encoding of the possibilistic base, and com-
piling it using any target compilation language that supports conditioning.
The combination of these methods allows us to propose an alternative ap-
proach to possibilistic inference in min-based possibilistic networks, denoted
by DNNF-PKB. This is vindicated by the fact that the possibilistic logic
reasoning machinery can be applied to directed possibilistic networks.

3.4.1 From a graphical to a logic-based representation

The starting point of the transformation from a graphical to a logic-based
representation is that the possibilistic base associated to a possibilistic net-
work is the result of the fusion of elementary bases. These elementary bases
are composed of formulae associated to the prior and conditional possibilities
attached to network's nodes. De�nition 3.5 presents the transformation of a
min-based possibilistic network into a possibilistic knowledge base [12]:

De�nition 3.5. Let ΠGmin be a min-based possibilistic network, then its
possibilistic knowledge base is expressed by:

Σmin = ΣX1 ∪ ΣX2 ∪ · · · ∪ ΣXN
(3.18)

where ∀Xi ∈ V :

ΣXi = {(¬xi ∨ ¬ui, ai) : ai = 1−Π(xi|ui) 6= 0} (3.19)

Example 3.8. Let us consider the min-based network ΠGmin of Figure 1.2.
Then, the possibilistic knowledge base of ΠGmin is the following: Σmin =



66 Chapter 3: Compilation-based inference in min-based possibilistic networks

((a1, 0.6), (a2 ∨ b1, 0.2), (a1 ∨ b2, 0.2)). We can deduce that Σmin does not
contain zero-weighted formulas corresponding to possibility degrees equal to
1.

Note that the quantitative possibilistic base of a product-based possi-
bilistic network can be obtained using the transformation of [14].

3.4.2 Compilation-based inference using possibilistic knowl-

edges bases

After translating the possibilistic network to a possibilistic base Σmin using
de�nition 3.5, the idea is to encode this latter into a classical propositional
base using the CNF representation language. This is performed by a�ect-
ing new propositional variables for the di�erent necessity degrees existing
in the possibilistic knowledge base. More formally, let A = {a1, ..., an} with
a1 � ... � an be the di�erent weights used in Σmin, a set of additional propo-
sitional variables, denoted by Ai, which correspond exactly to the number
of di�erent weights, are incorporated. For each formula (αi, ai) will corre-
spond the propositional formula αi ∨Ai. Hence, the propositional encoding
of Σmin, denoted by KΣ is expressed by:

KΣ = {αi ∨Ai : (αi, ai) ∈ Σmin} (3.20)

Note that the number of additional propositional variables in KΣ is not
high since we encode one variable per di�erent degree instead of one variable
per degree. Consequently, the encoding cost is also considered faible.

In [18], di�erent inference queries have been taken into account but in
our case, we are only interested in a particular query useful for possibilistic
networks, namely What is the possibility degree of an event X = x given an
evidence E = e on a set of variables? Therefore, we propose to adapt the
algorithm given in [18] in order to respond to this query. Algorithm 4 out-
lines the new possibilistic approach in which both of conditioning and clausal
entailment are required to compute a-posteriori possibility degrees. Hence,
to ensure an e�cient computation, KΣ should be compiled into any tar-
get compilation language that supports conditioning and clausal entailment.
The resulting compiled base is denoted by Kc. Our approach is quali�ed to
be �exible since it takes advantage of existing propositional knowledge bases
compilation methods [18].

In algorithm 4, we �rst start by testing the clausal entailment of the �rst
propositional variable, equivalent to Kc 2 A1 ∨ ¬e. If this deduction is not
satis�ed, we condition Kc on ¬A1 and then test if Kc|¬A1 entails ¬x. If
this is the case, we compute Πc(x|e), else we move to the next propositional
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variable and we re-itere the same treatment. This method is referred to by
DNNF-PKB.

Algorithm 4: DNNF-PKB
Data: ΠGmin, instance of interest x, evidence e
Result: Πc(x|e)
begin

Transformation into KΣ

Let Σmin be the possibilistic base of ΠGmin using De�nition 3.5
Let KΣ be the CNF encoding of Σmin using Equation (3.20)
Inference

Let Kc be the compilation of KΣ

StopCompute ← false
i ← 1
Πc(x|e) ← 1
while (Kc 2 Ai ∨ ¬e) and (i ≤ k) and (StopCompute=false) do

Kc|¬Ai ← condition (K, ¬Ai)
if Kc|¬Ai � ¬x then

StopCompute← true
Let degree(i) be the weight associated to Ai

Πc(x|e) ← 1-degree(i)

else
i← i+ 1

return Πc(x|e)

Due to the compilation step, this algorithm runs in a polynomial time.
Moreover, the number of additional variables is low since it corresponds
exactly to the number of priority levels existing in the base.

Example 3.9. The CNF encoding of the possibilistic knowledge base Σmin

of Example 3.8 is shown in Table 3.7.

Clauses of A
(a1, 0.6) (a1 ∨A1)

Clauses of B
(a2 ∨ b1, 0.2) (a2 ∨ b1 ∨A2)
(a1 ∨ b2, 0.2) (a1 ∨ b2 ∨A2)

Table 3.7: The CNF encoding KΣ of Σmin

The CNF encoding KΣ is then compiled into DNNF. The resulting com-
piled base is as follows: Kc = {[(a2 ∧A1) ∧ (b2 ∨ (b1 ∧A2))] ∨ [a1 ∧ (b1∨
(b2∧A2))}. Let us compute the e�ect of the evidence b1 on a2 using Kc. The
computation of Πc(a2|b1) requires only one iteration as follows:

� Kc 2 b2 ∨A1 ⇒ Kc|¬A1 = [a1 ∧ (b1 ∨ (b2 ∧A2))],
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� (Kc|¬A1) � a1 ⇒ StopCompute← true.

Hence, Πc(a2|b1) = 1 − degree(1) = 1 − 0.6 = 0.4 where degree(1)
designates the weight associated to A1, i.e., 0.6.

Proposition 3.4. Let ΠGmin be a min-based possibilistic network. Let x be
an instance of interest of a variable X ∈ V and e an evidence. Then:

Πc(x|e) = Π(x|e) (3.21)

where Πc(x|e) is computed using Algorithm 4 and Π(x|e) is derived from the
joint distribution associated to the possibilistic knowledge base of Equation
(3.20).

Proof 3.4. Kc is the compiled base of KΣ which is composed of clauses
(¬xi ∨ ¬ui ∨ Ai) where Ai encodes the necessity degree 1 − Π(xi|ui). To
compute Πc(x|e), we should, at �rst, test if Kc 2 Ai ∨ ¬e, this means that
we cannot deduce Ai ∨ ¬e. In this case, we keep formulas αi = ¬xi ∨ ¬ui
by conditioning Kc on ¬Ai, i.e., replace αi∨Ai by αi∨⊥, hence αi. Then,
from the conditioned base Kc|¬Ai, we check if Kc|¬Ai � ¬x. If this is the
case, then Πc(x|e) = 1−degree(i) = Π(xi|ui), which in its turn corresponds
to Π(x, e). Thus, Πc(x|e) = Π(x|e). �

3.5 Conclusion

In this chapter, we have studied compilation-based inference in min-based
possibilistic networks. In fact, we proposed a possibilistic adaptation of the
standard probabilistic compilation method [30] (detailed in Section 3.2) con-
sisting on encoding the network into a CNF base and compiling this latter
to ensure inference in polytime. Then, we developed a new purely possibilis-
tic method based on compiling possibilistic knowledge bases associated with
possibilistic networks. The next chapter will deal with improvements and
particular cases that can be investigated and exhibited into the possibilistic
adaptation.



Chapter 4

Re�ned CNF encodings of

min-based possibilistic

networks

4.1 Introduction

As we have pointed out in the previous chapter, compilation-based inference
is mainly based on encoding the min-based possibilistic network into a CNF
base using a set of propositional variables. In fact, the CNF encoding of
the possibilistic adaptation Π-DNNF associates a parameter variable per
possibility degree, without taking into consideration any numerical value.
In this chapter, we will re�ne such encoding by dealing with speci�c values
of parameters, namely equal parameters and extreme values, i.e., 0 and 1.
The objective behind re�ning the encoding is to reduce CNF variables and
clauses and study the behavior of compiled bases when we exploit various
encoding strategies and consequently compare the inference time.

More precisely, we will at �rst propose two types of encoding strategies.
The �rst one, named local structure and used in both probabilistic and pos-
sibilistic networks, consists in assigning one propositional variable per equal
parameters per possibility table. This encoding strategy does not take into
account speci�c features of possibility theory such as the ordinal nature of
uncertainty scale, which motivates us to propose a new encoding strategy,
named possibilistic local structure. This latter is exclusively useful for min-
based possibilistic networks since it exploits the idempotency property of the
min operator. Then, we will take advantage of the particularity of binary
variables and re�ne the n-ary encoding of the possibilistic adaptation when
n = 2 in order to explore compilation-based inference in binary min-based
possibilistic networks.

69
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This chapter is organized as follows: Sections 4.2 and 4.3 provide local
structure and possibilistic local structure encoding strategies, respectively.
In Section 4.4, we will study the particular case of compiling binary networks.
Main results of this Chapter are published in [8].

4.2 Local structure

The CNF encoding of the probabilistic inference approach proposed in [30]
depends only on the network structure and variables domains. In other
terms, if we have two networks having the same structure such that their
variables have the same cardinalities, then we will obtain the same CNF
encoding. This means that such encoding does not bene�t from speci�c
values of parameters. Chavira et al. [23] have improved this CNF encoding
using the so-called local structure. By local structure, they mean speci�c
values of network parameters, in particular, logical constraints corresponding
to the extreme values 0 and 1 and equal parameters. This encoding strategy
should induce a reduction of the size of both CNF encodings and compiled
bases and consequently the time spent during the inference process. In this
section, we will exploit local structure in the possibilistic inference approach
Π-DNNF (see Section 3.3) by emphasizing on novelties of CNF encodings and
compiled bases which are contributed by this strategy. The new possibilistic
inference approach using local structure is denoted by Π-DNNFLS .

4.2.1 CNF encoding

Exploiting local structure by incorporating logical constraints and equal pa-
rameters into the CNF encoding of De�nition 3.3 has an impact on both
CNF variables and clauses as we will detail below:

• Logical constraints: correspond to a conditional possibility degree equal
to an extreme value, i.e., either 0 or 1. By exploiting such constraints,
we can produce a more e�cient CNF encoding with a reduced number
of variables and clauses.

� Parameters equal to 0: Each parameter variable θxi|ui equal to 0
can be dropped from the CNF encoding since any model that sets
a variable to true and has a zero weight does not contribute to the
possibilistic computation. Consequently, clauses (3.9), (3.10) and
(3.11) associated to each θxi|ui equal to 0 should be substituted
by a shorter clause involving only indicator variables. Formally:

¬λxi ∨ ¬λui1 ∨ · · · ∨ ¬λuim (4.1)
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� Parameters equal to 1: In the probabilistic case [23], the parame-
ter variable θxi|ui associated to each parameter equal to 1 as well
as its clauses can be dropped from the CNF encoding since they
do not contribute to the probabilistic computation, even in the
extreme case where all probabilities are equal to 1 and 0. In the
possibilitic framework, we cannot omit such variables since they
are overriding and represent the key of normalization.

• Equal parameters: Suppose that we have some equal parameters in
a CΠTi, then when we exploit them, we can collapse the number of
generated propositional variables. The key idea is then to use the same
propositional variable to represent equal parameters pertaining to the
same conditional possibility table CΠTi. The encoding strategy used
in such case is one variable per equal parameters per CΠTi. However,
encoding the network using this strategy can involve in an inconsistent
theory as illustrates Example 4.1.

Example 4.1. Let us consider Π(a2|b1) and Π(a1|b2) two equal possi-
bility degrees pertaining to the same CΠTi, then by associating the same
parameter variable θ for both of them, we will obtain these clauses using
Equations (3.10) and (3.11): θ → λc1 and θ → λc2. This means that if
θ is set to >, then λc1 and λc2 are also set to >, which is inconsistent
since λc1 and λc2 cannot be both true in the same model (as mutual
exclusive clauses reveals).

In order to avoid this problem, we should move from a logical equiv-
alence ⇔ to a logical implication ⇒ by dropping clauses (3.10) and
(3.11) from the encoding in the case of equal parameters per CΠTi.

The new set of parameter variables associated to a min-based possibilistic
network ΠGmin when we consider local structure is as follows:

• ∀Xi ∈ V , ∀ Π(xi|ui), we associate a parameter variable:
θj if occ(Π(xi|ui), CΠTi) > 1

θxi|ui if occ(Π(xi|ui), CΠTi) = 1

(4.2)

where occ(Π(xi|ui), CΠTi) is the occurrence number of the parameter
Π(xi|ui) per conditional possibility table, i.e., CΠTi.

Example 4.2. Let us consider the possibilistic network, depicted by Figure
4.1, containing four binary variables A, B, C and D. Using local structure,
parameter variables associated to each possibility table CΠTi are represented
in Table 4.1.
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A

C

ai Π(ai)
a1 1
a2 0.8

Π(dj|bi) b1 b2
d1 1 0.6
d2 0.3 1

B

D

bi Π(bi)
b1 0.6
b2 1

Π(ck|ai,bj) a1b1 a1b2 a2b1 a2b2
c1 1 1 0.7 1

c2 0.7 0.2 1 0.9

Figure 4.1: A possibilistic network of 4 nodes

De�nition 4.1 outlines the CNF encoding of ΠGmin using local structure,
denoted by CLSmin.

De�nition 4.1. Using the set of instance indicators and parameter variables
of Equation (4.2), the CNF encoding CLSmin contains:

• Mutual exclusive clauses: ∀Xi ∈ V , we have:

λxi1 ∨ λxi2 ∨ · · · ∨ λxin (4.3)

¬λxij ∨ ¬λxik , j 6= k (4.4)

• Parameter clauses: ∀Xi ∈ V :

� ∀ Π(xi|ui) = 0, we have:

¬λxi ∨ ¬λui1 ∨ · · · ∨ ¬λuim (4.5)

� ∀ θxi|ui , we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui (4.6)

θxi|ui → λxi (4.7)

θxi|ui → λui1 , · · · , θxi|ui → λuim (4.8)

� ∀ θj, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θj (4.9)

From a possibilistic point of view, we can say that CLSmin recovers the
min-based joint possibility distribution.
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Variables Possibility degrees Parameter variables

A
Π(a1) = 1 θa1

Π(a2) = 0.8 θa2

B
Π(b1) = 0.6 θb1
Π(b2) = 1 θb2

D

Π(d1|b1) = 1 θ1

Π(d1|b2) = 0.6 θd1|b2
Π(d2|b1) = 0.3 θd2|b1
Π(d2|b2) = 1 θ1

C

Π(c1|a1, b1) = 1 θ2

Π(c1|a1, b2) = 1 θ2

Π(c1|a2, b1) = 0.7 θ3

Π(c1|a2, b2) = 1 θ2

Π(c2|a1, b1) = 0.7 θ3

Π(c2|a1, b2) = 0.2 θc2|a1,b2
Π(c2|a2, b1) = 1 θ2

Π(c2|a2, b2) = 0.9 θc2|a2,b2

Table 4.1: Parameter variables using local structure

Proposition 4.1. Let CLSmin be the CNF encoding of a ΠGmin using De�-
nition 4.1. Let ω be an interpretation from Ω and λ be the conjunction of
indicator variables λxi related to ω (i.e., λ ≡ ∧xi∈ω λxi).
Let us consider kLS(λ) be the result of conditioning of CLSmin on λ using Equa-
tion (3.12). Then,

kLS(λ) ≡ ( ∧
(xi,ui)∈ω

θxi|ui)
∧

( ∧
(xi,ui)∈ω

θj)
∧

( ∧
(xi,ui)/∈ω

¬θxi|ui) (4.10)

where θj encodes equal possibility degrees Π(xi|ui) per CΠTi.

After setting ¬θxi|ui to >, kLS(λ) is equivalent to:

kLS(λ) ≡ ( ∧
(xi,ui)∈ω

θxi|ui)
∧

( ∧
(xi,ui)∈ω

θj) (4.11)
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Proof 4.1. From CLSmin, we deduce θxi|ui , ¬θxi|ui and θj:

• If (xi, ui) ∈ ω: From Equations (4.6), (4.7) and (4.8), we deduce θxi|ui
as follows:

λxi ∧ λui → θxi|ui
θxi|ui → λxi
θxi|ui → λui

λxi=>=⇒
λui=>

θxi|ui

From Equation (4.9), we deduce θj as follows:{
λxi ∧ λui → θj

λxi=>=⇒
λui=>

θj

• If (xi, ui) /∈ ω: From Equations (4.6), (4.7) and (4.8), we deduce ¬θxi|ui
as follows:

λxi ∧ λui → θxi|ui
θxi|ui → λxi
θxi|ui → λui

λxi=⊥=⇒
λui=⊥

¬θxi|ui

Thus, kLS(λ) ≡ (∧(xi,ui)∈ω θxi|ui)
∧

(∧(xi,ui)∈ω θj)
∧

(∧(xi,ui)/∈ω ¬θxi|ui). �

Let PkLS(λ) be the positive part of Proposition 4.1 by replacing each
¬θxi|ui by > in kLS(λ), i.e.,

PkLS(λ) ≡ ( ∧
(xi,ui)∈ω

θxi|ui)
∧

( ∧
(xi,ui)∈ω

θj) (4.12)

Let πCLS
min

: Ω→ [0, 1] be the possibility distribution computed from PkLS(λ)

by replacing ∧ (resp. θxi|ui and θj) by min (resp. the possibility degrees they
encode).

Proposition 4.2. Let ΠGmin be a min-based possibilistic network and CLSmin
be its CNF encoding using De�nition 4.1. Let ω be an interpretation from Ω
and PkLS(λ) be its CNF encoding resulting from incorporating ω into CLSmin
using Equation (4.12). Then,

∀ω ∈ Ω, πmin(ω) = πCLS
min

(ω) (4.13)

∀φ ⊆ Ω,Πmin(φ) = ΠCLS
min

(φ) (4.14)

where πmin (resp. πCLS
min

) is given by De�nition 1.5 (resp. 4.12) and Πmin

(resp. ΠCLS
min

) is derived from πmin (resp. πCLS
min

), respectively.
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Proof 4.2. By setting ¬θxi|ui to >, πCLS
min

(ω) is computed using PkLS(λ)
as follows:
πCLS

min
(ω) = min( min

(xi,ui)∈ω
θxi|ui ; min

(xi,ui)∈ω
θj)

= min
(xi,ui)∈ω

Π(xi|ui)

= πmin(ω).
Thus, Equation (4.13) is established.

This result is relative to an interpretation ω, to generalize it to an event
φ ⊆ Ω, we obtain:
max
ω|=φ

πmin(ω) = max
ω|=φ

πCLS
min

(ω),

Thus, Πmin(φ) = ΠCLS
min

(φ). �

Let us illustrate Proposition 4.2 by the following example:

Example 4.3. Considering the min-based possibilistic network ΠGmin of
Figure 1.2, the interpretation ω = {a2, b1} and its logical counterpart λ ≡
λa2 ∧ λb1. Then, conditioning CLSmin on λ using Equation (4.10) gives us
kLS(λ) = (θa2 ∧ θ2 ∧ ¬θa1). The positive part of k(λ) is equivalent to
PkLS(λ) ≡ (θa2 ∧ θ2) using Equation (4.12).

We can now compute πCLS
min

(ω) from PkLS(λ) as follows: πCLS
min

(ω) =

min(0.4, 0.8) = 0.4 = πmin(ω) (row 3 of Table 1.6).

4.2.2 Compiled base

Once the possibilistic network is encoded using local structure, the resulting
CNF encoding is then transformed into a compiled base CB, which is af-
terwards mapped into a numerical representation as we have pinpointed in
section 3.3.3. The min-max circuit arising from the mapping step is denoted
by CBLS

minmax and de�ned as follows:

De�nition 4.2. A min-max circuit with local structure is a valued sentence
where ∧ and ∨ are substituted by min and max, respectively and each propo-
sitional variable, either θxi|ui

or θj, is replaced by the possibility degree it
encodes. Moreover, the value 1 or 0 is associated to each instance indicator
λxi depending on its truth value.
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4.3 Possibilistic local structure

It is well known that the qualitative interpretation of the possibilistic scale
that involves the use of the min and max operators is an important property
in the possibility theory framework. In this interpretation, the joint pos-
sibility distribution can be computed by considering each parameter value
only a once since the min operator is idempotent, i.e., min(a, a) = a. This
means that redundancy is not prominent when we deal with a qualitative
setting. The �rst proposed encoding strategy does not take into account
speci�c features of possibility theory and more precisely, the ordinal nature
of uncertainty scale. In this section, we propose a new encoding strategy of
min-based possibilistic networks, taking advantage of the idempotency prop-
erty of the min operator by associating a unique propositional variable per
equal parameters per all conditional possibility tables. We show that this
new encoding strategy, that we call possibilistic local structure, reduces the
number of propositional variables and clauses required for encoding a min-
based possibilistic network since it handles equal parameters from a global
point of view.

4.3.1 CNF encoding

The CNF encoding of a min-based possibilistic network ΠGmin using possi-
bilistic local structure requires a new set of parameter variables associated
to possibility degrees of all conditional possibility tables CΠT . Formally,

• ∀Xi ∈ V , ∀ Π(xi|ui), we associate a parameter variable:
Πθj if occ(Π(xi|ui), CΠT ) > 1

Πθxi|ui if occ(Π(xi|ui), CΠT ) = 1

(4.15)

where occ(Π(xi|ui), CΠT ) is the occurrence number of the parameter
Π(xi|ui) per all conditional possibility tables, i.e., CΠT.

Example 4.4. Let us consider the possibilistic network of Figure 4.1. Then,
parameter variables associated to all possibility tables using possibilistic local
structure are represented in Table 4.2.

As we have pointed out in Section 4.2, instance indicators and parame-
ter variables can be joined using either a logical equivalence ⇔ or a logical
implication⇒. Using these connectors and parameter variables arising from
using possibilistic local structure, we will propose two variants of CNF en-
codings, namely an encoding with left-side clauses and an encoding without
left-side clauses.
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Variables Possibility degrees Parameter variables

A
Π(a1) = 1 Πθ1

Π(a2) = 0.8 Πθa2

B
Π(b1) = 0.6 Πθ2

Π(b2) = 1 Πθ1

D

Π(d1|b1) = 1 Πθ1

Π(d1|b2) = 0.6 Πθ2

Π(d2|b1) = 0.3 Πθd2|b1
Π(d2|b2) = 1 Πθ1

C

Π(c1|a1, b1) = 1 Πθ1

Π(c1|a1, b2) = 1 Πθ1

Π(c1|a2, b1) = 0.7 Πθ3

Π(c1|a2, b2) = 1 Πθ1

Π(c2|a1, b1) = 0.7 Πθ3

Π(c2|a1, b2) = 0.2 Πθ7

Π(c2|a2, b1) = 1 Πθc2|a2,b1
Π(c2|a2, b2) = 0.9 Πθc2|a2,b2

Table 4.2: Parameter variables using possibilistic local structure

Encoding with left-side clauses

This variant of encoding deals with a logical equivalence⇔ (both of right-side
clause and left-side clauses) and a logical implication ⇒ (only the right-side
clause) depending on the occurrence number of the possibility degree per
CΠT . Interestingly enough, two cases should be highlighted:

• Parameters appearing only a once per CΠT : should be encoded using
both the right-side clause and the left-side clauses. This refers to apply
logical equivalence ⇔.

• Parameters appearing several times per CΠT : should be encoded using
only the right-side clause since left-side clauses can evoke an inconsis-
tent theory. This means that we deal with a simple logical implication
⇒.

De�nition 4.3 outlines the CNF encoding of ΠGmin using possibilistic
local structure and left-side clauses, and denoted by CPLSminl

. We denote the
inference approach using CPLSminl

by Π-DNNFlPLS .

De�nition 4.3. Using the set of instance indicators and parameter variables
of Equation (4.15), the CNF encoding CPLSminl

contains:
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• Mutual exclusive clauses: ∀Xi ∈ V , we have:

λxi1 ∨ λxi2 ∨ · · · ∨ λxin (4.16)

¬λxij ∨ ¬λxik , j 6= k (4.17)

• Parameter clauses: ∀Xi ∈ V :

� ∀ Π(xi|ui) = 0, we have:

¬λxi ∨ ¬λui1 ∨ · · · ∨ ¬λuim (4.18)

� ∀ Πθxi|ui , we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → Πθxi|ui (4.19)

Πθxi|ui → λxi (4.20)

Πθxi|ui → λui1 , · · · ,Πθxi|ui → λuim (4.21)

� ∀ Πθj, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → Πθj (4.22)

Proposition 4.3. Let CPLSminl
be the CNF encoding of a ΠGmin using De�-

nition 4.3. Let ω be an interpretation from Ω and λ be the conjunction of
indicator variables λxi related to ω (i.e., λ ≡ ∧xi∈ω λxi).
Let kPLSl

(λ) be the conditioning result of CPLSminl
on λ using Equation (3.12).

Then,

klPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj)
∧

( ∧
(xi,ui)/∈ω

¬Πθxi|ui) (4.23)

where Πθj encodes equal possibility degrees Π(xi|ui) per CΠT .

After setting ¬Πθxi|ui to >, klPLS(λ) is equivalent to:

klPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj) (4.24)
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Proof 4.3. From CPLSminl
, we deduce Πθxi|ui, Πθj and ¬Πθxi|ui :

• If (xi, ui) ∈ ω: From Equations (4.19), (4.20) and (4.21), we deduce
Πθxi|ui as follows:

λxi ∧ λui → Πθxi|ui
Πθxi|ui → λxi
Πθxi|ui → λui

λxi=>=⇒
λui=>

Πθxi|ui

From Equation (4.22), we deduce Πθj as follows:{
λxi ∧ λui → Πθj

λxi=>=⇒
λui=>

Πθj

• If (xi, ui) /∈ ω: From Equations (4.19), (4.20) and (4.21), we deduce
¬Πθxi|ui as follows:

λxi ∧ λui → Πθxi|ui
Πθxi|ui → λxi
Πθxi|ui → λui

λxi=⊥=⇒
λui=⊥

¬Πθxi|ui

Thus, klPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj)
∧

( ∧
(xi,ui)/∈ω

¬Πθxi|ui).

�

Let PklPLS(λ) be the positive part of Proposition 4.3 by replacing each
¬Πθxi|ui by > in klPLS(λ), i.e.,

PklPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj) (4.25)

Let πCPLS
minl

: Ω→ [0, 1] be the possibility distribution computed from PklPLS(λ)

by replacing ∧ (resp. Πθxi|ui and Πθj) by min (resp. the possibility degrees
they encode).

Proposition 4.4. Let ΠGmin be a min-based possibilistic network and C
PLS
minl

its CNF encoding using De�nition 4.3. Let ω be an interpretation from Ω
and PklPLS(λ) be its CNF encoding resulting from incorporating ω into CPLSminl

using Equation (4.25). Then,

∀ω ∈ Ω, πmin(ω) = πCPLS
minl

(ω) (4.26)

∀φ ⊆ Ω,Πmin(φ) = ΠCPLS
minl

(φ) (4.27)
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where πmin (resp. πCPLS
minl

) is given by De�nition 1.5 (resp. 4.25) and Πmin

(resp. ΠCPLS
minl

) is derived from πmin (resp. πCPLS
minl

), respectively.

Proof 4.4. By setting ¬Πθxi|ui to >, πCPLS
minl

(ω) is computed using

PklPLS(λ) as follows:
πCPLS

minl

(ω) = min( min
(xi,ui)∈ω

Πθxi|ui ; min
(xi,ui)∈ω

Πθj)

= min
(xi,ui)∈ω

Π(xi|ui)

= πmin(ω).
Thus, Equation (4.26) is established.

This result is relative to an interpretation ω, to generalize it to an event
φ ⊆ Ω, we obtain:
max
ω|=φ

πmin(ω) = max
ω|=φ

πCPLS
minl

(ω),

Thus, Πmin(φ) = ΠCPLS
minl

(φ). �

Proposition 4.4 will be illustrated by Example 4.5.

Encoding without left-side clauses

Encoding a min-based possibilistic network using possibilistic local structure
and without left-side clauses refers to associating a parameter variable per
equal parameters per CΠT and encoding each parameter, either appearing
a once or several times per CΠT , using only the right-side clause. In other
terms, we only deal with the logical implication ⇒ since this connector suf-
�ces to join instance indicators and parameter variables. The CNF encoding
of a ΠGmin using possibilistic local structure and without left-side clauses
(see De�nition 4.4) and its associated inference approach are denoted by
CPLSmin and Π-DNNFPLS , respectively.

De�nition 4.4. Using the set of instance indicators and parameter variables
of Equation (4.15), the CNF encoding CPLSmin contains:

• Mutual exclusive clauses: ∀Xi ∈ V , we have:

λxi1 ∨ λxi2 ∨ · · · ∨ λxin (4.28)

¬λxij ∨ ¬λxik , j 6= k (4.29)

• Parameter clauses: ∀Xi ∈ V :
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� ∀ Π(xi|ui) = 0, we have:

¬λxi ∨ ¬λui1 ∨ · · · ∨ ¬λuim (4.30)

� ∀ Πθxi|ui, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → Πθxi|ui (4.31)

� ∀ Πθj, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → Πθj (4.32)

Proposition 4.5. Let CPLSmin be the CNF encoding of a ΠGmin using De�-
nition 4.4. Let ω be an interpretation from Ω and λ be the conjunction of
indicator variables λxi related to ω (i.e., λ ≡ ∧xi∈ω λxi).
Let us consider kPLS(λ) be the result of conditioning of CPLSmin on λ using
Equation (3.12). Then,

kPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj) (4.33)

where Πθj encodes equal possibility degrees Π(xi|ui) within CΠT .

Proof 4.5. From CPLSmin , we deduce Πθxi|ui and Πθj when (xi, ui) ∈ ω:

• From Equation (4.31), we deduce Πθxi|ui as follows:{
λxi ∧ λui → Πθxi|ui

λxi=>=⇒
λui=>

Πθxi|ui

• From Equation (4.32), we deduce Πθj as follows:{
λxi ∧ λui → Πθj

λxi=>=⇒
λui=>

Πθj

Thus, kPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj). �

Let PkPLS(λ) the result of Proposition 4.5, i.e.,

PkPLS(λ) ≡ ( ∧
(xi,ui)∈ω

Πθxi|ui)
∧

( ∧
(xi,ui)∈ω

Πθj) (4.34)

Let πCPLS
min

: Ω→ [0, 1] be the possibility distribution computed from PkPLS(λ)

by replacing ∧ (resp. Πθxi|ui and Πθj) by min (resp. the possibility degrees
they encode).
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Proposition 4.6. Let ΠGmin be a min-based possibilistic network and C
PLS
min

be its CNF encoding using De�nition 4.4. Let ω be an interpretation from
Ω and PkPLS(λ) be its CNF encoding resulting from incorporating ω into
CPLSmin using Equation (4.34). Then,

∀ω ∈ Ω, πmin(ω) = πCPLS
min

(ω) (4.35)

∀φ ⊆ Ω,Πmin(φ) = ΠCPLS
min

(φ) (4.36)

where πmin (resp. πCPLS
min

) is given by De�nition 1.5 (resp. Equation (4.34))

and Πmin (resp. ΠCPLS
min

) is derived from πmin (resp. πCPLS
min

), respectively.
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Proof 4.6. πCPLS
min

(ω) is computed using PkPLS(λ) as follows:

πCPLS
min

(ω) = min( min
(xi,ui)∈ω

Πθxi|ui ; min
(xi,ui)∈ω

Πθj)

= min
(xi,ui)∈ω

Π(xi|ui)

= πmin(ω).
Thus, Equation (4.35) is established.

This result is relative to an interpretation ω, to generalize it to an event
φ ⊆ Ω, we obtain:
max
ω|=φ

πmin(ω) = max
ω|=φ

πCPLS
min

(ω),

Thus, Πmin(φ) = ΠCPLS
min

(φ). �

The following example illustrates both of Propositions 4.4 and 4.6.

Example 4.5. Let us consider the min-based possibilistic network ΠGmin of
Figure 1.2. Let ω = {a1, b2} be an interpretation from Ω and λ ≡ λa1 ∧ λb2 .
Then, the conditioning result of CPLSminl

and CPLSmin on λ is the following:

• CPLS
minl

: using Equation (4.23), klPLS(λ) is equivalent to (Πθa1∧¬Πθa2∧
Πθ2). The positive part of klPLS using Equation (4.25) corresponds to
PklPLS(λ) = (Πθa1 ∧Πθ2).

• CPLS
min : using Equation (4.34), PkPLS(λ) = (Πθa1∧Πθ2). The negative

literal ¬Πθa2 is not within deduced variables since the left-side clause
¬Πθa2 ∨ λa2 is not included in CPLSmin .

This means that PklPLS(λ) requires an additional step since deduced vari-
ables can be negative due to left-side clauses.

The possibility degrees πCPLS
minl

(ω) and πCPLS
min

(ω) can be computed from

PklPLS(λ) and PkPLS(λ) in the same spirit as follows: πCPLS
minl

(ω) = πCPLS
min

(ω) =

min(1, 0.8) = 0.8 = πmin(ω) (row 2 of Table 1.6).

4.3.2 Compiled base

The compiled base CB arising from compiling the CNF encoding associated
to a min-based possibilistic network using possibilistic local structure should
be used in the inference phase to e�ciently compute the e�ect of an evidence
e on an instance of interest x, i.e., Πc(x|e). When possibilistic local structure
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is taken into consideration, the min-max circuit, denoted by CBPLS
minmaxl

if
we deal with left-side clauses and CBPLS

minmax if only right-side clauses are
considered, is de�ned as follows:

De�nition 4.5. A min-max circuit with possibilistic local structure, either
CBPLS

minmaxl
or CBPLS

minmax, is a valued sentence where ∧ and ∨ are substituted
by min and max, respectively. Each parameter variable, either Πθxi|ui

or
Πθj, is replaced by the possibility degree it encodes. Also, each instance
indicator λxi is set to 1 or 0 depending on its truth value.

4.4 Illustrative example of encoding strategies

In the previous sections, we have proposed two strategies, namely local struc-
ture and possibilistic local structure to encode a min-based possibilistic net-
work. In this section, we will apply them to the network ΠGmin of Figure
1.2 and compare the impact of each strategy on both CNF parameters and
compiled bases parameters.

Example 4.6. Let us consider the min-based possibilistic network ΠGmin
of Figure 1.2. Before encoding the network, we should at �rst associate the
set of instance indicators to instances of variables and parameter variables
to possibility degrees as shown in Table 4.3 and Table 4.4, respectively. From
Table 4.4, we can deduce that the number of parameter variables is equal to
4 when we exploit local structure, while it corresponds to 3 in the case of
possibilistic local structure. This reduction of variables is obvious since the
possibility degree 1, which appears in both tables of A and B, is encoded using
the same parameter variable, namely Πθ1.

We should then encode ΠGmin using De�nitions 4.1, 4.3 and 4.4 as
shown, respectively in columns 2,3 and 4 of Table 4.5. We can pinpoint
that the number of parameter clauses is decreasing from one strategy to an-
other. In fact, it is equal to 8, 7 and 6 in the case of CLSmin, C

PLS
minl

and CPLSmin ,
respectively.

Instances CLS
min,C

PLS
minl

,CPLS
min

a1 λa1
a2 λa2
b1 λb1
b2 λb2

Table 4.3: Instance indicators used in CLSmin, C
PLS
minl

and CPLSmin

Let us now compile the CNF encodings of Table 4.5 and map the result-
ing compiled bases into min-max circuits using De�nitions 4.2 and 4.5. The
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Variables Possibility degrees CLS
min CPLS

minl
, CPLS

min

A
Π(a1) = 1 θa1 Πθ1

Π(a2) = 0.4 θa2 Πθa2

B

Π(b1|a1) = 1 θ1 Πθ1

Π(b1|a2) = 0.8 θ2 Πθ2

Π(b2|a1) = 0.8 θ2 Πθ2

Π(b2|a2) = 1 θ1 Πθ1

Table 4.4: Parameter variables used in CLSmin, C
PLS
minl

and CPLSmin

Variables Mutual exclusive clauses

A (λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2)

B (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

Possibility degrees Parameter clauses

A CLS
min CPLS

minl
CPLS

min

Π(a1) = 1 (λa1 → θa1) (λa1 → Πθ1) (λa1 → Πθ1)
∧(θa1 → λa1)

Π(a2) = 0.4 (λa2 → θa2) (λa2 → Πθa2) (λa2 → Πθa2)
∧(θa2 → λa2) ∧(Πθa2 → λa2)

B CLS
min CPLS

minl
CPLS

min

Π(b1|a1) = 1 (λa1 ∧ λb1 → θ1) (λa1 ∧ λb1 → Πθ1) (λa1 ∧ λb1 → Πθ1)

Π(b2|a1) = 0.8 (λa1 ∧ λb2 → θ2) (λa1 ∧ λb2 → Πθ2) (λa1 ∧ λb2 → Πθ2)

Π(b1|a2) = 0.8 (λa1 ∧ λb2 → θ2) (λa2 ∧ λb1 → Πθ2) (λa2 ∧ λb1 → Πθ2)

Π(b2|a2) = 1 (λa2 ∧ λb2 → θ1) (λa2 ∧ λb2 → Πθ1) (λa2 ∧ λb2 → Πθ1)

Table 4.5: The CNF encodings CLSmin, C
PLS
minl

and CPLSmin
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resulting min-max circuits are represented by sub-�gures (a), (b) and (c) of
Figure 4.2 when we deal with local structure, possibilistic local structure with
left-side clauses and possibilistic local structure without left-side clauses, re-
spectively. An important interpretation from this example is that compiled
bases parameters follow the same behavior as those of CNF encodings. In-
deed, the number of edges is equal to 22 and 20 in CBLS

minmax and CB
PLS
minmaxl

,

CBPLS
minmax, respectively. The question that may arise is the following: Does

this behavior remain the same when we deal with networks having a higher
number of nodes? This question will be explored in the experimental study of
Chapter 7.

max

max

λa1 θa1 min

λb1 θ1 θ2 λb2

λa2 θa2

max

minmin min

min min

minmin

max

min

max

min

λa2Πθa2 minmin

Πθ1

min

Πθ2 λb2λb1

λa1

min max min

(a) CBLS (b) CBPLS
minmax minmax l minmax

and  CBPLS

Figure 4.2: CBLS
minmax, CB

PLS
minmaxl

and CBPLS
minmax

4.5 Particular case of binary networks

The possibilistic method Π-DNNF and its variants using local structure and
possibilistic local structure deal with n-ary min-based possibilistic networks
while incorporating a set of mutual exclusive clauses stating that exactly one
instance indicator λxi for each Xi ∈ V is set to true in each model in the
CNF encoding. In the particular case of binary networks, the CNF encod-
ing of De�nition 3.3 requires to set n to 2 yielding supplementary proposi-
tional variables and clauses since the particularity of binary variables is not
taken into consideration. In this section, we propose a new encoding espe-
cially dedicated for binary min-based possibilistic networks by emphasizing
on novelties of both the CNF encoding and the compiled base which are
contributed by this binary aspect. We denote the new binary approach by
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Bin-Π-DNNF, which follows the same global reasoning as n-ary approaches,
namely: from encoding to inference by going through compilation.

4.5.1 Binary CNF encoding

When the possibilistic network is only composed of binary variables, in this
case we can encode both of its instances and parameters using a unique
propositional variable. In other terms, we associate to each Xi's instances
one instance indicator (i.e., λxi) instead of two (i.e., λxi1 and λxi2) where
the positive (resp. negative) instance is represented by λxi (resp. ¬λxi).
Moreover, each parameter Π(xi|ui) (resp. Π(¬xi|ui)) will be encoded using
θxi|ui (resp. ¬θxi|ui). It is worthwhile to point out that by taking advantage
of the particularity of binary variables, we halve the number of instance indi-
cators and network parameters but also release the need for mutual exclusive
clauses and some parameter clauses as we vindicate later.

The new binary encoding needs two types of propositional variables,
namely:

• ∀Xi ∈ V , we associate one instance indicator λxi , s.t. λxi (resp. ¬λxi)
encodes the instance xi (resp. ¬xi).

• ∀Xi ∈ V , ∀ Π(Xi|ui) s.t. ui = {ui1, ui2, ..., uim}, we associate a param-
eter variable as follows:

θxi|ui1,ui2,...,uim if Xi = xi

¬θxi|ui1,ui2,...,uim if Xi = ¬xi
(4.37)

The new auxiliary encoding speci�c to binary networks, denoted by Cbin,
is outlined by De�nition 4.6.

De�nition 4.6. Let ΠGmin be a binary possibilistic network, then using the
new set of binary instance indicators and parameter variables, the binary
encoding Cbin contains the following clauses for each Xi ∈ V :

∧


λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui1,...,uim

¬λxi
∧ λui1

∧ . . . ∧ λuim
→ ¬θxi|ui1,...,uim

...
...

...
λxi
∧ ¬λui1

∧ . . . ∧ ¬λuim
→ θxi|ūi1,..., ¯uim

¬λxi
∧ ¬λui1

∧ . . . ∧ ¬λuim
→ ¬θxi|ūi1,..., ¯uim

(4.38)
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The encoding Cbin is in a CNF form where each clause encodes the fact
that the possibility degree of xi|ui1, ui2, ..., uim represented by the proposi-
tional formula literal(λxi)∧ literal(λui1)∧ . . .∧ literal(λuim) is equal (⇒ in
the logical setting) to Π(xi|ui1, ui2, ..., uim), which is in its turn represented
by the parameter variable θxi|ui1,ui2,...,uim such that literal(λxj ) is expressed
by:

literal(λxj ) =

{
λxj if xj ∈ {xi, ui}
¬λxj if x̄j ∈ {xi, ui}

(4.39)

The same explanation is also valuable for the negative part, i.e.,
Π(¬xi|ui1, ui2, ..., uim) and ¬θxi|ui1,ui2,...,uim . Let us now compare the n-ary
encoding Cmin of De�nition 3.3 and the binary one Cbin of De�nition 4.6.

By emphasizing on clauses of these two CNF encodings, we can point
out that in the binary case, we only resort to clauses (4.38) which represent
the binary counterpart of clause (3.9) while omitting left-side clauses and
using the set of instance indicators and parameter variables of Equation
(4.37). The question that may arise is: why did we drop left-side clauses of
Equations (3.10) and (3.11) in the binary encoding? In fact, from a logical
point of view, the negation of θxi|ui (i.e., ¬θxi|ui) can concern xi or ui or
both of xi and ui. In other terms, it implies θx̄i|ui ∨ θxi|ūi ∨ θx̄i|ūi . For
generality reasons, we assume that ¬θxi|ui only implies θx̄i|ui . Therefore,
only the right-side clause should be considered and clauses (3.10) and (3.11)
should be excluded since from a logical point of view ¬θxi|ui implies neither
¬λxi nor λui .

From a possibilistic point of view, we can say that the binary encoding
Cbin recovers the min-based joint possibility distribution. Formally:

Proposition 4.7. Let Cbin be the binary encoding of a binary min-based
possibilistic network ΠGmin using De�nition 4.6. Let ω be an interpre-
tation from Ω and λ be the conjunction of literal(λxi) related to ω (i.e.,
λ ≡ ∧xi∈ω literal(λxi)) s.t.,

literal(λxi) =

{
λxi if xi ∈ ω
¬λxi if ¬xi ∈ ω

(4.40)

Let Bk(λ) be the result of conditioning of Cbin on λ by setting each
literal(λxi) of λ to:

λxi =

{
> if xi ∈ ω
⊥ otherwise

(4.41)

¬λxi =

{
> if ¬xi ∈ ω
⊥ otherwise

(4.42)
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Then,

Bk(λ) ≡
∧

(PosNeg(xi),ui)∈ω

literal(θxi|ui)

where:

PosNeg(xi) =

{
xi if xi ∈ ω
¬xi if ¬xi ∈ ω

(4.43)

and

literal(θxi|ui) =

{
θxi|ui if PosNeg(xi) = xi
¬θxi|ui if PosNeg(xi) = ¬xi

(4.44)
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Proof 4.7. From Cbin, we deduce θxi|ui and ¬θxi|ui:

• If PosNeg(xi) = xi and (xi, ui) ∈ ω:
From Equation (4.38), we deduce θxi|ui as follows:{

λxi ∧ λui → θxi|ui
λxi=>=⇒
λui=>

θxi|ui

• If PosNeg(xi) = ¬xi and (¬xi, ui) ∈ ω:
From Equation (4.38), we deduce ¬θxi|ui as follows:{

¬λxi ∧ λui → ¬θxi|ui
λxi=⊥=⇒
λui=>

¬θxi|ui

Thus, Bk(λ) ≡
∧

(PosNeg(xi),ui)∈ω
literal(θxi|ui). �

Let Bk(λ) be the result of conditioning of Cbin on λ as shown in Propo-
sition 4.7. Formally:

Bk(λ) ≡
∧

(PosNeg(xi),ui)∈ω

literal(θxi|ui) (4.45)

Let πCbin
: Ω→ [0, 1] be the possibility distribution computed from Bk(λ) by

replacing ∧ (resp. each literal(θxi|ui)) by min (resp. Π(xi|ui) or Π(¬xi|ui)).

Proposition 4.8. Let ΠGmin be a binary possibilistic network and Cbin be
its binary encoding using De�nition 4.38. Let Bk(λ) be the encoding resulting
from conditioning Cbin on λ using Equation (4.45). Then,

∀ω ∈ Ω, πmin(ω) = πCbin
(ω) (4.46)

∀φ ⊆ Ω,Πmin(φ) = ΠCbin
(φ) (4.47)

where πmin (resp. πCbin
) is given by De�nition 1.5 (resp. Equation

(4.45)) and Πmin (resp. ΠCbin
) is derived from πmin (resp. πCbin

), respec-
tively.
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Proof 4.8. By associating to each literal(θxi|ui) the possibility degree
Π(xi|ui) or Π(¬xi|ui) it encodes, πCbin

(ω) is computed using Bk(λ) as fol-
lows:
πCbin

(ω) = min
(PosNeg(xi),ui)∈ω

literal(θxi|ui)

= min
(PosNeg(xi),ui)∈ω

Π(PosNeg(xi)|ui):

where

Π(PosNeg(xi)|ui) =

{
Π(xi|ui) if PosNeg(xi) = xi

Π(¬xi|ui) if PosNeg(xi) = ¬xi

= πmin(ω).
Thus, Equation (4.46) is established.

This result is relative to an interpretation ω, to generalize it to an event
φ ⊆ Ω, we obtain:
max
ω|=φ

πmin(ω) = max
ω|=φ

πCbin
(ω),

Thus, Πmin(φ) = ΠCbin
(φ). �

Example 4.7. Let us consider the binary possibilistic network ΠGmin of Fig-
ure 1.2. Let ω = {¬a, b} be an interpretation from Ω and λ ≡ literal(λa) ∧
literal(λb) ≡ ¬λa ∧ λb. To compute Bk(λ), we need to de�ne at �rst:{

PosNeg(a) = ¬a since ¬a ∈ ω
PosNeg(b) = b since b ∈ ω

Hence: {
literal(θa) = ¬θa since PosNeg(a) = ¬a
literal(θb|¬a) = θb|¬a since PosNeg(b) = b

Using Equation (4.7), the encoding Bk(λ) is then equivalent to literal(θa)∧
literal(θb|¬a) ≡ ¬θa ∧ θb|¬a.

Now, if we want to compute πCbin
(ω) from Bk(λ), we should at �rst

substitute each ∧ by min. Then, we should assign the appropriate possibility
degree for each of ¬θa and θb|¬a. Hence, πCbin

(ω) = min(0.4, 0.8) = 0.4 =
πmin(ω) (row 3 of Table 1.6).

It is important to pinpoint that the binary encoding Cbin of De�nition 4.6
can be re�ned using local structure or possibilistic local structure as shown
in what follows:
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Local structure in binary encoding

Incorporating local structure into Cbin requires to use parameter variables
θj or θxi|ui of Equation (4.2). Moreover, each network parameter θxi|ui or
¬θxi|ui equal to 0 should be encoded using the following Equation:

¬literal(λxi) ∨ ¬literal(λui1) ∨ · · · ∨ ¬literal(λuim) (4.48)

The resulting CNF encoding exploiting local structure and its associ-
ated binary inference approach are denoted by CLSbin and Bin-Π-DNNFLS ,
respectively.

Possibilistic local structure in binary encoding

Possibilistic local structure can be also involved into the binary encoding
Cbin. However, instead of using θxi|ui and ¬θxi|ui , we should handle pa-
rameter variables Πθj or Πθxi|ui of Equation (4.15). Furthermore, each zero
parameter should be encoded using Equation (4.48).

The new binary CNF encoding and the inference approach using possi-
bilistic local structure are denoted by CPLSbin and Bin-Π-DNNFPLS , respec-
tively.

4.5.2 Binary compiled base

Once the encoding phase is achieved, the resulting CNF encoding (i.e., Cbin)
is then compiled into a DNNF base CB. Before transforming it into a nu-
merical representation, we should update instance indicators (λxi and ¬λxi)
depending on the instance of interest x and the evidence e of the possibility
degree Π(x, e) as follows:

λxi =

{
> if xi ∼ e and xi ∼ x
⊥ otherwise

(4.49)

¬λxi =

{
> if ¬xi ∼ e and ¬xi ∼ x
⊥ otherwise

(4.50)

After that, we should transform the conditioned binary compiled base
into a binary min-max circuit, denoted by CBbin, in which ∧ and ∨ are
substituted by min and max, respectively, parameter variables θxi|ui

and
¬θxi|ui

are replaced by Π(xi|ui) and Π(¬xi|ui), respectively and instance
indicators λxi and ¬λxi are set to 1 or 0 depending on their truth values.
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When we deal with local structure, the binary min-max circuit, denoted
by CBLS

bin, is obtained by replacing θxi|ui
and θj by the possibility degrees

they encode.

In the case of possibilistic local structure, we obtain the binary min-max
circuit, denoted by CBPLS

bin , by substituting propositional variables Πθxi|ui

and Πθj by their numerical values.

4.6 Illustrative example of binary approaches

This section illustrates the binary approaches and compares CNF parameters
and compiled bases parameters with those of the n-ary case where n = 2 (see
Example 4.6).

Example 4.8. Let us encode the min-based possibilistic network ΠGmin of
Figure 1.2 using the set of instance indicators and parameter variables of
Table 4.6 and Table 4.7, respectively. The binary CNF encoding is given by
Table 4.8. We can notice that the number of instance indicators is halved
comparing to those of Example 4.6. Moreover, the number of parameter
variables remains the same (equal to 3) in the three encodings (Cbin, C

LS
bin

and CPLSbin ) but each one has its own parameter variables.

Instances Cbin,C
LS
bin,C

PLS
bin

a1 λa
a2 ¬λa
b1 λb
b2 ¬λb

Table 4.6: Instance indicators used in Cbin, CLSbin and CPLSbin

Variables Possibility degrees Cbin CLS
bin CPLS

bin

A
Π(a1) = 1 θa θa Πθ1

Π(a2) = 0.4 ¬θa ¬θa Πθ3

B

Π(b1|a1) = 1 θb|a θ1 Πθ1

Π(b1|a2) = 0.8 θb|¬a θ2 Πθ2

Π(b2|a1) = 0.8 ¬θb|a θ2 Πθ2

Π(b2|a2) = 1 ¬θb|¬a θ1 Πθ1

Table 4.7: Parameter variables used in Cbin, CLSbin and CPLSbin

The compiled bases resulting from compiling the binary CNF encodings
are represented by Figure 4.3. The number of edges is equal to 22 in CBbin
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A Cbin CLS
bin CPLS

bin

Π(a1) = 1 (λa → θa) (λa → θa) (λa → Πθ1)

Π(a2) = 0.4 (¬λa → ¬θa) (¬λa → ¬θa) (¬λa → Πθ3)

B Cbin CLS
bin CPLS

bin

Π(b1|a1) = 1 (λa ∧ λb → θb|a) (λa ∧ λb → θ1) (λa ∧ λb → Πθ1)

Π(b2|a1) = 0.8 (λa ∧ ¬λb → ¬θb|a) (λa ∧ ¬λb → θ2) (λa ∧ ¬λb → Πθ2)

Π(b1|a2) = 0.8 (¬λa ∧ λb → θb|¬a) (¬λa ∧ λb → θ2) (¬λa ∧ λb → Πθ2)

Π(b2|a2) = 1 (¬λa ∧ ¬λb → ¬θb|¬a) (¬λa ∧ ¬λb → θ1) (¬λa ∧ ¬λb → Πθ1)

Table 4.8: The CNF encodings Cbin, CLSbin and CPLSbin

and CBLS
bin, while it is equal to 20 in CBPLS

bin .

By considering the network composed of 4 nodes, depicted by Figure 4.1,
the number of edges is equal to 60, 61 and 64 in CBbin, CB

LS
bin and CBPLS

bin ,
respectively. According to a four-node network, using a parameter variable
θxi|ui and its negation ¬θxi|ui performs better than exploiting local structure
and possibilistic local structure.

We can point out that the behavior of compiled bases do not remain the
same when the number of nodes is increased.

max

minmin

min minmax max

λaθa˥λa ˥θa

˥λb λb ˥θb|˥a

min minmin min

 θb|˥a  θb|a ˥θb|a

max

minmin

min minmax max

λaθa˥λa ˥θa min minmin min

 θ1˥λb λb θ2

max

minmin

min min max

λa Πθ3˥λa Ʌ Ʌ
 

Πθ1 ˥λbλb  Πθ2

max

Ʌ

(a) CB

(c) CBPLS

bin

(b) CBLS

binbin

Figure 4.3: CBbin, CBLS
bin and CBPLS

bin
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Further experiments aiming to compare binary approaches will be per-
formed in Chapter 7.
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4.7 Conclusion

In this chapter, we have re�ned the CNF encoding of the Π-DNNF method
proposed in Chapter 3. In fact, we have explored two variants of encoding
strategies. The �rst one, named local structure consisting in assigning one
propositional variable per equal parameters per possibility table. We have
also proposed a new encoding strategy, named possibilistic local structure
dealing with equal parameters from a global point of view. Moreover, we
have studied the particular case of binary networks, which can be encoded
using a more re�ned CNF base taking advantage of the particularity of binary
variables. Next chapter will focus on compiling possibilistic causal networks
to e�ciently compute the e�ect of both observations and interventions.



Chapter 5

Handling interventions under

compilation

5.1 Introduction

Possibilistic causal networks [17] make reference to causality in the possibil-
ity theory framework. The intriguing aspects of such networks are: obser-
vations which are results of testing some variables and interventions which
correspond to external actions forcing some variables to have some speci�c
values. From a reasoning point of view, an intervention on a variable A is
represented using the so-called mutilation, by ignoring relations between the
intervened variable A and its direct causes. From a representational point of
view, an intervention is depicted by a new extra node added as a parent-node
to each intervened variable. Inference in causal networks, which focuses on
determining the impact of either an observation or an intervention on the
remaining variables, is known as a hard problem [17, 69].

In [15], authors propose a new representation format, called hybrid pos-
sibilistic causal networks, where local uncertainty is no longer represented
by conditional possibility distributions but by possibilistic knowledge bases.
The main advantage of this representation concerns space complexity. An
adaptation of the junction tree inference algorithm was proposed for hybrid
possibilistic causal networks.

In Chapter 3, we have proposed two compilation-based inference meth-
ods for min-based possibilistic networks that only deal with observations.
Our idea in this chapter is to enrich these methods to handle interventions
in min-based possibilistic causal networks using a compilation setting. This
idea has not been explored yet in the possibility theory, neither on the prob-
ability theory. In fact, each method studied in Chapter 3 will be extended

97
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to deal with interventions twofold: mutilation and augmentation as depicted
by Figure 5.5. More precisely, we will propose two mutilated-based meth-
ods that require the mutilation of symbolic compiled bases. This avoids
re-compiling the network each time an intervention is occurred, which is
intractable. We will also suggest augmented-based methods that do not ap-
ply this constraint due to the new extra node. After compiling the network
and handling interventions either by mutilation or augmentation, an e�cient
computation of the e�ect of both observations and interventions should be
ensured using compiled bases.

This chapter is organized as follows: Section 5.2 presents a refresher on
possibilistic causal networks. Sections 5.3 and 5.4 are dedicated to mutilated-
based approaches and augmented-based approaches, respectively. Main re-
sults of this Chapter are published in [4, 5].

5.2 Refresher on possibilistic causal networks

The notion of causality is a crucial concept in arti�cial intelligence when we
describe, interpret and analyze information and phenomena of our environ-
ment. An intervention is a crucial notion in causality. It is an external event,
coming from outside the system and forcing some variables to take a spe-
ci�c value. In our work, we focus on graphical representations for handling
interventions.

In the probabilistic framework, Pearl's work [69] on causal Bayesian net-
works is considered one of the most prominent ones where a causal Bayesian
network models the e�ect of both observations (i.e., evidences) and interven-
tions, while a Bayesian network only handles observations. Pearl proposed
two graphical representations of interventions [69]. The �rst one consists in
mutilating the network by deleting direct links pointing to the variable of
interest. The second adds a parent node to the variable concerned by the in-
tervention. Such extra node describes the behavior of the variable of interest.
The e�ect of interventions on the remaining variables consists in applying
conditioning using new networks resulting from mutilation or augmentation.

In the probabilistic framework, when interventions are dealt with aug-
mentation, a main problem resides, which consists in the inability to express
the non-intervention. In other words, if there is no intervention, the aug-
mented network does not recover the probability distribution on variables
in the initial Bayesian network. Is it also the case in the possibility theory
framework?

The following subsection shows how interventions can be handled in the
possibility theory framework while dealing with possibilistic causal networks.
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5.2.1 Possibilistic causal networks

A possibilistic causal network is a possibilistic network such that its graphical
component is a DAG where nodes represent variables and edges encode not
only dependencies between variables but also direct causal relationships [16].
The parent set Ui of any variable Xi ∈ V represents all direct causes for Xi.

Example 5.1. Let us consider the network of Figure 5.11 modeling this
situation:

Chill

Fever

Angina

Sore 
throat

Yellow 
points

Figure 5.1: An Example of a causal network

• A sore throat could result from a chill or angina.

• The chill can cause fever and a sore throat.

• Angina can cause these symptoms, and yellow points in the throat.

Such network is causal since edges represent direct causality and oriented
from the cause to the e�ect.

Causal networks are updated in the presence of two types of information:
a set of observations (evidences) which are results of testing so me variables,
and a set of interventions which represent external events, coming from
outside the system and forcing some variables to take some speci�c values
[69]. Interventions, denoted by do(xI), may have two di�erent interpretations
depending on whether we focus on the representational or on the reasoning
issue.

Mutilation

From a reasoning point of view, an intervention is handled by the so-called
mutilation operation [69], which refers to altering the network structure by

1From http://www.matthieuamiguet.ch/media/documents/

MA-IARTI-05-ResBayesiens.pdf.

http://www.matthieuamiguet.ch/media/documents/MA-IARTI-05-ResBayesiens.pdf
http://www.matthieuamiguet.ch/media/documents/MA-IARTI-05-ResBayesiens.pdf
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excluding all direct causes related to the variable of interest and maintaining
the remaining variables unchanged [69]. The intuition behind such mutila-
tion is that interventions are results of external actions and hence beliefs on
direct causes of the intervened variable should not change. The possibility
distribution associated with the mutilated network ΠGmut is denoted by πm.
In possibility theory, the e�ect of do(xI) is to transform π(ω) into πm(ω|xI),
which gives us [16]:

∀ω;πm(ω|xI) = π(ω|do(xI)). (5.1)

By mutilating the network, parents of XI become independent of XI .
Moreover, the event that attributes the value xI to XI becomes sure after
performing intervention do(xI). More formally, πm(xI) = 1 and ∀xi, xi 6=
xI , πm(xi) = 0. The e�ect of do(xI) on π is given as follows, ∀ω:

π(ω|do(xI)) =

{
min
i 6=I

π(xi|ui) if ω[Xi] = xI

0 otherwise.
(5.2)

The e�ect of such interventions over the remaining variables is computed
by applying the de�nition of conditioning on the mutilated network.

Example 5.2. Let us consider the possibilistic network ΠGmin of Figure 5.2.
Let B be the variable in ΠGmin forced to take the value b1 by the intervention
do(b1). Such intervention is re�ected graphically by deleting the edge between
A and B since the parent A is no longer responsible of the state of B after
intervention. The resulting mutilated network is depicted by Figure 5.3.

A

B

a1 1
a2 0.4

b1 a1 1
b1 a2 0.8

b2 a1 0.8
b2 a2 1

Figure 5.2: A possibilistic causal network ΠGmin

Augmentation

From a representational point of view, an intervention can be depicted by
augmentation, an alternative but equivalent approach for handling interven-
tions. This allows to represent interventions as observations on special new
variables. More precisely, the augmenting process consists in viewing in-
terventions as observations on new variables added to the system [51, 68].
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A

B

a1 1
a2 0.4

b1 1
b2 0

Figure 5.3: The mutilated network ΠGmut

This leads to add new links DOI → XI where DOI represents the new in-
tervention taking k values {do(xI) : ∀xI ∈ DXI

} ∪ {doI−NoAct}. The value
doI−NoAct means that there is no intervention performed for XI , while values
do(xI) intend that the system forces the value xI for XI . We denote by doI
any value of DOI .

The possibility distribution associated with the augmented network ΠGaug
is denoted by πa. The new parent set of XI is represented by U ′I = UI∪DOI .
The new possibility distribution of XI after performing do(xI) is given by
[16]:

π(xi|u′i) =


π(xi|ui) if DOI = doI−NoAct
1 if xi = xI
0 if xi 6= xI

(5.3)

However, possibility distributions associated with added nodes DOI are
not a priori stated. In [17], it has been proposed to de�ne πa(doI−NoAct) = 1,
while ∀xI ∈ DXI

, πa(do(xI)) = ε s.t., ε is a very small positive number close
to 0. This allows to express that by default there is no intervention without
excluding future interventions [16].

Example 5.3. Let us re-consider the possibilistic network ΠGmin of Figure
5.2, then the augmented network resulting from the intervention do(b1) on B
is represented by Figure 5.4. The new possibility distribution of B is obtained
using Equation (5.3). For the distribution of DOB, we should just �nd the
smallest possibility degree in the distributions of the initial network of Figure
5.2, namely 0.4 and assign it to both of π(do(b1)) and π(do(b2)).

It has been proved in [16] that the two ways of handling interventions
are equivalent in the possibility theory framework. More formally,

De�nition 5.1. Let ΠGmin be a min-based possibilistic causal network. Let
do(xI) be an intervention forcing XI to take the value xI . Let ΠGmut (resp.
ΠGaug) be the mutilated (resp. augmented) network obtained after mutilation
(resp. augmentation). Then, two situations are considered:
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A

B

a1 1
a2 0.4

DOB do(B-NoAct) do(b1) do(b2)
1 0.4 0.4

a1 b1 do(B-NoAct) 1

a1 b1 do(b1) 1

a1 b1 do(b2) 0

a1 b2 do(B-NoAct) 0.8

a1 b2 do(b1) 0

a1 b2 do(b2) 1

a2 b1 do(B-NoAct) 0.8

a2 b1 do(b1) 1

a2 b1 do(b2) 0

a2 b2 do(B-NoAct) 1

a2 b2 do(b1) 0

a2 b2 do(b2) 1

Figure 5.4: The augmented network ΠGaug

1. No intervention: ∀ω,∀xI ∈ DXI
, π(ω)= πa(ω|DOI = doI−NoAct).

2. An intervention do(xI) occurs: π(ω|do(xI))= πm(ω|XI = xI) = πa(ω|DOI =
do(xI)).

Example 5.4. Let us re-consider the ΠGmin of Figure 5.2. Let B be the
variable in ΠGmin forced to take the value b1 by the intervention do(b1). This
latter implies:

• Mutilation : πm(b1) = 1 and πm(b2) = 0.

• Augmentation : πa(do(b1)) = 1 and πa(do(B-NoAct)) = πa(do(b2)) =
0.

It is easy to check that πm(a2, b1) computed from ΠGmut is equal to
πa(a2, b1) computed from ΠGaug. E�ectively, πm(a2, b1) = min(πm(a2), πm(b1)) =
πa(a2, b1) = max(πa(a2, b1, do(B-NoAct)), πa(a2, b1, do(b1)), πa(a2, b1, do(b2))) =
0.4, which con�rms De�nition 5.1.

In the following, we will present mutilated-based approaches and augmented-
based approaches as summarized by Figure 5.5.

5.3 Mutilated-based approaches

In Chapter 3, we proposed two compilation-based inference methods for min-
based possibilistic networks. The �rst method is a possibilistic adaptation
of the so-called arithmetic circuit method [30]. The second method is a
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Figure 5.5: Summary of proposed methods using mutilation and augmenta-
tion

purely possibilistic inference method, which is not grounded on encoding
probabilistic works. In Chapter 4, we have focused on the structure exhibited
by network parameters locally using the so-called local structure and globally
using possibilistic local structure.

In this section, we will extend these methods to deal with both observa-
tions and interventions using mutilation which gives rise to two mutilated-
based approaches, namely: Mut-Π-DNNF and Mut-DNNF-PKB. Figure 5.6
depicts the general principle of mutilated-based approaches, which is based
on three sequential phases: i) encoding and compilation phase, ii) mutila-
tion phase and iii) inference phase such that non annotated lines are shared
by both methods, while annotated ones concern one method, either Mut-Π-
DNNF (a) or Mut-DNNF-PKB (b).

5.3.1 Mutilated Π-DNNF

One immediate way for handling sets of interventions consists �rst in mu-
tilating the possibilistic network ΠGmin, encoding the mutilated network
using the CNF propositional theory and then compiling it to o�er a poly-
time handling of queries. However, such a way is not e�cient since it needs
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A

B

Initial ΠGmin

a1 1
a2 0.4

b1 a1 1
b2 a1 0.8
b1 a2 0.8
b2 a2 1

Possibilistic knowledge base

(a1, 0.6)
(a2 V b1, 0.4)
(a1 V b2, 0.4)

Transformation (b)
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(a)

(b)
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Compiled base
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Instance of Interest y  

Π(y|e,do(xI))

Figure 5.6: Principle of mutilated-based approaches (Lines labeled with (a)
(resp. (b)) are relative to Mut-Π-DNNF (resp. Mut-DNNF-PKB) and un-
labeled lines are relative to to both methods)

a re-compilation of the network each time an intervention occurs. The mu-
tilated Π-DNNF method, denoted by Mut-Π-DNNF, proposed here avoids
this problem by handling both observations and interventions without re-
compiling the initial network. We detail in what follows the three phases
mentioned in Figure 5.6 (by considering lines annotated with (a)).

Phase 1: Encoding and compilation phase

The starting point of Mut-Π-DNNF method is the CNF encoding of the pos-
sibilistic network ΠGmin using two types of propositional variables namely,
instance indicators λxi for recording instances of variables and parameter
variables θxi|ui for recording possibility degrees. Each parameter Π(xi|ui)
should be encoded using a unique θxi|ui , regardless of its numerical value.
The use of the encoding strategy one variable per parameter represents the
key of handling interventions by mutilation under a compilation framework,
as we will vindicate next. The CNF encoding handling n-ary variables is
given by De�nition 3.3. The encoding Cmin is then compiled into DNNF
as decribed in Section 3.3.2. The resulting compiled base is symbolic since
we do not take into consideration any numerical value while encoding the
network.
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Phase 2: Mutilation phase

The mutilation phase proceeds with three inputs:
(i) the compiled base resulting from the previous step (CB),
(ii) the intervention do(xI) forcing the variable XI to take the value xI ,
(iii) the initial possibility degrees of ΠGmin.

Given these inputs, we need to express that after intervention, the value
of XI is xI for sure using CB. Technically speaking, this is established by
conditioning the compiled base CB on xI . Formally, ∀ θxi|ui relative to XI ,
we have:

θxi|ui =

{
> if xi = xI
⊥ otherwise (i.e., xi 6= xI)

(5.4)

The resulting mutilated compiled base is denoted by CBmut. By condi-
tioning CB, as if we assign 1 to πm(xI) and 0 to πm(xi),∀xi 6= xI , i.e., we
alter XI 's parameters to 1 (>) and 0 (⊥). Hence, given interventions, new
possibility degrees are a�ected to propositional variables θxi|ui corresponding
to the intervened variable XI which results in a new compiled base CBmut

as illustrated by Figure 5.6. In the following, the function mutilate(CB) will
be used to mutilate CB.

It is worth to point out that the factor that makes this phase achievable
is the strategy one variable per parameter providing a symbolic compiled
base restricted to a set of symbols (propositional variables) without regard
to their numerical values. So, the so-called local structure and possibilistic
local structure enhancements related to equal parameters cannot be explored.
More precisely, we cannot attribute the same propositional variable even for
equal parameters within CΠTi or CΠT . For instance, assuming that we have
θb2|a1 = θb1|a2 = 0.8. Then, after performing intervention do(b1), we should
set θb2|a1 (resp. θb1|a2) to 0 (resp. 1). This is infeasible when we use the
same propositional variable θ for both of θb2|a1 and θb1|a2 .

By using this strategy, we do not need to re-compile the network for
any new intervention, but we just need to 'logically' mutilate the current
compiled base by applying conditioning.

Phase 3: Inference phase

Given the mutilated compiled base CBmut resulting from the previous phase,
an instance of interest y of a variable X ∈ V , an observation e and an inter-
vention do(xI), we should be able to e�ciently compute the e�ect of e and
do(xI) on y, namely Πc(y|e, do(xI)). Using Equation (1.11), it is clear that
we should �rst compute Πc(y, e, do(xI)) and Πc(e, do(xI)) following these
three steps:
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Step 1: Updating instance indicators: This step serves to record the
instance of interest y, the observation e and the intervention do(xI) into in-
stance indicators λxi . It corresponds to conditioning the mutilated compiled
base using instance indicators. Formally:

• CBmut is conditioned on e and y, i.e., ∀ λxi of Xi 6= XI , we have:

λxi =

{
> if xi ∼ e and xi ∼ y
⊥ otherwise

(5.5)

where ∼ denotes the compatibility relation.

• CBmut is conditioned on xI , i.e., ∀ λxi of XI , we have:

λxi =

{
> if xi = xI
⊥ otherwise

(5.6)

The resulting compiled base is denoted by
[
CBmut|e, y, xI

]
.

Step 2: Mapping from logical to numerical representation: In this
step, we transform the logical compiled base resulting from the previous step
into a mutilated min-max circuit ΠCBmut by:

• replacing ∨ and ∧ by max and min, respectively,

• substituting each > (resp. ⊥) by 1 (resp. 0),

• associating Π(xi|ui) to each θxi|ui related to ∀Xi 6= XI .

It is obvious that the mapping from logical to numerical representation is
established in a polynomial time since it corresponds to a set of trivial substi-
tution operations. The function map(

[
CBmut|e, y, xI

]
) will be used to map[

CBmut|e, y, xI
]
into ΠCBmut.

Step 3: Computation: The last step corresponds to evaluating ΠCBmut

in order to e�ciently compute Πc(y, e, do(xI)) and Πc(e, do(xI)) by applying
min and max operators in a bottom-up way. In what follows, we will use
the function evaluate(ΠCBmut) to evaluate the mutilated min-max circuit
ΠCBmut.

Example 5.5. Considering the network ΠGmin of Figure 5.2, its CNF en-
coding using De�nition 3.3 contains the clauses of Table 3.6. It is clear that
the degree 0.8 which appears twice in the distribution of B is encoded by two
di�erent propositional variables, namely θb1|a2 and θb2|a1. The CNF encoding
Cmin is then compiled into CB as shown in Figure 5.7.
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Let do(b1) be an intervention forcing the variable B to take the value b1.
Then, applying Equation (5.4) to CB consists in assigning θb1|a1 and θb1|a2
(resp. θb2|a1 and θb2|a2) to > (resp. ⊥). The resulted mutilated compiled base
is depicted by Figure 5.7.

V

Ʌ Ʌ

λa2θa2

V V

θb2|a2

Ʌ Ʌ

λa1 θa1 Ʌ Ʌ Ʌ Ʌ

λb2 θb2|a1 θb1|a2 λb1 θb1|a1
┴ ┴ T T

Figure 5.7: The mutilated compiled base CBmut

Let us now compute Πc(a2|do(b1)). We should then compute Πc(a2, do(b1))
as follows:

1. Record a2 and do(b1) into instance indicators using Equation (5.6).
This consists in setting λa2 and λb1 (resp. λa1 and λb2) to > (resp.
⊥). The resulting compiled base CBmut|a2, b1 is shown by sub-�gure
(a) of Figure 5.8.

2. Transform the logical compiled base ΠCBmut|a2, do(b1) into a mutilated
min-max circuit ΠCBmut (see sub-�gure (b) of Figure 5.8).

3. Evaluate ΠCBmut leading to Πc(a2, do(b1)) = 0.4 as shown in sub-
�gure (c) of Figure 5.8.

Thus, Πc(a2|do(b1))= 0.4 since Πc(a2, do(b1)) = 0.4 < Πc(do(b1)) = 1.

Mut-Π-DNNF algorithm

We can conclude that Mut-Π-DNNF does not depend on interventions, i.e.,
even if the number of interventions is increased, the complexity is not al-
tered since the mutilation process, which is a conditioning operation, is a
linear task and the computation of interventions e�ects is polynomial with
respect to the compiled base size. As a negative side, the constraint of one
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Figure 5.8: CBmut|a2, b1, ΠCBmut and Πc(a2, do(b1))
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variable per parameter should be applied even for equal parameters since the
environment is quali�ed as dynamic when we deal with interventions.

The whole Mut-Π-DNNF approach, outlined by Algorithm 5, guarantees
the equivalence between possibility degrees computed using Mut-Π-DNNF
and the joint distribution as shown by the following proposition:

Algorithm 5: Mut-Π-DNNF
Data: ΠGmin, instance of interest y, evidence e, intervention do(xI)
Result: Πc(y|e, do(xI))
begin

% Encoding and compilation phase

Cmin ← encode(ΠGmin)
CB ← compile(Cmin)
% Mutilation phase

CBmut ← mutilate(CB)
% Inference phase

Int← {y, e, do(xI)}
Πc(y, e, do(xI))← Computing-mut (CBmut, Int, do(xI))
Int← {e, do(xI)}
Πc(e, do(xI))← Computing-mut (CBmut, Int, do(xI))
if Πc(y, e, do(xI)) < Πc(e, do(xI)) then

Πc(y|e, do(xI)) ← Πc(y, e, do(xI))

else
Πc(y|e, do(xI)) ← 1

return Πc(y|e, do(xI))

Algorithm 6: Computing-mut

Data: CBmut, instance of interest Int, intervention do(xI)
Result: Πc(Int, do(xI))
begin

CBmut|Int, xI ← condition(CBmut, Int, xI)
ΠCBmut ← map(CBmut|Int, do(xI))
Πc(Int, do(xI))← evaluate(ΠCBmut)
return Πc(Int, do(xI))

Proposition 5.1. Let CB be the compiled base of a possibilistic network
ΠGmin. Let do(xI) be an intervention that forces the variable XI to take the
value xI .

i) ∀ω ∈ Ω, we have:

πc(ω|do(xI)) = πm(ω|do(xI)) (5.7)
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where πc(ω|do(xI)) (resp. πm(ω|do(xI))) is computed using Algorithm 6
(resp. Equation (5.2)).

ii) Let y be an instantiation of a variable Y ∈ V and e be an instantiation
of a set of variables E ⊆ V . Then:

Πc(y|e, do(xI)) = Πm(y|e, do(xI)) (5.8)

where Πc(y|e, do(xI)) (resp. Πm(y|e, do(xI))) is computed using Algorithm
5 (resp. Equation (5.2)).

Proof 5.1. From Equation (5.2), it is clear that given do(xI),
πm(ω|do(xI)) is equal to the minimum of possibility degrees compati-
ble with xI , 0 otherwise. From a logical point of view, CB is mutilated by
associating > to each θxi|ui where xi = xI and ⊥ otherwise using Equation
(5.4).
From a numerical point of view, the possibility degree associated to θxi|ui
is 1 or 0.
We obtain, πc(ω|do(xI)) = πm(ω|do(xI)). Thus, Equation (5.7) is estab-
lished.

This result is relative to an interpretation ω, to generalize it to any
instantiation y of a variable Y ∈ V , we obtain:
max
ω|=y

πc(ω|do(xI)) = max
ω|=y

πc(ω|do(xI))

Thus, Πc(y|do(xI)) = Πm(y|do(xI)).
When we deal with an observation e, we obtain:
Πc(y|e, do(xI)) = Πm(y|e, do(xI)). �

5.3.2 Mutilated compiled possibilistic knowledge bases

The mutilated compiled possibilistic knowledge bases (denoted by Mut-
DNNF-PKB) is a purely possibilistic inference method based on the trans-
formation of the initial network into a possibilistic knowledge base [12] and
then using this secondary structure as an input of the encoding and compila-
tion phase. The remaining details the three main phases of Mut-DNNF-PKB
presented in Figure 5.6 (by considering lines annotated with (b)).

Phase 1: Encoding and compilation phase

The principle of the transformation of the initial ΠGmin into Σmin is to as-
sociate to each Xi a local possibilistic knowledge base ΣXi and to combine
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them into a global possibilistic knowledge base Σmin. Formally, this trans-
formation is described by De�nition 3.5. The function transform(ΠGmin)
will transform ΠGmin into Σmin.

The min-based possibilistic knowledge base Σmin is then encoded into a
CNF base by a�ecting a new propositional variable, denoted by Ai, for each
N(αi) where αi ∈ Σmin without taking into consideration equal necessity
values per base. The set of propositional variables, denoted by {A1, ..., An},
encodes {N(α1), ..., N(αn)}. The propositional encoding of Σmin, denoted
by KΣ is expressed by Equation (3.20). The strategy one variable per pa-
rameter is required in Mut-DNNF-PKB since some parameters values are
not stable and will be updated depending on interventions. This is the fun-
damental di�erence between handling only observations and handling both
of observations and interventions. In what follows, the function encode-
PKB(Σmin) will be used to encode Σmin into KΣ.

The CNF encoding KΣ of Σmin is then compiled into any target compila-
tion language supporting both of conditioning and clausal entailment, which
are the required operations to compute the e�ect of observations and inter-
ventions. Thanks to these operations which make Mut-DNNF-PKB �exible.
In what follows, we pick on the most succinct target compilation language,
i.e., DNNF and we denote the resulting compiled base by Kc.

Phase 2: Mutilation phase

Given an intervention do(xI) performed on XI , the compiled base Kc should
be mutilated as depicted by Figure 5.6 (by considering lines annotated with
(b)). This phase makes the connection between mutilating ΠGmin and mu-
tilating Kc by updating the necessity degrees of variables Ai related to the
variable of interest XI . In fact, the necessity degree 1 should be assigned for
formulas of ¬xi s.t. xi 6= xI (since πm(¬xi) = 0) and 0 for formulas of ¬xI
(since πm(xI) = 1). The mutilated compiled base is denoted by Kmut

c .

It is worth pointing out that before the mutilation step we cannot at-
tribute the same propositional variable Ai even for equal degrees in Σmin.
For instance, assuming that we have the following formulae (a2∨ b1, A1) and
(a1 ∨ b2, A1) such that A1 encodes the necessity degree 0.2. Let do(b1) be
an intervention that forces B to take the value b1. By mutilation, we mean
setting the degree 0 (resp. 1) to the Ai corresponding to (a1 ∨ b2, 0.2) (resp.
(a2 ∨ b1, 0.2)). However, this is infeasible since the degree 0.2 is encoded
twice using the same propositional variable, i.e., A1.
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Phase 3: Inference phase

After the mutilation phase, we should sort variables Ai by associating a new
variable Bj to variables Ai encoding equal degrees in Kmut

c . To this end, let
us consider g the number of di�erent degrees in Kc after mutilation. Then,
we will associate the set of propositional variables B = {B1, . . . , Bg} for all
di�erent degrees pertaining to Kc after mutilation. The function sort(A)
will sort the set A and the new set of variables is represented by B.

Once we sort propositional variablesAi, we should compute Πc(y|e, do(xI))
using the compiled base Kmut

c given an instance of interest y, an observation
e and an intervention do(xI) performed on XI . The computation process is
established in an iterative manner by applying entailment and conditioning
as outlined by Algorithm 7. In the worst case, computation is performed
g − 1 times since the last variable Bg encodes the degree 0.

Example 5.6. Let us consider the possibilistic network ΠGmin of Figure
5.2. The CNF encoding of the possibilistic knowledge base Σmin of ΠGmin is
shown in Table 5.1.

Clauses of A
(a1, 0.6) (a1 ∨A1)

Clauses of B
(a2 ∨ b1, 0.2) (a2 ∨ b1 ∨A2)
(a1 ∨ b2, 0.2) (a1 ∨ b2 ∨A3)

Table 5.1: The CNF encoding KΣ of Σmin of Figure 5.2

The CNF encoding KΣ is then compiled into DNNF. The resulting com-
piled base is as follows: Kc = {[(a2 ∧A1) ∧ (b2 ∨ (b1 ∧A3))] ∨ [a1 ∧ (b1∨
(b2 ∧A2))}.

Let B be the variable forced to take the value b1 by the intervention do(b1).
Then, mutilating the compiled base Kc consists in updating the degree of A2

(resp. A3) corresponding to (a2 ∨ b1, 0.2) (resp. (a1 ∨ b2, 0.2)) from 0.2 to 1
(resp. 0.2 to 0).

Let us now compute the e�ect of do(b1) on a2. First, we should sort propo-
sitional variables after mutilation. The new set of variables is the following:
B = {B1(1), B2(0.6), B3(0)}. Then, we should compute Πc(a2|do(b1)) as
follows:

• Iteration 1: Kmut
c 2 b2 ∨B1 ⇒ (Kmut

c |¬B1) 2 a1 ⇒ i← i+ 1,

• Iteration 2: Kmut
c 2 b2∨B2 ⇒ (Kmut

c |¬B2) � a1 ⇒ StopCompute←
true.
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This means that Πc(a2|do(b1)) = 1 − degree(2) = 1 − 0.6 = 0.4 where
degree(2) designates the weight associated to B2, i.e., 0.6.

Mut-DNNF-PKB algorithm

The Mut-DNNF-PKB method, outlined by Algorithm 7, guarantees the
equivalence between possibility degrees computed using Mut-DNNF-PKB
and the joint distribution.

Proposition 5.2. Let Kc be the compiled base of a possibilistic network
ΠGmin. Let do(xI) be an intervention that forces the variable XI to take the
value xI .

i) ∀ω ∈ Ω, we have:

πc(ω|do(xI)) = πΣ(ω|do(xI)) (5.9)

where πc(ω|do(xI)) (resp. πΣ(ω|do(xI))) is computed using Algorithm 7
(resp. Equation (5.2)).

ii) Let y be an instantiation of a variable Y ∈ V and e be an instantiation
of any variables E ⊆ V . Then:

Πc(y|e, do(xI)) = ΠΣ(y|e, do(xI)) (5.10)

where Πc(y|e, do(xI)) (resp. ΠΣ(y|e, do(xI))) is computed using Algorithm 7
(resp. Equation (5.2)).

Proof 5.2. From Equation (1.15), we have π(ω) = πΣ(ω). By mutilating
ΠGmin, its means setting 1 to π(xI) and 0 to π(xi),∀xi 6= xI . Using CNF
encodings of possibilistic knowledge bases, mutilation associates 1 or 0 to
propositional variables Ai encoding necessity degrees.
We obtain, πc(ω|do(xI)) = πΣ(ω|do(xI)). Thus, Equation (5.9) is estab-
lished.

This result is relative to an interpretation ω, to generalize it to any
instantiation y of a variable Y ∈ V , we obtain:
max
ω|=y

πc(ω|do(xI)) = max
ω|=y

πc(ω|do(xI))

Thus, Πc(y|do(xI)) = ΠΣ(y|do(xI)).
When we deal with an observation e, we obtain:
Πc(y|e, do(xI)) = ΠΣ(y|e, do(xI)). �
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Algorithm 7: Mut-DNNF-PKB
Data: ΠGmin, instance of interest y, evidence e, intervention do(xI)
Result: Πc(y|e, do(xI))
begin

% Encoding and compilation phase

Σmin ← transform(ΠGmin)
KΣ ← encode-PKB(Σmin)
Kc ← compile(KΣ)
% Mutilation phase

Kmut
c ← mutilate(Kc)

% Inference phase

Let B = {B1, . . . , Bg} ← sort(A)
i ← 1, StopCompute ← false, Πc(y|e, do(xI)) ← 1
while (Kmut

c 2 Bi ∨ ¬e ∨ ¬xI) and (i < g) and
(StopCompute=false) do

Kmut
c |¬Bi ← condition (Kmut

c , ¬Bi)
if (Kmut

c |¬Bi) � ¬y then
StopCompute ← true
Let degree(i) be the weight associated to Bi
Πc(y|e, do(xI)) ← 1-degree(i)

else i← i+ 1
return Πc(y|e, do(xI))

5.4 Augmented-based approaches

In this section, we will explore augmented-based approaches for handling
interventions. The focus will be on the new extra node. Figure 5.9 shows
the general principle of augmented-based approaches which are based on two
phases: i) encoding and compilation phase and ii) inference phase.

5.4.1 Augmented Π-DNNF

Augmented-based approaches of the possibilistic adaptation (see Figure 5.9
by considering lines annotated with (a)) deals with interventions from the
�rst phase (i.e., encoding and compilation phase) by adding a new extra
node to the possibilistic network. Contrarily to Mut-Π-DNNF, the Π-DNNF
method under augmentation can bene�t from local structure and possibilis-
tic local structure. Using the structure exhibited by parameters values, three
variants can be explored, namely Aug-Π-DNNFLS , Aug-Π-DNNFlPLS and
Aug-Π-DNNFPLS when we deal with local structure, possibilistic local struc-
ture with left-side clauses and possibilistic local structure without left-side
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Figure 5.9: Principle of augmented-based approaches ((a): Augmented-based
approaches of the possibilistic adaptation), (b): Augmented-based approach
of the possibilistic logic counterpart))

clauses, respectively. These methods are composed of two phases as detailed
below.

Phase 1: Encoding and compilation phase

Augmented-based approaches proceed by encoding the augmented possibilis-
tic network arisen from performing intervention on the initial network. The
question that may arise is: Can we handle interventions before the encod-
ing and compilation phase? We have seen that the answer is NO when
using mutilated-based approaches, which is not the case in augmented-based
approaches since the new extra node DOI enables us to focus on both ob-
servations and interventions using the augmented network.

Once we obtain the augmented network ΠGaug, it should be encoded into
a CNF base, but we will focus on ΠGaug instead of ΠGmin. In other words,
we should just consider the new extra node DOI as a variable of V (i.e.,
V = V ∪DOI). The key point that should be highlighted is the strategy of
encoding, which depends on the handled node either an extra node DOI or
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a node Xi ∈ V . In fact, for any node Xi ∈ V except DOI , parameters values
are constant and do not depend on interventions. For this reason, speci�c
parameters values can be addressed. If we deal with local structure, each
Xi ∈ V except DOI should be encoded using De�nition 4.1. When we apply
possibilistic local structure, De�nitions 4.3 or 4.4 can be used depending on
the used clauses (with or without left-side clauses).

Regarding the new extra node DOI , neither possibilistic local structure
nor local structure can be exploited due to the variability of DOI 's parame-
ters. For this reason, DOI should be encoded using symbolic propositional
variables without taking into consideration any numerical value, which re-
sults in a local symbolic encoding associated with DOI . More explicitly, the
strategy one variable per parameter will be adopted regardless of whether
there are some equal or zero parameters in DOI 's CΠTi. This is the key
point that allows us to express that by default there is no intervention and
does not exclude future interventions by just setting the appropriate values
to DOI 's parameter variables. The CNF encoding of ΠGaug, denoted by
CaugLS , CaugPLSl

and CaugPLS in Aug-Π-DNNFLS , Aug-Π-DNNFlPLS and Aug-Π-
DNNFPLS methods, respectively, should be then compiled into DNNF. The
augmented compiled base is denoted by CBaug.

Phase 2: Inference phase

The inference phase consists in computing e�ciently the e�ect of both ob-
servations and interventions using the compiled base CBaug. Hence, given
CBaug, an instance of interest y, an observation e and an intervention do(xI),
we should compute both of Πc(y, e, do(xI)) and Πc(e, do(xI)) by applying the
following steps, to have Πc(y|e, do(xI)).

Step 1: Updating instance indicators: The �rst step consists in up-
dating instances indicators according to e, y and do(xI). We should at �rst
condition CBaug on e and y using Equation (5.5) as in Mut-Π-DNNF. A
slight modi�cation should be performed in both of these Equations by re-
placing ∀Xi 6= XI by ∀Xi 6= DOI . Then, we should set each λdoI of DOI to
> or ⊥ depending on do(xI).

• Intervention do(xI): ∀ λdoI of DOI , we have:

λdoI =

{
> if doI = do(xI)
⊥ otherwise (i.e., doI 6= do(xI))

(5.11)

• No Interventions: ∀ λdoI of DOI , we have:

λdoI =

{
> if doI = doI−NoAct
⊥ otherwise (i.e., doI 6= doI−NoAct)

(5.12)
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Step 2: Mapping from logical to numerical representation: This step
transforms the logical representation arisen from Step 1 into an augmented
min-max circuit, denoted by ΠCBaug

LS , ΠCBaug
PLSl

and ΠCBaug
PLS in Aug-Π-

DNNFLS , Aug-Π-DNNFlPLS and Aug-Π-DNNFPLS , respectively. This map-
ping consists in replacing each ∨, ∧, > and ⊥ by max, min, 1 and 0, respec-
tively. Also, each θxi|ui of Xi 6= DOI should be replaced by the appropriate
possibility degree it encodes. An additional substitution should be performed
for DOI 's parameter variables. In fact, if we only focus on observations, we
should set initial possibility values (i.e., 1 and ε which is a very small positive
number close to 0) to DOI 's network parameters. However, if an interven-
tion occurs, the degree 1 or 0 is assigned to each DOI 's parameter variable
depending on do(xI).

Step 3: Computation: The last step corresponds to computing
Πc(y, e, do(xI)) and Πc(e, do(xI)) using ΠCBaug

LS , ΠCBaug
PLSl

and ΠCBaug
PLS

by applying min and max operators in a bottom-up way.

Example 5.7. Considering the network of Figure 5.4. At �rst, we should
de�ne the set of instance indicators and network parameters given respec-
tively, in Table 5.2 and Table 5.3. Then, the CNF encoding of ΠGaug using
local structure contains clauses of Table 5.4.

Instances Caug
a1 λa1
a2 λa2
b1 λb1
b2 λb2

do(B-NoAct) λdo(B−NoAct)
do(b1) λdo(b1)

do(b2) λdo(b2)

Table 5.2: Instance indicators used in Caug

It is obvious that we are using the strategy one variable per parameter per
DOB's CΠTi, without taking into account any numerical value, i.e., 1, 0.4
and 0.4. The compiled base of Caugmin is depicted by Figure 5.10.

Let a2 be an instance of interest and do(b1) be an intervention forcing
B to take the value b1, then Πc(a2|do(b1)) is obtained by comparing both of
Πc(a2, do(b1)) and Πc(do(b1)). To compute Πc(a2, do(b1)):

1. We should �rst set λa2, λdo(b1), λb1 to > and λdo(B−NoAct), λa1, λb2 ,
λdo(b2) to ⊥,

2. We should replace each ∧ and ∨ by min and max, respectively,
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Variables Possibility degrees Caug

A
1 θa1

0.4 θa2

B

Π(b1|a1, do(B-NoAct) = 1 θ1

Π(b1|a1, do(b1)) = 1 θ1

Π(b1|a1, do(b2)) = 0 -
Π(b1|a2, do(B-NoAct)) = 0.8 θ2

Π(b1|a2, do(b1)) = 1 θ1

Π(b1|a2, do(b2)) = 0 -
Π(b2|a1, do(B-NoAct)) = 0.8 θ2

Π(b2|a1, do(b1)) = 0 -
Π(b2|a1, do(b2)) = 1 θ1

Π(b2|a2, do(B-NoAct)) = 1 θ1

Π(b2|a2, do(b1)) = 0 -
Π(b2|a2, do(b2)) = 1 θ1

DOB

Π(do(B-NoAct)) θdo(B−NoAct)

(not initialized)
Π(do(b1)) θdo(b1)

(not initialized)
Π(do(b2)) θdo(b2)

(not initialized)

Table 5.3: Network parameters used in Caug

3. Also, we should set the possibility degree 1 to θdo(b1) and 0 for both of
θdo(b2) and θdo(B−NoAct),

4. Finally, we compute Πc(a2, do(b1)) in a bottom-up way as shown in
Figure 5.11.

Hence, Πc(a2|do(b1)) = 0.4 since Πc(a2|do(b1)) = 0.4 < Πc(do(b1)) = 1.

Augmented-based algorithms

Algorithm 8 outlines Aug-Π-DNNFLS , Aug-Π-DNNFlPLS and Aug-Π-DNNFPLS
methods. For generality reasons, we will use Caug to denote CaugLS or CaugPLSl

or CaugPLS and ΠCBaug to denote ΠCBaug
LS or ΠCBaug

PLSl
or ΠCBaug

PLS .
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Mutual Exclusive clauses

A (λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2)
B (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

DOB (λdo(B−NoAct) ∨ λdo(b1) ∨ λdo(b2))
∧(¬λdo(B−NoAct) ∨ ¬λdo(b1))
∧(¬λdo(B−NoAct) ∨ ¬λdo(b2))
∧(¬λdo(b1) ∨ ¬λdo(b2))

Parameter Clauses of A
Π(a1) = 1 (λa1

→ θa1
) ∧ (θa1

→ λa1
)

Π(a2) = 0.4 (λa2 → θ2) ∧ (θa2 → λa2)

Parameter Clauses of B
Π(b1|a1, do(B-NoAct)) = 1 λa1

∧ λb1) ∧ λdo(B−NoAct) → θ1

Π(b1|a1, do(b1)) = 1 λa1 ∧ λb1 ∧ λdo(b1) → θ1

Π(b1|a1, do(b2)) = 0 ¬λa1
∨ ¬λb1 ∨ ¬λdo(b2)

Π(b1|a2, do(B-NoAct)) = 0.8 λa2
∧ λb1 ∧ λdo(B−NoAct) → θ2

Π(b1|a2, do(b1)) = 1 λa2 ∧ λb1 ∧ λdo(b1) → θ1

Π(b1|a2, do(b2)) = 0 ¬λa2
∨ ¬λb2 ∨ ¬λdo(b2)

Π(b2|a1, do(B-NoAct)) = 0.8 λa1
∧ λb2 ∧ λdo(B−NoAct) → θ2

Π(b2|a1, do(b1)) = 0 ¬λa1 ∨ ¬λb2 ∨ ¬λdo(b1)

Π(b2|a1, do(b2)) = 1 λa1
∧ λb2 ∧ λdo(b2) → θ1

Π(b2|a2, do(B-NoAct)) = 1 λa2
∧ λb2 ∧ λdo(B−NoAct) → θ1

Π(b2|a2, do(b1)) = 0 ¬λa2 ∨ ¬λb2 ∨ ¬λdo(b1)

Π(b2|a2, do(b2)) = 1 λa2
∧ λb2 ∧ λdo(b2) → θ1

Parameter Clauses of DOB

Π(do(B-NoAct)) (λdo(B−NoAct) → θdo(B−NoAct))
∧(θdo(B−NoAct) → λdo(B−NoAct))

Π(do(b1)) (λdo(b1) → θdo(b1)) ∧ (θdo(b1) → λdo(b1))
Π(do(b2)) (λdo(b2) → θdo(b2)) ∧ (θdo(b2) → λdo(b2))

Table 5.4: The CNF encoding Caug of ΠGaug of Figure 5.4
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Algorithm 8: Aug-Π-DNNF
Data: ΠGaug, instance of interest y, evidence e, intervention do(xI)
Result: Πc(y|e, do(xI))
begin

% Encoding and compilation phase

Caug ← encode(ΠGaug)
CBaug ← compile(Caug)
% Inference phase

Int← {y, e, do(xI)}
Πc(y, e, do(xI))← Computing-Aug (CBaug, Int, do(xI))
Int← {e, do(xI)}
Πc(y, do(xI))← Computing-Aug (CBaug, Int, do(xI))
if Πc(y, e, do(xI)) < Πc(e, do(xI)) then

Πc(y|e, do(xI)) ← Πc(y, e, do(xI))

else
Πc(y|e, do(xI)) ← 1

return Πc(y|e, do(xI))

Algorithm 9: Computing-Aug
Data: CBaug, instance of interest Int, intervention do(xI)
Result: Πc(Int, do(xI))
begin

CBaug|Int, do(xI) ← Condition(CBaug, Int, do(xI))
ΠCBaug ← map(CBaug|Int, do(xI))
Πc(Int, do(xI))← evaluate(ΠCBaug)
return Πc(Int, do(xI))
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Figure 5.10: The augmented compiled base CaugDNNF

Proposition 5.3. Let CBaug be the compiled base of an augmented network
ΠGaug. Let do(xI) be an intervention that forces the variable XI to take the
value xI .

i) ∀ω ∈ Ω, we have:

πc(ω|do(xI)) = πa(ω|do(xI)) (5.13)

where πc(ω|do(xI)) (resp. πa(ω|do(xI))) is computed using Algorithm 9
(resp. De�nition (5.1)).

ii) Let y be an instantiation of a variable Y ∈ V and e be an instantiation
of any variables E ⊆ V . Then:

Πc(y|e, do(xI)) = Πa(y|e, do(xI)) (5.14)

where Πc(y|e, do(xI)) (resp. Πa(y|e, do(xI))) is computed using Algorithm 8
(resp. De�nition (5.1)).
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Figure 5.11: Computing Πc(a2, do(b1))

Proof 5.3. When we use:

• Local structure:
For any min-based possibilistic network ΠGmin, from Proposition 4.2,
we have πmin(ω) = πCLS

min
(ω).

Thus, πa(ω|do(xI)) = πCaug
LS

(ω|do(xI)) since ΠGaug= ΠGmin ∪DOI .

• Possibilistic local structure with left-side clauses:
For any min-based possibilistic network ΠGmin, from Proposition 4.4,
we have πmin(ω) = πCPLS

minl

(ω).

Thus, πa(ω|do(xI)) = πCaug
PLSl

(ω|do(xI)) since ΠGaug= ΠGmin∪DOI .

• Possibilistic local structure without left-side clauses:
For any min-based possibilistic network ΠGmin, from Proposition 4.6,
we have πmin(ω) = πCPLS

min
(ω).

Thus, πa(ω|do(xI)) = πCaug
PLS

(ω|do(xI)) since ΠGaug= ΠGmin∪DOI .

In the three cases, we obtain:
πc(ω|do(xI)) = πa(ω|do(xI)). Thus, Equation (5.13) is established.

This result is relative to an interpretation ω, to generalize it to any
instantiation y of a variable Y ∈ V , we obtain:
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max
ω|=y

πc(ω|do(xI)) = max
ω|=y

πc(ω|do(xI)),

Thus, Πc(y|do(xI)) = Πa(y|do(xI)).
When we deal with an observation e, we obtain:
Πc(y|e, do(xI)) = Πa(y|e, do(xI)). �

5.4.2 Augmented compiled possibilistic knowledge bases

The starting point of the augmented compiled possibilistic knowledge bases
approach (denoted by Aug-DNNF-PKB) is a transformation of the aug-
mented possibilistic network into a possibilistic knowledge base which will
be used to ensure the phases depicted by Figure 5.9 (by considering lines
(b)).

Phase 1: Encoding and compilation phase

The transformation of ΠGaug into an augmented possibilistic knowledge base
Σaug consists in associating a local possibilistic knowledge base for both of
DOI and ∀Xi ∈ V . Formally, this transformation is described by De�nition
5.2.

De�nition 5.2. Let ΠGmin be a possibilistic causal network. Let do(xI) be
an intervention that forces the variable XI to take the value xI . Let ΠGaug be
the augmented network and Σaug be its possibilistic knowledge base expressed
by:

Σaug = ∪Xi∈V ΣXi

⋃
ΣDOI

(5.15)

where ΣXi = {(¬xi ∨ ¬ui, ai) : ai = 1−Π(xi|ui) 6= 0} and ΣDOI
= {(¬doI , bi)}

Let πΣaug : Ω → [0, 1] be the possibility distribution associated with
Σaug. Then,

∀ω ∈ Ω, πa(ω) = πΣaug(ω). (5.16)

where πa is the possibility distribution associated with ΠGaug using
Equation (1.21). Clearly, in De�nition 5.2, ΣDOI

and ΣXi , ∀Xi ∈ V are
handled separately since these latters do not require the same encoding strat-
egy. Note also that we should incorporate the mutual exclusive clauses with
a necessity degree of 1 for each non-binary variable.

After the transition from a graphical to a logic-based representation, an
encoding phase is established as in Mut-DNNF-PKB. However, the encoding
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strategy does not remain the same in Aug-DNNF-PKB since it depends on
the node related to each possibilistic formula. In fact, possibilistic formulas
αi related to each Xi ∈ V are encoded using propositional variables Ai
such that Ai may encode a set of equal parameters ai pertaining to any
ΣXi , ∀Xi ∈ V . However, each possibilistic formula related to DOI should
be encoded using a unique propositional variable Bi without considering
any necessity value. Interestingly enough, possibilistic local structure per
base is only exploited for non-extra nodes (i.e., ∀Xi ∈ V except DOI) since
necessity degrees associated for their possibilistic formulas are constant and
do not depend on do(xI). This is not the case for parameters of the new
extra node DOI which are unstable and depend on do(xI). More formally,
the CNF encoding of Σaug is expressed by:

Kaug
Σ = {(αi∨Ai : (αi, ai) ∈ ΣXi

,∀Xi ∈ V )}∪{(αi∨Bi : (αi, bi) ∈ ΣDOI
)} (5.17)

It is worth pointing out that we should use the strategy one variable per
parameter per DOI 's formula without taking into account any numerical
value bi, which is not the case for each Xi ∈ V . This is the key point that
allows us to handle both the non-intervention and the intervention cases in
a representational framework. After encoding the possibilistic knowledge
base, we should then compile it into DNNF. The augmented compiled base
is denoted by Kaug

c .

Phase 2: Inference phase

Once we compiled the augmented possibilistic knowledge base, we should at
�rst update the necessity degree of each propositional variable Bi associated
with ΣDOI

depending on do(xI). In fact, we should assign the necessity
degree 1 to variables Bi corresponding to formulae of ¬do(I − NoAct) and
¬do(xi), i 6= I, (since πa(do(I − NoAct)) = 0 and πa(do(xi)) = 0) while
variables Bi corresponding to formula of ¬do(xI) should encode the necessity
degree 0 (since πa(do(xI)) = 1). In what follows, the function update(B) will
update necessity degrees of each Bi ∈ B depending on do(xI).

Then, propositional variables Ai and Bi should be uni�ed into one set
of variables A = {A1, . . . , Ag}, where g is the new number of variables.
This guarantees that the same necessity degree is not encoded using two
di�erent propositional variables. The function unify(A,B) will be used to
perform this task. Finally, we should compute e�ciently the e�ect of the
intervention do(xI) and the observation e on the instance of interest y by
applying entailment and conditioning in an iterative manner as shown by
Algorithm 10.

Example 5.8. Let us re-consider the network ΠGaug of Figure 5.4. The set
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of propositional variables used to encode necessity degrees of the possibilistic
knowledge base Σaug associated with ΠGaug is presented in Table 5.5.

Variables Necessity degrees KΣaug

A 0.6 A2

B
1 A1

0.3 A3

DOB

(Not initialized) B1

(Not initialized) B2

(Not initialized) B3

Table 5.5: Propositional variables used in KΣaug

The CNF encoding KΣaug of the possibilistic base of ΠGaug is presented in
Table 5.6 s.t. B1, B2 and B3 encode DOB's degrees. Compiling KΣaug into
DNNF results in an augmented compiled base represented by Figure 5.12.

Mutual Exclusive clauses

A (a1 ∨ a2 ∨A1) ∧ (¬a1 ∨ ¬a2 ∨A1)
B (b1 ∨ b2 ∨A1) ∧ (¬b1 ∨ ¬b2 ∨A1)

DOB (do(B-NoAct) ∨ do(b1) ∨ do(b2) ∨A1)
∧(¬do(B-NoAct) ∨ ¬do(b1) ∨A1)
∧(¬do(B-NoAct) ∨ ¬do(b2) ∨A1)
∧(¬do(b1) ∨ ¬do(b2) ∨A1)

Clauses of A
(¬a2, 0.6) (¬a2 ∨A2)

Clauses of B
(¬a1 ∨ ¬b1 ∨ ¬do(b2), 1) (¬a1 ∨ ¬b1 ∨ ¬do(b2) ∨A1)

(¬a2 ∨ ¬b1 ∨ ¬do(B-NoAct), 0.3) (¬a2 ∨ ¬b1 ∨ ¬do(B-NoAct) ∨A3)
(¬a2 ∨ ¬b1 ∨ ¬do(b2), 1) (¬a2 ∨ ¬b1 ∨ ¬do(b2) ∨A1)

(¬a1 ∨ ¬b2 ∨ ¬do(B-NoAct), 0.3) (¬a1 ∨ ¬b2 ∨ ¬do(B-NoAct) ∨A3)
(¬a1 ∨ ¬b2 ∨ ¬do(b1), 1) (¬a1 ∨ ¬b2 ∨ ¬do(b1) ∨A1)
(¬a2 ∨ ¬b2 ∨ ¬do(b1), 1) (¬a2 ∨ ¬b2 ∨ ¬do(b1) ∨A1)

Clauses of DOB

¬do(B-NoAct) (¬do(B-NoAct) ∨B1)
¬do(b1) (¬do(b1) ∨B2)
¬do(b2) (¬do(b2) ∨B3)

Table 5.6: The CNF encoding KΣaug of Σaug of ΠGaug of Figure 5.4

Let do(b1) be the intervention on B. First, we should update the ne-
cessity degree of DOB's parameters. In fact, B1 and B3 will encode the
degree 1 and B2 will encode the degree 0. After that, we unify variables
Ai and Bi such that each B1 and B3 (resp. B2) appearing in KΣaug is
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Figure 5.12: The augmented compiled base Kaug
c

substituted by A1 (resp. A4). The new set of variables is the following:
A = {A1(1), A2(0.6), A3(0.3), A4(0)}. Finally, the computation process of
Πc(a2|do(b1)) is ensured as follows:

• Iteration 1: Kaug
c 2 ¬do(b1) ∨A1 ⇒ (Kaug

c |¬A1) 2 a1 ⇒ i← i+ 1.

• Iteration 2: Kaug
c 2 ¬do(b1)∨A2⇒ (Kaug

c |¬A2) � a1⇒ StopCompute←
true.

Hence, Πc(a2|do(b1)) = 1 − degree(2) = 1 − 0.6 = 0.4 where degree(2)
designates the necessity degree associated to A2.

Aug-DNNF-PKB algorithm

The Aug-DNNF-PKB method, outlined by Algorithm 10, guarantees the
equivalence between possibility degrees computed using Aug-DNNF-PKB
and the joint distribution.
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Algorithm 10: Aug-DNNF-PKB
Data: ΠGaug, instance of interest x, observation e, intervention

do(xI)
Result: Πc(y|e, do(xI))
begin

% Encoding and compilation phase

Σaug ← transform(ΠGaug)
Kaug

Σ ← encode-PKB(Σaug)
Kaug
c ← compile(Kaug

Σ )
% Inference phase

% A : the set of propositional variables of ΣXi ,∀Xi ∈ V
% B : the set of propositional variables of ΣDOI

B ← update(B)
A = {A1, . . . , Ag} ← unify(A,B)
i ← 1, StopCompute ← false, Πc(y|e, do(xI)) ← 1
while (Kaug

c 2 Ai ∨ ¬e ∨ ¬do(xI)) and (i < g) and
(StopCompute=false) do

Kaug
c |¬Ai ← condition(Kaug

c , ¬Ai)
if Kaug

c |¬Ai � ¬y then
StopCompute ← true
Let degree(i) be the weight associated to Ai
Πc(y|e, do(xI)) ← 1-degree(i)

else i← i+ 1
return Πc(y|e, do(xI))

Proposition 5.4. Let Kaug
c be the compiled base of an augmented network

ΠGaug. Let do(xI) be an intervention that forces the variable XI to take the
value xI .

i) ∀ω ∈ Ω, we have:

πc(ω|do(xI)) = πa(ω|do(xI)) (5.18)

where πc(ω|do(xI)) (resp. πa(ω|do(xI))) is computed using Algorithm 10
(resp. De�nition (5.1)).

ii) Let y be an instantiation of a variable Y ∈ V and e be an instantiation
of a set of variables E ⊆ V . Then:

Πc(y|e, do(xI)) = Πa(y|e, do(xI)) (5.19)

where Πc(y|e, do(xI)) (resp. Πa(y|e, do(xI))) is computed using Algorithm
10 (resp. De�nition (5.1)).

Proof 5.4. For any min-based possibilistic network ΠGmin, from Equation
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(1.15), we have πmin(ω) = πΣ(ω).
We obtain, πa(ω|do(xI)) = πΣaug(ω|do(xI)) since ΠGaug= ΠGmin ∪DOI .
Thus, Equation (5.18) is established.

This result is relative to an interpretation ω, to generalize it to any
instantiation y of a variable Y ∈ V , we obtain:
max
ω|=y

πc(ω|do(xI)) = max
ω|=y

πc(ω|do(xI)).

Thus, Πc(y|do(xI)) = Πa(y|do(xI)).
When we deal with an observation e, we obtain:
Πc(y|e, do(xI)) = Πa(y|e, do(xI)). �

5.5 Conclusion

In this chapter, we addressed the inference problem in possibilistic causal net-
works where we handle both observations and interventions. We proposed,
at �rst, mutilated-based approaches consisting in mutilating the compiled
bases resulting from compiling CNF bases of possibilistic networks obtained
using the strategy one variable per parameter. This allows to e�ciently com-
pute the e�ect of both observations and interventions without re-compiling
the network each time an intervention occurs. We also proposed augmented-
based approaches that do not follow the same principle than mutilated-based
approaches since each node, except the extra node in augmented possibilistic
networks, should be encoded using either local structure or possibilistic local
structure. However, the new node cannot bene�t from the structure exhib-
ited by parameters values. In the next chapter, we will study the inference
implementation of product-based possibilistic networks and we will explore
the decisional aspect under compilation.



Chapter 6

Beyond compiling min-based

possibilistic networks

6.1 Introduction

The previous chapters were dedicated to reasoning with state variables in an
ordinal setting. Our objective in this chapter is to study two variants of min-
based possibilistic networks, the �rst one concerns the numerical setting of
possibility theory (i.e., product-based possibilistic networks) and the second
deals with decision graphical models, namely possibilistic in�uence diagrams.

More precisely, this chapter proposes the inference implementation of
product-based possibilistic networks under compilation. We emphasize on
similarities and di�erences between product-based possibilistic networks, min-
based possibilistic networks and Bayesian networks under compilation, while
using the same DAG structure. In the second part, we propose to go one step
further and explore the decisional aspect. In fact, we extend the compilation
concepts to the decisional aspect by evaluating possibilistic in�uence dia-
grams [47, 52] which are the possibilistic counterpart of standard in�uence
diagrams [54]. Such decisional models present a compact model representing
the decision maker's belief and preferences about a sequence of decisions to
be made.

This Chapter is organized as follows: Section 6.2 presents compilation-
based inference in product-based possibilistic networks. Section 6.3 is dedi-
cated to the compilation-based evaluation approach of possibilistic in�uence
diagrams. Main results of this Chapter are published in [6, 7].

129
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6.2 Compilation-based inference in product-based

possibilistic networks

Previously, our emphasis was placed on inference in min-based possibilis-
tic networks under compilation. The main idea consists in compiling the
Conjunctive Normal Form (CNF) encoding associated with the possibilistic
network into the DNNF language, then compiling it to e�ciently compute
the e�ect of an evidence on a set of variables of interest. In this section,
we propose to study the numerical counterpart of Π-DNNF method using
product-based possibilistic networks. The proposed method, denoted by
Prod-Π-DNNF, requires two phases as detailed below:

6.2.1 Encoding and compilation phase

The starting point of Prod-Π-DNNF is the CNF encoding of the product-
based possibilistic network ΠG∗, denoted by CLS∗ . The di�erence between
compiling min-based and product-based possibilistic networks resides in the
required encoding strategy. In fact, when we deal with min-based possibilis-
tic networks, we can go beyond the standard local structure by exploiting
possibilistic local structure due to the idempotency of the min operator. How-
ever in a numerical setting, the conjunctive operator is the product instead
of the minimum. For this reason, only the so-called local structure can be
handled to address speci�c values of network parameters in a ΠG∗. Formally,
parameters Π(xi|ui) should be encoded using Equation (4.2) and the CNF
encoding CLS∗ of ΠG∗ is given by De�nition 4.1.

Exploiting parameters values in the encoding phase has a signi�cant im-
pact on CNF parameters. From a theoretical point of view, we propose
two results. The �rst one concerns the comparison between CNF encodings
of product-based possibilistic networks and min-based possibilistic networks,
having the same DAG structure. The second result refers to comparing CNF
encodings of Bayesian networks and possibilistic networks in the extreme
case, i.e., where all uncertainty degrees are di�erent (except 1 in possibility).
The choice of such case is argued by the fact that it is not appropriate to
compare probabilistic and possibilistic networks even if they share the same
DAG structure due to the semantic of their uncertainty degrees. Formally:

Proposition 6.1. Let ΠGmin be a min-based possibilistic network. Let
ΠG∗ be a product-based possibilistic network sharing the same graphical (i.e.,
DAG) and numerical (i.e., possibility degrees) components as ΠGmin. Let
CPLSmin (resp. CLS∗ ) be the CNF encoding of ΠGmin (resp. ΠG∗). Then,

Size(CPLSmin ) < Size(CLS∗ ) (6.1)
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where Size(C) denotes the size of the CNF encoding C measured by its num-
ber of propositional variables and clauses.

Proof 6.1. The proof is twofold:

• Worst case (all parameters are di�erent per CΠT except 1): Let s be
the number of parameters per CΠTi. Let card(Uij) be the cardinality of
the parent Uij of any Xi ∈ V , then the number of parameters equal to 1
per CΠTi, denoted by nb1, is equal to ∗j={1..m} card(Uij). Let N be the
number of conditional possibility tables. Then, the number of parameter
variables is equal to N ∗ (s− nb1) +N (resp. N ∗ (s− nb1) + 1) in CLS∗
(resp. CPLSmin ).

• Best case (all parameters are equal to 1): The number of parameter
variables is equal to N (resp. 1) in CLS∗ (resp. CPLSmin ).

⇒ Size(CPLSmin ) < Size(CLS∗ ). �

Proposition 6.2. Let BN be a Bayesian network and ΠG⊗ be a possibilistic
network having the same DAG structure as BN where ⊗ = {min, ∗}. Let
CPLSmin , C

LS
∗ and CLSp∗ be the CNF encoding of ΠGmin, ΠG∗ and BN , respec-

tively. Then, in the extreme case where all parameters values are di�erent
except 1 in ΠG⊗, we have:

Size(CPLSmin ) < Size(CLS∗ ) < Size(CLSp∗ ) (6.2)
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Proof 6.2. We have:

• From Proof 6.1, Size(CPLSmin ) < Size(CLS∗ ).

• The number of parameter variables is equal to s (resp. s − nb1 + 1) in
CLSp∗ (resp. CLS∗ ). Thus, Size(CLS∗ ) < Size(CLSp∗ ). �

Once ΠG∗ is logically represented into CLS∗ , this latter is then compiled
into the most succinct language DNNF. The compiled base is denoted by
CB.

6.2.2 Inference phase

Given the compiled base CB resulting from Phase 1, an instance of interest
x of some variables X ∈ V and an evidence e of some variables E ⊆ V , we
can e�ciently compute the e�ect of e on x, namely Πc(x|e). Using Equation
(5.3), it is clear that we should compute both of Πc(x, e) and Πc(e) while
following these three steps:

Updating instance indicators

This step serves to record the instance of interest x and the evidence e into
instance indicators λxi . It corresponds to conditioning the compiled base
CB on e and x. The conditioned compiled base is denoted by [CB|x, e].

Mapping logical representation into a product-based representa-

tion

In this step, we transform the logical compiled base resulting from the pre-
vious step into a valued representation. In this step, it is important to note
that the valued compiled bases, named arithmetic circuits and used in the
probabilistic method [30] cannot be applied in our case since its operators
(i.e., * and +) are di�erent from those that should be used in the product-
based case (i.e., * and max). For this reason, we propose to use a new
prod-max circuit suitable for the product-based case. In fact, given the con-
ditioned compiled base resulting from the previous step, we should apply
the following operations: (i) replace ∨ and ∧ by max and *, respectively, (ii)
substitute each > (resp. ⊥) by 1 (resp. 0) and (iii) associate Π(xi|ui) to
each parameter variable.
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De�nition 6.1. A prod-max circuit of a DNNF sentence CB, denoted by
CBLS
∗max, is a valued sentence where ∧ and ∨ are substituted by * and max,

respectively. Leaf nodes correspond to indicator and parameter variables,
internal nodes correspond to max and * operators, and the root corresponds
to the circuit output.

It is obvious that the mapping from logical to numerical representation is
established in a polynomial time since it corresponds to a set of trivial sub-
stitution operations. The use of valued DNNFs with max and * operators
(i.e., prod-max circuits relative to product-based possibilistic networks) dif-
fers from the probabilistic case since inference in Bayesian networks requires
valued d-DNNFs with + and * operators (i.e., arithmetic circuits). This is
essentially due to the fact that probabilistic computations require the deter-
minism property (i.e., d) to ensure polytime model counting [34]. Following
the succinctness relation between DNNF and d-DNNF stating that DNNF
is strictly more succinct than d-DNNF [27], we can give this important re-
sult, asserting that from a theoretical point of view, prod-max circuits are
considered more compact than arithmetic circuits.

Proposition 6.3. Let BN be a Bayesian network and CBLS
∗+ be its arith-

metic circuit using the probabilistic compilation method proposed in [30]. Let
ΠG∗ be a product-based possibilistic network sharing the same DAG struc-
ture as BN . Let CBLS

∗max be the prod-max circuit of ΠG∗. Then, from a
theoretical point of view, we have:

Size(CBLS
∗max) < Size(CBLS

∗+ ) (6.3)

Proof 6.3. From the knowledge map of [34], DNNF is strictly more suc-
cinct than d-DNNF. From a numerical point of view, prod-max circuit
CBLS
∗max is a valued DNNF and arithmetic circuits CBLS

∗+ are valued d-
DNNF. Thus, Size(CBLS

∗max) < Size(CBLS
∗+ ). �

Computation

The prod-max circuit is a special case of VNNFs where operators only re-
strict to max and *. In literature, prod-max circuits have been used under
di�erent notations to answer di�erent queries. In fact, in [22], authors have
explored circuits with max and *, called maximizer circuits to answer the
Most Probable Explanation1 (MPE) probabilistic query. While in [19], au-
thors proposed decision circuits which add the operator + to max and * of

1A MPE is a complete variable instantiation with the highest probability given the
current evidence.
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maximizer circuits in order to evaluate in�uence diagrams. In our case, we
are interested in computing Πc(x, e) and Πc(e) by evaluating CBLS

∗max. Even
we are in presence of a prod-max circuit similar to maximizer and decision
circuits, we cannot use neither MPE nor evaluation of in�uence diagrams
queries to compute Πc(x, e) and Πc(e). In fact, evaluating CBLS

∗max consists
in applying max and * operators in a bottom-up way. Inference is guaranteed
to be established in polytime since it corresponds to a simple propagation
from leaves to root, and more precisely to a max-variable elimination oper-
ation.

It is worth pointing out that the query used for evaluating CBLS
∗max does

not correspond to a model counting problem as in the probabilistic case [30].
This means that under compilation product-based possibilistic networks are
not close to probabilistic ones and do not share the same features as Bayesian
networks.

Example 6.1. Considering the product-based possibilistic network ΠG∗ of
Figure 1.2. Column 2 of Table 4.5 represents its CNF encoding CLS∗ using
De�nition 4.1 and Figure 6.1 represents its prod-max circuit.

max

* *

max*

λa1 θa1 * *

λb1 θ1 θ2 λb2

*

λa2 θa2

max

* *
1 1 0 0.4 

0 1 0.81

000.80

0.81

0.8

00

0

0.8

Figure 6.1: The prod-max circuit CBLS
∗max

Let us compute the e�ect of the evidence a1 on the instance of interest b2
(i.e., Πc(b2|a1)). To compute Πc(a1, b2), we should �rst record a1 and b2 into
instance indicators by setting λa1 and λb2 (resp. λa2 and λb1) to > (resp.
⊥).

By mapping the logical compiled base into a prod-max circuit and applying
max and * in a bottom-up fashion as shown in Figure 6.1, we can deduce that
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Πc(a1, b2) is equal to 0.8. This value corresponds to the one of Table 1.6 using
the product-based joint distribution. Hence, Πc(b2|a1) = 0.8

1 = 0.8.

6.3 Evaluation of possibilistic in�uence diagrams

Above, we have explored compilation-based inference in min-based and product-
based possibilistic networks which are dedicated to reasoning with state vari-
ables. In this section, we will go one step further and explore the decisional
aspect. In fact, we will take advantage of the transformation of possibilistic
in�uence diagrams into possibilistic networks [52] and our results on compi-
lation of min-based possibilistic networks to evaluate possibilistic in�uence
diagrams using compilation. We start by de�ning in�uence diagrams, then
we move to the evaluation algorithm under compilation.

6.3.1 Possibilistic in�uence diagrams

Possibilistic in�uence diagrams [47] are possibilistic counterpart of standard
in�uence diagrams [54] presenting a compact popular framework modeling a
decision maker's belief and preferences about a sequence of decisions to be
made.

A possibilistic in�uence diagram, denoted by ΠID, has two components:
a graphical and a numerical ones while adding decision and utility nodes.
Formally, a ΠID is a DAG containing three kinds of nodes:

• Decision nodes D = {D1, · · · , Dp}, drawn as rectangles, representing
decision variables which have necessarily a temporal order meaning
that Di succeeds Di−1 and precedes Di+1,

• Chance nodes C = {C1, · · · , Cn}, drawn as circles, representing state
variables (relevant uncertain factors for the decision problem),

• Utility nodes Vu = {V1, · · · , Vq}, drawn as diamonds, representing util-
ities to be maximized.

A combination c = {c1, · · · , cn} of state variables represents a state. A
combination d = {d1, · · · , dp} of values represents a decision. pa(Di) denotes
parents of Di comprising decision and chance variables.

Chance nodes are quanti�ed by conditional possibility distributions, while
decision nodes are not quanti�ed. Regarding utility nodes, possibility theory
o�ers several ways to represent preferences of the decision maker, e.g. binary
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utilities [49], ordinal utilities [63], cardinal utilities [2]. A strategy σ for a
ΠID speci�es the value of every decision variable as a function of all (or part
of) the known values of the variables at the time the decision is taken.

Example 6.2. Let us consider the possibilistic in�uence diagram of Figure
6.2. It is composed of two chance nodes (A and B), one decision node (D)
and one utility node (V ). As shown in this �gure, both of A and B are
quanti�ed using conditional possibility distributions, this is not the case of
the decision node D. Regarding the utility node V , preferences of the deci-
sion maker are represented using ordinal utilities by means of the following
preference order: (D = Act2 ∧ A = a2) ≥ (D = Act1 ∧ A = a1) ≥ (D =
Act1 ∧A = a2) ≥ (D = Act2 ∧A = a1).

B A

VD

a1 1
a2 1

b1 a1 1

b1 a2 0,5

b2 a1 0,3

b2 a2 1

A D U(A,D)
a1 Act1 0,5

a1 Act2 0,2

a2 Act1 0,3

a2 Act2 0,7

Figure 6.2: A possibilistic in�uence diagram

Commonly, two structural assumptions on the DAG structure are con-
sidered: (i) utility nodes have no children and (ii) there exists a directed
path comprising all decision nodes. Furthermore, we accept the no forget-
ting assumption, which implies that all values of variables that have been
instantiated before di is chosen are still known at the time of the choice of
di. Di�erent combinations between the quanti�cation of chance and util-
ity nodes o�er several kinds of possibilistic in�uence diagrams with di�erent
semantics [52].

Contrarily to standard in�uence diagrams where evaluation means max-
imizing decision maker's utilities using the MEU criterion. In the possibility
theory framework, we can evaluate the same ΠID using a panoply of possi-
bilistic decision criteria in order to obtain the optimal strategy σ∗. We can,
in particular, mention these criteria: possibilistic qualitative utilities, possi-
bilistic likely dominance and Possibilistic choquet integrals. Obviously, the
choice of the decision criteria depends on the semantic underlying the possi-
bilistic in�uence diagram on hand. In our current proposal, we maintain the
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same qualitative framework used in the second part of this thesis which im-
plies that only qualitative possibilistic decision criteria can be used under the
assumption that the utility scale and the possibility scale are commensurable
and purely ordinal.

6.3.2 Compilation-based evaluation of possibilistic IDs

Evaluating possibilistic in�uence diagrams can be done in a direct manner
or in an indirect one (i.e., by transforming it into a secondary structure).
Regarding indirect methods, [47] proposed to transform them into decision
trees, while [52] transformed them into possibilistics networks. The idea
here is to take advantage of re�ned compilation-based inference methods
proposed in the second part in order to evaluate min-based ΠIDs. In fact, we
�rst re-use the polynomial transformation phase of [52] in order to morph the
initial min-based possibilistic in�uence diagram into a min-based possibilistic
network and propose an evaluation phase in which we generate the optimal
strategy as depicted by Figure 6.3.

The principle of the transformation phase is to transform each decision
node into a chance node quanti�ed via a uniform possibility distribution
stating a total ignorance (i.e., all values are equal to 1). Besides, each utility
node should be converted into a new binary chance node having two values,
i.e., {True(T ), False(F )} and will be evaluated via a possibility distribution
generated from the original preference relation. The resulting network is
denoted by ΠGIDmin. In the evaluation phase, we propose to encode at �rst
the possibilistic network ΠGIDmin issued from the transformation phase into a
CNF base, then compile the resulting encoding only once in order to generate
the optimal decision strategy.

In order to illustrate our approach, we propose to resort to the ordinal
counterpart of expected utility [41] which o�ers an optimistic and a pes-
simistic variants de�ned by:

uopt(σ) = max
c∈C

min(πσ(c), µσ(c)) (6.4)

upes(σ) = min
c∈C

max(n2(πσ(c), µσ(c))) (6.5)

where uopt(σ) (resp. upes(σ)) corresponds to an optimistic (resp. pes-
simistic) attitude in front of uncertainty, πσ represents the possibility distri-
bution on C and µσ denotes the possibility distribution associated to decision
maker's preferences using the utility scale.

2The order-reversing map of the possibility scale.
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Figure 6.3: Principle of compilation-based evaluation

Let E be a set containing chance nodes with known values (i.e., evidences)
including those decisions {D1, ..., Di−1} in D that have been already made.
Let Di represent the remaining decision to be made which means that all
variables in pa(Di) are already instantiated and are therefore in E. At this
stage, we should determine the optimal instantiation of Di depending on the
selected criterion (Uopt or Upes) as follows:

U∗opt(Di, E) = max
Di

Π(V = T |Di, E) (6.6)

U∗pes(Di, E) = min
Di

Π(V = T |Di, E) (6.7)

Roughly speaking, Equations (6.6) and (6.7) should be applied recur-
sively so that to �x at each stage i (i = 1, . . . , p) the optimal decision
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regarding Di and to consider it as an evidence for the remaining stages
(i+ 1, . . . , p).

To ensure this computation step, we will use the min-max circuit (i.e.,
the already compiled base) associated to ΠGIDmin in a bottom-up way. The
advantage behind such evaluation is twofold: (i) the expensive compilation
phase is performed only once on ΠGIDmin and (ii) computation is performed in
a polynomial time in the circuit size due to the polytime compilation-based
inference. It is also important to point out that there is no need to re-de�ne
a new circuit appropriate to decision problems under qualitative uncertainty
in possibility theory framework since evaluating min-based possibilistic in�u-
ence diagrams requires the same aggregation operators (i.e., max and min)
as those used to infer min-based possibilistic networks.

Example 6.3. Let us re-consider the possibilistic in�uence diagram of Fig-
ure 6.2. We suppose that we are in an optimistic setting i.e., the decision
criterion is Uopt.

To transform the possibilistic ID into a possibilistic network, we should
�rst transform the decision node D into a chance node by setting each Π(di|B)
to 1 where di = {Act1, Act2}. Then, we should transform the utility node V
into a binary chance one. The possibility distribution associated to the new
chance node is presented in Table 6.1.

V A D Π(V |A,D)

T a1 Act1 0.5
T a1 Act2 0.2
T a2 Act1 0.3
T a2 Act2 0.7
F a1 Act1 1
F a1 Act2 1
F a2 Act1 1
F a2 Act2 1

Table 6.1: The possibility distribution of the utility node

Once we obtain ΠGIDmin, we should at �rst encode it into a CNF base. To
illustrate the encoding, we use De�nition 4.4 to obtain CPLSmin as shown in
Table 6.2 where θ1, θ2, θ3, θV=T |a1,Act2 and θV=T |a2,Act2 encode, respectively

possibility degrees 1, 0.5, 0.3, 0.2 and 0.7. Then, we should compile CPLSmin

in a min-max circuit as depicted by Figure 6.4.

Suppose that we receive a certain information saying that the variable
A takes the value a2, then using the optimistic attitude (Equation (6.6))
and the min-max circuit of Figure 6.4, we should compute the maximum of
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Mutual exclusive clauses

Variables Clauses

A (λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2)

B (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

D (λAct1 ∨ λAct2) ∧ (¬λAct1 ∨ ¬λAct2)

V (λV=T ∨ λV=F ) ∧ (¬λV=T ∨ ¬λV=F )

Parameter clauses of A

Possibility degrees Clauses

Π(a1) = 1 λa1 → θ1

Π(a2) = 1 λa2 → θ1

Parameter clauses of B

Π(b1|a1) = 1 λa1 ∧ λb1 → θ1

Π(b1|a2) = 0.5 λa2 ∧ λb1 → θ2

Π(b2|a1) = 0.3 λa1 ∧ λb2 → θ3

Π(b2|a2) = 1 λa2 ∧ λb2 → θ1

Parameter clauses of D

Π(Act1|b1) = 1 λAct1 ∧ λb1 → θ1

Π(Act1|b2) = 1 λAct1 ∧ λb2 → θ1

Π(Act2|b1) = 1 λAct2 ∧ λb1 → θ1

Π(Act2|b2) = 1 λAct2 ∧ λb2 → θ1

Parameter clauses of V

Π(V = T |a1, Act1) = 0.5 λV=T ∧ λa1 ∧ λAct1 → θ2

Π(V = T |a1, Act2) = 0.2 λV=T ∧ λa1 ∧ λAct2 → θV=T |a1,Act2
Π(V = T |a2, Act1) = 0.3 λV=T ∧ λa2 ∧ λAct1 → θ3

Π(V = T |a2, Act2) = 0.7 λV=T ∧ λa2 ∧ λAct2 → θV=T |a2,Act2
Π(V = F |a1, Act1) = 1 λV=F ∧ λa1 ∧ λAct1 → θ1

Π(V = F |a1, Act2) = 1 λV=F ∧ λa1 ∨ λAct2 → θ1

Π(V = F |a2, Act1) = 1 λV=F ∧ λa2 ∨ λAct1 → θ1

Π(V = F |a2, Act2) = 1 λV=F ∧ λa2 ∧ λAct2 → θ1

Table 6.2: The CNF encoding CPLSmin of ΠGIDmin
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Figure 6.4: The min-max circuit of ΠGIDmin

Π(V = T |Act1, a2) and Π(V = T |Act2, a2). Figure 6.4 depicts the computa-
tion process of Π(V = T |Act2, a2) by setting λV=T , λa2, λAct2, λb1, λb2 to 1;
λV=F , λAct1, λa1 to 0 and applying min and max operators in a bottom-up
way. The root value i.e., 0.7 corresponds to Π(V = T |Act2, a2). The possi-
bility degree Π(V = T |Act1, a2) which is equal to 0.3 is computed in the same
spirit by setting λAct1 to 1 and λAct2 to 0. Thus, U∗opt(D,E) = 0.7, which
means that the optimal decision is Act2.

6.4 Conclusion

In this Chapter, we have studied compilation-based inference using product-
based possibilistic networks. The encoding strategy that should be used in
this case is local structure. This means that possibilistic local structure is not
tolerated in a numerical setting, while min-based possibilistic networks can
bene�t from both local structure and possibilistic local structure. We also
focused on theoretical common points between probabilistic and possibilis-
tic approaches and unveil the di�erences between them under compilation.
Interestingly enough, our experimental study shows that the product-based
approach outperforms the probabilistic approach and this is especially due
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to the particularity of possibility values and the normalization constraint in
possibility theory. Finally, we explored the decisional aspect by developing
a compilation-based evaluation method of possibilistic in�uence diagrams,
mainly based on a compilation-based inference method of min-based possi-
bilistic networks. In the next chapter, we will study inference methods for
min-based possibilistic networks and product-based possibilistic networks
from an experimental point of view.



Chapter 7

Implementation and

Experimentations

7.1 Introduction

This Chapter proposes an experimental study aiming to compare possibilis-
tic compilation-based inference algorithms proposed throughout this thesis
in terms of CNF parameters, compiled bases parameters and the inference
time w.r.t the one of the junction tree method. Also, a comparison between
mutilated-based approaches and augmented-based approaches will be estab-
lished. To this end, we implement di�erent CNF encodings of possibilistic
networks using Matlab R2010, then compile these latters using the state of
the art c2d compiler1 [29, 31] and �nally implement inference using the re-
sulting compiled bases. Experiments ran on a 2.27 GHz Core i3 processor
with 4 GO of memory.

This Chapter is organized as follows: Section 7.2 gives details of the used
experimental protocol. Section 7.3 provides experimental results regarding
n-ary and binary approaches proposed in Chapters 3 and 4 and compares the
inference time w.r.t the standard junction tree method. Section 7.4 compares
mutilated-based approaches and augmented-based approaches proposed in
Chapter 5. Section 7.5 emphasizes on di�erences regarding product-based
possibilistic networks and Bayesian networks behaviors under compilation.

1Available at http://reasoning.cs.ucla.edu/c2d/.
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7.2 Experimental protocol

Our objective is to study the behavior of our compilation-based inference
methods from an experimental point of view. Figure 7.1 is a summary of
di�erent methods compared in this Chapter.

Possibilistic network

Prod-Π-DNNF

Causal

numerical

ordinal

Variables Interventions

yesno

➢ Π-DNNF
➢ DNNF-PKB
➢ Π-DNNF

LS

➢
 
Π-DNNFl

PLS

➢
 
Π-DNNF

PLS 

n-ary binary augmentationmutilation

 
➢ Bin-Π-DNNF
➢ Bin-Π-DNNF

LS

➢
 
Bin-Π-DNNF

PLS
➢ Π-DNNF (n=2) 
➢ Π-DNNF

LS
 (n=2)

➢ Π-DNNF
PLS

 (n=2)

➢ Mut-Π-DNNF
➢ Mut-DNNF-PKB ➢ Aug-Π-DNNF

LS

Figure 7.1: Summary of studied methods

In our comparison, we use the following criteria: number of propositional
variables and clauses of CNF encodings, number of edges of compiled bases
and the inference time.

This section gives relevant variables of our experimentation. As possi-
bilistic networks have a graphical component and a numerical one, then it is
judicious to specify which kind of networks to use during the experimental
process.

7.2.1 DAG structure

As shown in Sections 3.4, 4.2 and 4.3, our compilation-based inference ap-
proaches are very sensitive to parameters since they depend on the occurrence
number of parameters per table CΠTi or tables CΠT . The primordial ques-
tion that should be explored, at �rst, is the following: Should we vary both of
DAG structures and possibility distributions parameters to have a pertinent
experimentation? The answer can be found in the following example.
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Example 7.1. Let us consider Figure 7.2 containing three DAG structures of
a possibilistic network composed of three binary nodes A, B and C. Clearly,
networks (a) and (b) require the same number of parameters (i.e., 10), con-
trarily to (c) which requires 12 parameters.

(a)  

A

B

C

(b)  

C

A B
a1 1
a2 0.7

c1 a1 b1 1
c1 a1 b2 1
c1 a2 b1 1
c1 a2 b2 1

b1 1
b2 0.7

(c)  

c2 a1 b1 0.9
c2 a1 b2 0.7
c2 a2 b1 0.2
c2 a2 b2 0.6

A

B C

a1 1
a2 0.7

b1 a1 1
b1 a2 0.9
b2 a1 0.7
b2 a2 1

c1 a1 0.3
c1 a2 1
c2 a1 1
c2 a2 0.2

b1 a1 1
b1 a2 0.9
b2 a1 0.7
b2 a2 1 c1 a1 0.3

c1 a2 1
c2 a1 1
c2 a2 0.2

a1 1
a2 0.7

Figure 7.2: Three-nodes DAG structures

Table 7.1 shows the behaviors of Π-DNNFlPLS, Π-DNNFPLS and DNNF-
PKB in terms of number of variables, clauses and edges.

We can see that the number of variables, clauses and edges of network
(c) in the three methods are higher than those of networks (a) and (b). This
is especially due to the number of parents per node, which has an impact
on the size of conditional possibility tables. Moreover, even if possibility
distributions of (a) and (b) share the same degrees (i.e., 1, 0.9, 0.7, 0.3,
0.2), CNF and compiled bases parameters are not the same. This means
that the DAG structure in�uences the size of compiled bases, then we should
take into account this information in our interpretation.

It is clear from Example 7.1 that varying DAG structures can distort
the interpretation. Hence, we propose to �x the DAG structure and vary
parameters. In fact, we generate randomly a possibilistic network by setting
the number of nodes to 50, the maximum number of parents per node to 3,
the number of instances per variable to 2 and the number of roots to 10.
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Network Method Variables Clauses Edges

(a)

Π-DNNFlPLS 10 20 63
Π-DNNFPLS 10 16 58
DNNF-PKB 9 11 45

(b)

Π-DNNFlPLS 10 20 59
Π-DNNFPLS 10 16 56
DNNF-PKB 9 11 49

(c)

Π-DNNFlPLS 11 27 70
Π-DNNFPLS 11 18 59
DNNF-PKB 10 12 52

Table 7.1: CNF and compiled bases parameters of the network of Figure 7.2

7.2.2 DAG parameters

Given a random possibilistic network, we vary values of possibility distribu-
tions (except for the normalization value 1) using two parameters:

1. (EPCΠT (%)): the percent of equal parameters within conditional pos-
sibility tables (i.e., CΠT ),

2. (EPCΠTi): the occurrence number of a parameter in a conditional pos-
sibility table CΠTi relative to Xi.

We set EPCΠT to {0%, 10%, 30%, 50%, 70%, 100%}. When EPCΠT is
equal to 50%, this means that each possibility degree appears in 50% of
CΠT . The extreme case 0% states that each possibility degree, except for 1,
appears in a unique conditional possibility table, i.e., CΠTi. While the case
of 100% means that there are two degrees, including the normalization one,
which appear in all conditional possibility tables, i.e., CΠT .

Of course when we a�ect equal parameters per CΠT , we should specify
which tables are involved by EPCΠT . Example 7.2 shows that the location
of parameters may in�uence results.

Example 7.2. Let us consider Figure 7.3 containing three quanti�cations of
a possibilistic network composed of four binary nodes A, B, C and D. The
possibility degree 0.7, shown in bold, appears in variables 〈A,B,C〉, 〈A,B,D〉
and 〈B,C,D〉 in networks (a), (b) and (c), respectively.

Table 7.2 shows the behavior of Π-DNNFlPLS, Π-DNNFPLS and DNNF-
PKB in terms of number of variables, clauses and edges. We can point
out that edges of network (c) in the three methods are higher than those of
networks (a) and (b). This is especially due to the table CΠTi a�ected by
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(a) (b) 

(c) 

A

B C

D

a1 1
a2 0.7

b1 a1 1
b1 a2 0.9
b2 a1 0.7
b2 a2 1

c1 a1 0.7
c1 a2 1
c2 a1 1
c2 a2 0.2

d1 b1 c1 1
d1 b1 c2 1
d1 b2 c1 1
d1 b2 c2 1

d2 b1 c1 0.5
d2 b1 c2 0.3
d2 b2 c1 0.4
d2 b2 c2 0.6

A

B C

D

a1 1
a2 0.7

b1 a1 1
b1 a2 0.9
b2 a1 0.7
b2 a2 1

c1 a1 0.3
c1 a2 1
c2 a1 1
c2 a2 0.2

d1 b1 c1 1
d1 b1 c2 1
d1 b2 c1 1
d1 b2 c2 1

d2 b1 c1 0.5
d2 b1 c2 0.7
d2 b2 c1 0.4
d2 b2 c2 0.6

A

B C

D

a1 1
a2 0.3

b1 a1 1
b1 a2 0.9
b2 a1 0.7
b2 a2 1

c1 a1 0.7
c1 a2 1
c2 a1 1
c2 a2 0.2

d1 b1 c1 1
d1 b1 c2 1
d1 b2 c1 1
d1 b2 c2 1

d2 b1 c1 0.5
d2 b1 c2 0.7
d2 b2 c1 0.4
d2 b2 c2 0.6

Figure 7.3: Three di�erent locations of a redundant degree

the degree 0.7 and consequently, number of parents of the current node. This
means that even with the same DAG structure and the same EPCΠT (70 %),
the location of parameters a�ects results. So, it is opportune to take into
account this information when a�ecting equal parameters per CΠT .

Example 7.2 points out that results depend on locations of equal pa-
rameters per tables. In order to vary parameters positions, we propose to
generate randomly indexes of tables involved by EPCΠT . We perform this
process 100 times, for each percentage of EPCΠT .

The parameter EPCΠT measures the amount of possibilistic local struc-
ture. To take into consideration local structure, we use the parameter
EPCΠTi having two values, namely:

• (1): Each possibility degree appears once in any conditional possibility
table CΠTi (except the degree 1 needed for normalization).

• (> 1): Each possibility degree appears more than once in a random
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Network Method Variables Clauses Edges

(a)

Π-DNNFlPLS 16 26 97
Π-DNNFPLS 16 42 138
DNNF-PKB 15 17 87

(b)

Π-DNNFlPLS 16 26 98
Π-DNNFPLS 16 41 136
DNNF-PKB 15 17 88

(c)

Π-DNNFlPLS 16 26 109
Π-DNNFPLS 16 40 148
DNNF-PKB 15 17 93

Table 7.2: CNF and compiled bases parameters of the network of Figure 7.3

manner in the conditional possibility table CΠTi.

Clearly, the �rst case (1) deals with possibilistic local structure since
parameters are only redundant per CΠT , contrarily to the second case (> 1)
that exploits local structure by dealing with equal parameters per CΠTi.

7.3 Comparing compilation-based inference approaches

Using the experimental protocol described in the previous section, we start
with comparing n-ary approaches, then we move to binary ones. More pre-
cisely, we compare CNF and compiled bases parameters averaged over 100
di�erent randomly generated parameters locations. Interestingly enough,
we establish a comparison covering the inference time of our inference ap-
proaches and the well known junction tree method, averaged over 30 di�erent
randomly generated evidence sets.

7.3.1 n-ary approaches

The experimental results of n-ary approaches are shown in Table 7.3. A row
presents results of an approach in terms of CNF parameters and compiled
bases edges, while columns correspond to EPCΠTi = 1 and EPCΠTi > 1.

We note that we have studied both cases of EPCΠTi for Π-DNNFLS
method (row 2 of Table 7.3) since it is sensitive to the number of equal
parameters per table CΠTi.



EPCΠTi = 1 EPCΠTi > 1

Method EPCΠT Variables Clauses Edges Inference time (sec) Variables Clauses Edges Inference time (sec)

Π-DNNF

0
10
30 358 1048 3428 0.489 - - - -
50
70
100

Π-DNNFLS

0 278 684 2504 0.377 211 372 963 0.219

10 276 668 2412 0.367 210 371 922 0.213

30 271 632 2353 0.356 209 365 885 0.208

50 262 574 2121 0.306 206 368 868 0.201

70 254 520 1951 0.295 201 368 858 0.180

100 200 358 1148 0.235 197 362 855 0.176

Π-DNNFlPLS

0 179 473 97618 34.501
10 127 362 255311 221.883
30 112 362 31811 6.528 - - - -
50 108 362 7716 1.097
70 107 362 3948 0.432
100 102 358 608 0.152

Π-DNNFPLS

0 179 358 76695 32.254
10 127 358 251712 212.355
30 112 358 30151 5.775 - - - -
50 108 358 7232 0.859
70 107 358 3856 0.287
100 102 358 608 0.152

DNNF-PKB

0 178 229 76414 31.563
10 126 229 245368 201.809
30 111 229 30003 4.701 - - - -
50 107 229 7019 0.748
70 106 229 3623 0.269
100 101 229 502 0.138

Table 7.3: Π-DNNF vs Π-DNNFLS vs Π-DNNFlPLS vs Π-DNNFPLS vs DNNF-PKB (better values are in bold)



150 Chapter 7: Implementation and Experimentations

A deep analysis of these results are established for each criterion sepa-
rately. We consider V ar(method) and Cl(method) the number of variables
and clauses of the CNF encoding and Edg(method) (resp. Inf(method))
the number of edges of the compiled base (resp. the inference time using the
compiled base).

CNF variables

Let us analyze the variables behavior of each method, depicted by Figure
7.4.

• Π-DNNF : Row 1 of Table 7.3 shows that the number of variables re-
mains unaltered even if EPCΠT is rising. Obviously, this is an expected
result since Π-DNNF does not take into consideration any numerical
value by encoding each possibility degree by a parameter variable, re-
gardless of its value.

• Π-DNNFLS : The variables gain is equal to 1.411 as shown in Table
7.4. This proves that local structure exploited in Π-DNNFLS has a
positive impact on CNF variables since equal parameters, especially the
normalization degree 1, are encoded by the same parameter variable
θi. It is also clear that the number of variables is reduced for each
increase of EPCΠT , as shown in Figure 7.4.

Column 2 of Π-DNNFLS 's row shows that the variables gain is equal
to 1.246. E�ectively, when we consider the case of EPCΠTi > 1, the
number of equal parameters, other than the normalization degree 1, per
CΠTi increases and consequently the number of parameter variables is
reduced.

• Π-DNNFlPLS and Π-DNNFPLS : Both of these methods have the same
number of variables since they use the same encoding strategy. In com-
parison to Π-DNNFLS , the variables gain is equal to 2.151, as shown
in Table 7.4. This proves that CNF variables are increasingly reduced
since equal parameters per CΠT are increased for each percentage of
EPCΠT . When EPCΠT = 100%, the number of variables is equal to
102 since we have 100 indicator variables and 2 parameter variables.

• DNNF-PKB : Row 5 of Table 7.3 shows that the number of variables of
DNNF-PKB is reduced by one comparing to those of Π-DNNFlPLS and
Π-DNNFPLS . Indeed, the possibility degree equal to 1 in Π-DNNFlPLS
and Π-DNNFPLS is not encoded in DNNF-PKB since it corresponds
to a necessity degree equal to 0, which is not represented in possibilistic
knowledge bases.
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EPCΠT
V ar(Π−DNNF )
V ar(Π−DNNFLS)

V ar(Π−DNNFLS(=1))
V ar(Π−DNNFLS(>1))

V ar(Π−DNNFLS)

V ar(Π−DNNF l
PLS)

V ar(Π−DNNF l
PLS)

V ar(Π−DNNFPLS)
V ar(Π−DNNFPLS)
V ar(DNNF−PKB)

0 1.287 1.317 1.553 1 1.005
10 1.297 1.314 2.173 1 1.007
30 1.321 1.296 2.419 1 1.009
50 1.366 1.271 2.425 1 1.009
70 1.409 1.263 2.373 1 1.009
100 1.790 1.015 1.960 1 1.009

ratioV ar 1.411 1.246 2.151 1 1.008

Table 7.4: Variables ratio
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Figure 7.4: Number of variables

CNF clauses

The behavior of CNF clauses of each compilation-based method of Table 7.3
is depicted by Figure 7.5 and detailed below:

• Π-DNNF : As shown in Table 7.3, the number of clauses does not de-
pend on EPCΠT since each parameter is encoded using a right-side
clause and a set of left-side clauses, regardless of its numerical value.

• Π-DNNFLS : The number of clauses per parameter depends on its oc-
currence number per CΠTi. In fact, by increasing the number of equal
parameters per CΠTi, the number of clauses is reduced since these
parameters are encoded using only right-side clauses. E�ectively, as
shown in Table 7.5, the clauses gain is equal to 1.921 (resp. 1.555)
when EPCΠTi = 1 (resp. EPCΠTi > 1).
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• Π-DNNFlPLS and Π-DNNFPLS : Table 7.5 shows that the clauses gain
is equal to 1.509. This means that the number of clauses is increasingly
reduced in Π-DNNFlPLS comparing to those of Π-DNNFLS since the
number of equal parameters per CΠT is rising for each EPCΠT and
consequently they are encoded using only right-side clauses. In Π-
DNNFPLS , the number of clauses is smaller since there are no left-side
clauses.

• DNNF-PKB : Each clause encoding the possibility degree 1 in Π-DNNFlPLS
and Π-DNNFPLS is not within DNNF-PKB's clauses since it corre-
sponds to a zero-weighted clause. This justi�es the gain of clauses
equal to 1.563 and shown in Table 7.5.

EPCΠT
Cl(Π−DNNF )
Cl(Π−DNNFLS)

Cl(Π−DNNFLS(=1))
Cl(Π−DNNFLS(>1))

Cl(Π−DNNFLS)

Cl(Π−DNNF l
PLS)

Cl(Π−DNNF l
PLS)

Cl(Π−DNNFPLS)
Cl(Π−DNNFPLS)
Cl(DNNF−PKB)

0 1.532 1.838 1.446 1.321 1.563
10 1.568 1.800 1.845 1.011 1.563
30 1.658 1.731 1.745 1.011 1.563
50 1.825 1.559 1.585 1.011 1.563
70 2.015 1.413 1.436 1.011 1.563
100 2.927 0.98 1 1 1.563

ratioCl 1.921 1.555 1.509 1.060 1.563

Table 7.5: Clauses ratio
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Figure 7.5: Number of clauses
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Compiled bases edges

Let us now study and interpret Figures 7.6 and 7.7 showing the impact of
CNF encoding strategies on compiled bases edges.

• Π-DNNF : As shown in row 1 of Table 7.3 and sub�gure (a) of Figure
7.7, the number of edges is equal to 3428. This value remains the same
for each EPCΠT , as for CNF variables and clauses.

• Π-DNNFLS : The edges gain of Π-DNNFLS is equal to 1.767 as shown
in Table 7.6. This proves that encoding equal parameters per table us-
ing a unique parameter variable has a positive impact on compiled
bases edges. This behavior follows the one of CNF variables and
clauses.

When EPCΠTi > 1, the edges gain is equal to 2.322, which means that
rising the number of equal parameters per CΠTi improves increasingly
compiled bases edges, comparing to those of EPCΠTi = 1.

• Π-DNNFlPLS : Table 7.6 shows that the edges ratio is equal to 0.461.
In other terms, compiled bases edges are higher when we deal with
possibilistic local structure, as shown in Figure 7.6. By paying more
attention on row 3, column 5 of Table 7.3 and sub�gure (b) of Figure
7.7, we can remark that compiled bases edges depend on EPCΠT . In
fact, when EPCΠT = 10%, generated compiled bases have more edges
than those of EPCΠT = 0%. However, edges decrease from EPCΠT =
30% until EPCΠT = 100%.

• Π-DNNFPLS : By comparing edges of Π-DNNFlPLS and Π-DNNFPLS ,
we point out that there is a slight reduction in edges (edges ratio =
1.072 from Table 7.6). Such enhancement is due to the reduction of
CNF clauses of Π-DNNFPLS comparing to those of Π-DNNFlPLS .

• DNNF-PKB : From Table 7.6, the edge ratio is equal to 1.056. This
proves that DNNF-PKB has a number of edges smaller than those of
Π-DNNFPLS . This is especially due to the reduction of CNF variables
and clauses.

Figures 7.6 and 7.7 do not reveal intersections between methods. Figure
7.8 shows that compiled bases edges of Π-DNNF lPLS , Π-DNNFPLS and
DNNF-PKB decrease from EPCΠT = 70%, and then two breaking points
become obvious. The �rst is situated at around EPCΠT = 80%, meaning
that purely possibilistic approaches reach Π-DNNF when EPCΠT is around
80%. The second breaking point is present between Π-DNNFLS and purely
possibilistic approaches when EPCΠT is around 90 %.
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EPCΠT
Edg(Π−DNNF )
Edg(Π−DNNFLS)

Edg(Π−DNNFLS(=1))
Edg(Π−DNNFLS(>1))

Edg(Π−DNNFLS)

Edg(Π−DNNF l
PLS)

Edg(Π−DNNF l
PLS)

Edg(Π−DNNFPLS)
Edg(Π−DNNFPLS)
Edg(DNNF−PKB)

0 1.369 2.600 0.025 1.272 1.003
10 1.421 2.616 0.009 1.014 1.025
30 1.456 2.658 0.073 1.055 1.004
50 1.616 2.443 0.274 1.066 1.030
70 1.757 2.273 0.494 1.023 1.064
100 2.986 1.342 1.888 1 1.211

ratioEdg 1.767 2.322 0.461 1.072 1.056

Table 7.6: Edges ratio
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Figure 7.6: Number of edges

A deep analysis of these results shows that the reduction of CNF variables
and clauses does not always imply more compact compiled bases. Indeed,
using less CNF parameters while exploiting the encoding strategy local struc-
ture induces compiled bases with less edges. This is not the case of possi-
bilistic local structure, which increases compiled bases parameters even with
a reduced number of CNF parameters. In what follows, we will analyze such
behavior while responding to these questions:

1. Why does possibilistic local structure increase compiled bases edges?

• Theorem 2.1 states that satisfying decomposability from CNF
bases requires performing case analysis over the variables shared
by sub-formulas. When we use local structure, equal parameters
per table CΠTi are encoded using the same parameter variable.
In this case, the compiler c2d splits common variables pertain-
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Figure 7.7: (a): Edges of Π-DNNF and Π-DNNFLS , (b) Edges of Π-
DNNF lPLS , Π-DNNFPLS and DNNF-PKB
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Figure 7.8: Breaking points between methods

ing to the same conditional possibility table, which implies that
a local interaction between clauses is performed. However, when
we use possibilistic local structure the number of shared variables
is increased since equal parameters are handled from a global
point of view (i.e., per CΠT ). Such encoding strategy introduces
many interactions among clauses corresponding to di�erent con-
ditional possibility tables, which makes the resulting knowledge
base harder to compile.

• As we have mentioned above, we used the state of the art c2d
compiler [29, 31] initially proposed to generate d-DNNFs. This
compiler uses the case analysis technique that e�ciently enforces
the property of decomposability while enforcing determinism as
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well. Example 2.10 shows that converting the CNF α = (¬a ∨
b) ∧ (¬b ∨ c) into the following DNNF (c ∧ b) ∨ (¬a ∧ ¬b) using
case analysis gives indeed a d-DNNF since disjunctions (c ∧ b)
and (¬a ∧ ¬b) are logically contradictory. This means that we
are subjected to the determinism property as a side e�ect of this
compiler, which is useless in the possibility theory framework.

Generating DNNFs remains a real challenge [62]. In fact, any
available compilation algorithm which outputs a DNNF formula
computes a deterministic DNNF (d-DNNF) formula [27, 31] or
a Structured DNNF formula based on a structured version of de-
composability [71].

2. Why do compiled bases edges rise when EPCΠT = 10%?

By paying more attention on purely possibilistic approaches, we point
out that these methods are very sensitive to equal parameters per tables
(i.e., CΠT ).

Let us interpret the impact of each percentage of EPCΠT :

• EPCΠT = 0%: As shown in rows 4 and 5 of Table 7.3, the num-
ber of propositional variables in Π-DNNFlPLS and Π-DNNFPLS
is equal to 179. Since we associate an instance indicator for each
instance of Xi ∈ V and knowing that we deal with 50 nodes, then
the number of instance indicators is equal to 100. Consequently,
we have 79 parameter variables where 78 encode di�erent possi-
bility degrees appearing once per CΠT and only one parameter
variable θ1 encodes the possibility degree 1 pertaining to all con-
ditional possibility tables. The resulting base is more hard to
compile than the one with local structure since there is an inter-
action between all clauses weighted by θ1.

• EPCΠT = 10%: From row 4 of Table 7.3, we can deduce that the
number of redundant parameter variables in Π-DNNFlPLS and
Π-DNNFPLS is equal to 27, in which one parameter variable en-
coding the degree 1 appears in all tables and 26 ones appear in
10% of CΠT (i.e., 5 tables). For DNNF-PKB method, there are
26 parameter variables encoding degrees di�erent from 1.

In such a case, the compiler c2d performs case analysis for each
parameter variable θi holding 5 tables and pertaining to the 26
ones. Since the number of parameter variables θi encoding equal
parameters per 5 tables is increased, interactions among clauses
is rising and consequently, the base is more hard to compile.

• EPCΠT = 30%, · · · , 70%: We can point out from row 4 of Ta-
ble 7.3 that the number of parameter variables appearing in 15,
25 and 35 tables is equal to 11, 7 and 6 when EPCΠT = 30%,
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EPCΠT = 50% and EPCΠT = 70%, respectively. In such cases,
c2d deals with a reduced number of shared variables, which ex-
plains the reduction of compiled bases edges.

• EPCΠT = 100%: In this case, we can deduce from row 4 of Table
7.3 that the number of parameter variables is equal to 2 such that
each one appears in all tables. The reduction of shared variables
facilitates the generation of compiled bases.

Note that 10 further experiments on di�erent DAG structures have been
established and the same behavior and conclusions have been observed.

Inference time

Table 7.7 gives us an idea about the inference ratio. We can see that better
values concern Π-DNNFLS(= 1) and Π-DNNFLS(> 1) in both Tables
7.6 and 7.7. This means that the inference ratio follows exactly the same
behavior as edges ratio, as shown in Figure 7.9. In other terms, the smaller
is the compiled base the faster inference is.

EPCΠT
Inf(Π−DNNF )
Inf(Π−DNNFLS)

Inf(Π−DNNFLS(=1))
Inf(Π−DNNFLS(>1))

Inf(Π−DNNFLS)

Inf(Π−DNNF l
PLS)

Inf(Π−DNNF l
PLS)

Inf(Π−DNNFPLS)
Inf(Π−DNNFPLS)
Inf(DNNF−PKB)

0 1.297 1.721 0.010 1.069 1.021
10 1.332 1.723 1.001 1.044 1.052
30 1.373 1.711 0.054 1.130 1.228
50 1.598 1.522 0.278 1.277 1.148
70 1.657 1.638 0.682 1.505 1.066
100 2.080 1.335 1.546 1 1.101

ratioInf 1.556 1.608 0.429 1.171 1.103

Table 7.7: Inference ratio

Let us now compare the inference time of the junction tree method and
the most compact compilation-based inference method, namely Π-DNNFLS .

We can deduce from Table 7.3 that the inference time in Π-DNNFLS
decreases each time EPCΠT is rising. Yet the time for on-line inference
in both Π-DNNFLS(= 1) and Π-DNNFLS(> 1) ranges from 0.1 to 0.3
milliseconds. This illustrates the extent to which local structure can improve
the inference time.

Using the junction tree, the inference time ranges from 1.008 second to
1.211 as shown in Table 7.8, but it does not follow a stationary behavior
since EPCΠTi and EPCΠT are not in�uential factors. This experimental
result con�rms that the junction tree is structure-based. It depends on the
network topology and is invariant to parameters.
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Figure 7.9: (a): Inference time of Π-DNNF and Π-DNNFLS , (b) Inference
time of Π-DNNF lPLS , Π-DNNFPLS and DNNF-PKB

EPCΠT EPCΠTi = 1 (sec) EPCΠTi > 1 (sec)
0 1.078 1.139
10 1.173 1.008
30 1.112 1.056
50 1.059 1.081
70 1.211 1.025
100 1.133 1.050

Table 7.8: Inference time of junction tree approach

7.3.2 Binary approaches

In the particular case of binary networks, we can either use n-ary approaches
with n = 2 or use binary approaches, namely Bin-Π-DNNF, Bin-Π-DNNFLS
and Bin-Π-DNNFPLS . In what follows, we study their CNF parameters,
compiled bases edges and inference time, depicted by Table 7.9, while com-
paring them to n-ary approaches Π-DNNF, Π-DNNFLS and Π-DNNFPLS .

1. Π-DNNF vs Bin-Π-DNNF : Row 1 of Table 7.9 shows that Bin-Π-
DNNF does not take into consideration any numerical value in the
encoding phase. Comparing row 1 of both Table 7.3 and Table 7.9
gives us variables gain, clauses gain, edges gain and inference gain
equal to 2, 4.062, 2.380 and 1.866, respectively. This highlights that
Bin-Π-DNNF outperforms Π-DNNF and this is especially due to the
reduction of: i) CNF variables by using only one propositional variable
and its negation to encode binary variables and ii) CNF clauses by
encoding each parameter by a unique right-side clause instead of both
right-side clause and left-side clauses while disregarding parameters
values.
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Method EPCΠT Variables Clauses Edges Inf

Bin-Π-DNNF

0
10
30 179 258 1440 0.262
50
70
100

Bin-Π-DNNFLS

0 228 258 1290 0.235

10 226 258 1120 0.206

30 221 258 1105 0.198

50 212 258 1078 0.187

70 204 258 1054 0.179

100 150 258 1002 0.168

Bin-Π-DNNFPLS

0 129 258 66040 23.881
10 77 258 235692 186.121
30 64 258 27146 5.278
50 61 258 6566 0.772
70 60 258 3200 0.367
100 52 258 109 0.09

Table 7.9: Bin-Π-DNNF vs Bin-Π-DNNFLS vs Bin-Π-DNNFPLS

2. Bin-Π-DNNF vs Bin-Π-DNNFLS vs Bin-Π-DNNFPLS : As it is the
case in Π-DNNF and Π-DNNFLS , exploiting local structure in Bin-Π-
DNNF has a positive e�ect on CNF variables, compiled bases edges
and consequently the inference time as shown in Table 7.10.

EPCΠT
V ar(Bin−Π−DNNF )

V ar(Bin−Π−DNNFLS)
Edg(Bin−Π−DNNF )

Edg(Bin−Π−DNNFLS)
Inf(Bin−Π−DNNF )

Inf(Bin−Π−DNNFLS)

0 1.273 1.116 1.114
10 1.262 1.285 1.271
30 1.234 1.303 1.323
50 1.184 1.335 1.401
70 1.139 1.366 1.463
100 0.837 1.437 1.559

ratio 1.155 1.307 1.355

Table 7.10: Bin-Π-DNNF vs Bin-Π-DNNFLS

Regarding possibilistic local structure, compiled bases edges and infer-
ence time of Bin-Π-DNNFPLS increase when EPCΠT ≤ 70, contrarily
to CNF variables as shown in Table 7.11. This con�rms that using
binary encoding while exploiting possibilistic local structure by means
of two variables generates very compact compiled bases.
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EPCΠT
V ar(Bin−Π−DNNFLS)
V ar(Bin−Π−DNNFPLS)

Edg(Bin−Π−DNNFLS)
Edg(Bin−Π−DNNFPLS)

Inf(Bin−Π−DNNFLS)
Inf(Bin−Π−DNNFPLS)

0 1.767 0.019 0.009
10 2.935 0.004 0.001
30 3.453 0.040 0.037
50 3.475 0.164 0.242
70 3.400 0.329 0.487
100 2.884 9.192 1.866

ratio 2.985 1.625 0.440

Table 7.11: Bin-Π-DNNFLS vs Bin-Π-DNNFPLS

3. Π-DNNFLS vs Bin-Π-DNNFLS : Table 7.12 shows that variables gain,
clauses gain, edges gain and inference gain are equal to 1.246, 2.219,
1.864 and 1.644, respectively. This con�rms that Bin-Π-DNNFLS out-
performs Π-DNNFLS and proves that encoding binary variables us-
ing one variable and its negation, while exploiting local structure and
encoding each parameter using one clause have a positive impact on
results.

EPCΠT
V ar(Π−DNNFLS)

V ar(Bin−Π−DNNFLS)
Cl(Π−DNNFLS)

Cl(Bin−Π−DNNFLS)
Edg(Π−DNNFLS)

Edg(Bin−Π−DNNFLS)
Inf(Π−DNNFLS)

Inf(Bin−Π−DNNFLS)

0 1.219 2.651 1.941 1.604
10 1.221 2.589 2.153 1.781
30 1.226 2.449 2.129 1.797
50 1.235 2.224 1.967 1.636
70 1.245 2.015 1.851 1.648
100 1.333 1.387 1.145 1.398

ratio 1.246 2.219 1.864 1.644

Table 7.12: Π-DNNFLS vs Bin-Π-DNNFLS

4. Π-DNNFPLS vs Bin-Π-DNNFPLS : By paying attention on Table 7.13,
we can see that edges gain is equal to 1.870. This highlights that using
binary encoding with possibilistic local structure generates compiled
bases with less edges, comparing to those of Π-DNNFPLS .

As a conclusion, we can say that binary approaches follow the same be-
havior as n-ary approaches, while requiring less CNF parameters and com-
piled bases edges. This is especially to the reduction of CNF variables by
using only one propositional variable and its negation to encode binary vari-
ables.
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EPCΠT
V ar(Π−DNNFPLS)

V ar(Bin−Π−DNNFPLS)
Cl(Π−DNNFPLS)

Cl(Bin−Π−DNNFPLS)
Edg(Π−DNNFPLS)

Edg(Bin−Π−DNNFPLS)
Inf(Π−DNNFPLS)

Inf(Bin−Π−DNNFPLS)

0 1.387 1.387 1.161 1.350
10 1.649 1.387 1.067 1.140
30 1.75 1.387 1.110 1.094
50 1.77 1.387 1.101 1.112
70 1.783 1.387 1.205 0.782
100 1.961 1.387 5.577 1.688

ratio 1.717 1.387 1.870 1.194

Table 7.13: Π-DNNFPLS vs Bin-Π-DNNFPLS

7.4 Comparing interventions-based methods under

compilation

In Chapter 5, we proposed mutilated-based approaches and augmented-based
approaches dealing with interventions under a compilation framework. In
this section, we study these methods from an experimental point of view.
To this end, we should at �rst set the number of interventions and describe
experimental data.

As we have outlined in Section 5.3, mutilated-based approaches are not
sensitive to the number of interventions since we mutilate the compiled base
instead of the initial possibilistic network. For this reason, we generate
random possibilistic networks by setting the number of nodes to 50, variables
cardinality to 2 and 3 and maximum number of parents per node to 3.
This is not the case of augmented-based approaches that depend strongly
on the number of interventions. In such a scenario, we generate augmented
possibilistic networks given a number of interventions varying from 1 to 50.

Table 7.14 depicts experimental results of Mut-Π-DNNF, Mut-DNNF-
PKB and Aug-Π-DNNFLS by considering one intervention, then 10, 20, 30,
40 and 50 interventions. When the number of occurred interventions is not
well-known in an instant t, the price to be paid is to consider 50 extra nodes
and compile a network composed of 100 nodes (50 network variables and 50
extra nodes). We call this particular situation the extreme case.

Note that we only deal with Aug-Π-DNNFLS since it turns out from
subsection 7.3 that Π-DNNFLS is the most e�cient and compact method.
Regarding possibility distributions values, we exploit local structure using
the parameter EPCΠTi = {0, 10, 30, 50, 70, 100} s.t. EPCΠTi=50% means
that a possibility degree appears in 50% of the possibility degrees di�erent
from 1 in the current CΠTi.

Let us now study in depth results of Table 7.14 via the following pairwise
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Method Nb interventions EPCΠTi
Variables Clauses Edges

Mut-Π-DNNF - 0 · · · 100 734 2573 29943

Mut-DNNF-PKB - 0 · · · 100 478 502 196179

Aug-Π-DNNFLS 1

0 507 1687 11892

10 453 1383 9272

30 357 1065 6246

50 297 942 4266

70 285 896 3986

100 238 856 1571

Aug-Π-DNNFLS 10

0 571 2414 14080

10 560 2326 13265

30 484 2032 10627

50 445 1953 9959

70 437 1922 9795

100 399 1886 2743

Aug-Π-DNNFLS 20

0 631 2718 15058

10 620 2630 14243

30 556 2392 11783

50 523 2331 11137

70 519 2316 10975

100 489 2296 3826

Aug-Π-DNNFLS 30

0 691 3178 16569

10 660 3040 15187

30 654 3015 15014

50 628 2975 13857

70 611 2745 13184

100 591 2737 4707

Aug-Π-DNNFLS 40

0 785 3637 18742

10 774 3549 18006

30 759 3521 17313

50 751 3504 16803

70 748 3492 16625

100 738 3476 11521

Aug-Π-DNNFLS 50

0 849 4054 19995

10 838 3970 19180

30 824 3952 18439

50 819 3938 18126

70 801 3872 18006

100 771 3764 12682

Table 7.14: Mut-Π-DNNF vs Mut-DNNF-PKB vs Aug-Π-DNNFLS (better
values are in bold
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comparison:

• Mut-Π-DNNF vs Mut-DNNF-PKB : It is well attested that both of
Mut-Π-DNNF and Mut-DNNF-PKB do not exploit parameters val-
ues. This means that a propositional variable is associated for each
parameter, regardless of its numerical value. As shown in rows 1 and
2 of Table 7.14, Mut-Π-DNNF, which has a number of variables and
clauses higher than those of Mut-DNNF-PKB, gives rise to more com-
pact compiled bases having less edges. This proves that dealing with
symbolic bases using only right-side clauses makes the resulting knowl-
edge base harder to compile. Consequently, we can conclude that both
of left-side clauses and right-side clauses play a primary role in the
compilation process since each parameter variable is encoded using a
logical equivalence and therefore cannot imply instance indicators other
than those compatible with variables instantiation.

• Mut-Π-DNNF vs Aug-Π-DNNFLS : From Figure 7.10, it is clear that
Aug-Π-DNNFLS outperforms Mut-Π-DNNF even in the extreme case
in which an extra node DOi is associated for each network variable.
This means that even if Aug-Π-DNNFLS deals with additional extra
nodesDOI , it produces more compact compiled bases having less edges
than those of Mut-Π-DNNF. In the extreme case, a key result that
should be highlighted is that augmenting a network by 50 extra nodes
and compiling 100 nodes with local structure gives better results than
compiling 50 nodes without taking into account any numerical value.
This means that increasing the size of possibility distributions of in-
volved variables using parameters 1 and 0 and adding nodesDOI which
are encoded without taking into consideration any numerical value do
not degrade the quality of compiled bases, in comparison with Mut-
Π-DNNF. Interestingly enough, local structure plays a leading role in
augmentation. By paying more attention on edges of Aug-Π-DNNFLS ,
we can see that the number of edges varies from 11892 when we deal
with a unique intervention to 19995 in the case of 50 interventions.
This means that given the compiled base of a network augmented by
a unique intervention, it is easy to obtain the compiled base of the
extreme case. To strengthen this result, we have established another
experiment for networks composed of 100 nodes. We have obtained
compiled bases composed of 104339 (resp. 127821) edges when the
number of interventions is equal to 1 (resp. 100). This experiment
serves to demonstrate that augmentation is linear with respect to the
compiled base size of a network augmented by a unique intervention.
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Figure 7.10: Mut-Π-DNNF vs Aug-Π-DNNFLS

7.5 Bayesian networks vs product-based possibilis-

tic networks under compilation

In the previous set of experiments, we restrict ourselves to min-based pos-
sibilistic networks. In this section, we emphasize on CNF encodings and
compiled bases parameters of the probabilistic approach, denoted by Prob-
d-DNNF [30] and the quantitative possibilistic approach Prod-Π-DNNF.

It is well known that product-based possibilistic networks are close to
Bayesian networks [20]. We propose to check this statement under compila-
tion by comparing Prod-Π-DNNF to Prob-d-DNNF. To this end, we consider
randomly generated Bayesian networks and product-based possibilistic net-
works by setting the number of nodes to 50, the maximum number of parents
per node to 3 and the number of instances per variable to 2 and 3. We vary
probability (resp. possibility) distributions using one parameter, namely:
the percentage of equal parameters per conditional uncertainty table CUTi,
denoted by EPCUTi = {0%, 10%, 30%, 50%, 70%, 100%}. The interpretation
of EPCUTi di�ers depending on the framework where the uncertainty de-
gree udi corresponds to probability degrees (P ) in Bayesian networks and
possibility degrees (Π) in possibilistic networks:

• Possibilistic case: Let Nbp be the number of possibility degrees di�er-
ent from the normalization degree i.e., 1 in a CUTi. Then, for instance
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EPCUTi=50% means that a possibility degree udi appears in 50% of
Nbp. The extreme case 0% (resp. 100%) states that a degree udi
appears once (in 100% of Nbp) in the current CUTi.

• Probabilistic case: Let set be the probability degrees udi having
∑

udi
=

1 in a CUTi. Let Nbset = ∗j={1..m} card(Uij) be the number of set per
CUTi. Then, EPCUTi=50% means that a set appears in 50% of Nbset
in the current CUTi. The extreme case 0% (resp. 100%) states that a
set appears once (in 100% of Nbset) per CUTi.

The experimental results are shown in Table 7.15. From this table, we
can derive values of Table 7.16 showing Variable_ratio, Clause_ratio and
Edge_ratio expressing the average of variables, clauses and edges, respec-
tively for Prod-Π-DNNF and Prob-d-DNNF, while varying EPCUTi .

As shown in Table 7.16, the number of CNF variables and clauses of Prod-
Π-DNNF is smaller than those of Prob-d-DNNF, even if both of them exploit
the same encoding strategy. In other terms, the normalization constraint
o�ered by possibility theory gives rise to less CNF variables since only one
parameter is repeated per table. We can say that such constraint is very
suitable for local structure and of course proves the emphasis of possibility
degrees in comparison to probability degrees, which in turn con�rms the
theoretical result of Proposition 6.2.

Regarding compiled bases edges, we can see from Table 7.16 that the
Edge_ratio is around 1.141. This means that Prod-Π-DNNF is character-
ized by a lower number of edges comparing to those of Prob-d-DNNF. Hence,
we can point out that compiled bases parameters follow the same behavior
as those of CNF encodings.

Prod-Π-DNNF Prob-d-DNNF

CLS∗ CBLS
∗max CLSp∗ CBLS

∗+
EPCUTi Variables Clauses Edges Variables Clauses Edges

0 482 1518 12838 660 2321 16573
10 471 1469 12450 649 2253 16208
30 410 1211 10674 553 1739 12290
50 377 1121 9565 498 1531 10177
70 300 890 8049 354 1027 8144
100 225 642 3454 248 765 3520

Table 7.15: Prod-Π-DNNF vs Prob-d-DNNF (better values are in bold)
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EPCUTi
V ariables(CLS

p∗ )

V ariables(CLS
∗ )

Clauses(CLS
p∗ )

Clauses(CLS
∗ )

Edges(CBLS
∗+ )

Edges(CBLS
∗max)

0 1.369 1.528 1.290
10 1.377 1.533 1.301
30 1.348 1.436 1.151
50 1.320 1.365 1.063
70 1.18 1.153 1.011
100 1.102 1.191 1.027

Variable_ratio Clause_ratio Edge_ratio
1.283 1.368 1.141

Table 7.16: Average of Prod-Π-DNNF and Prob-d-DNNF parameters

7.6 Conclusion

Our experimental results show that taking into consideration numerical val-
ues while encoding the min-based possibilistic network has a considerable
impact on both CNF parameters and compiled bases and consequently the
inference time. However, this relies deeply on the used encoding strategy. In
fact, possibilistic local structure, which reduces increasingly CNF parameters,
rises compiled bases parameters. This is not the case of local structure which
has a positive impact on compiled bases. We also studied the e�ect of in-
terventions on compiling possibilistic networks. Our experiments show that
augmented-based approaches outperform mutilated-based approaches even
in the extreme case. Finally, we established a comparison between compil-
ing Bayesian networks and product-based possibilistic networks proving the
emphasis of possibility degrees in comparison to probability degrees while
using the same encoding strategy, i.e., local structure.
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This thesis has contributed to the development of graphical models for rea-
soning and decision under compilation using the possibility theory frame-
work. In this theory, uncertainty is either encoded numerically using the
unit interval [0, 1] or qualitatively using a total pre-order between events.
This leads to two kinds of possibilistic networks, namely product-based pos-
sibilistic networks and min-based possibilistic networks.

At �rst, we have addressed the inference topic in min-based possibilistic
networks using compilation techniques. In fact, we have adapted the stan-
dard probabilistic compilation-based inference approach into the possibility
theory framework and we have developed a new purely possibilistic method
based on compiling possibilistic knowledge bases associated with possibilistic
networks. Then, a set of re�nements have been suggested dealing with spe-
ci�c parameters values while encoding the network, namely local structure,
possibilistic local structure and binary encodings. Our results point out that
purely possibilistic approaches are the most compact ones in terms of CNF
encodings parameters since they have less variables and clauses than remain-
ing approaches. However, dealing with equal parameters from a global point
of view generates compiled bases with higher edges. This is especially due to
the higher number of shared variables incurring several interactions among
clauses. This study points out that the inference time relies strongly on the
compiled base size. This means that the smaller the compiled base is the
faster inference is.

Another main contribution of this thesis is the proposal of mutilated-
based methods and augmented-based methods that e�ciently compute the
e�ect of both observations and interventions for min-based possibilistic causal
networks. In fact, mutilated-based methods require the mutilation of sym-
bolic compiled bases, while augmented-based methods involve encoding aug-
mented networks while ignoring numerical values of new extra nodes. Mutilated-
based approaches are not sensitive to the number of interventions since
the compiled base is mutilated instead of the initial possibilistic network,
which enables the handling of a set of interventions without the need for
re-compiling the network each time an intervention occurs. This is not
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the case of augmented-based approaches since the augmented network is
compiled after performing the set of interventions. Our results show that
augmented-based approaches outperform mutilated-based approaches even
in the extreme case in which an extra node is associated for each network
variable.

In the last part of this work, compilation-based inference in product-
based possibilistic networks has been studied. Moreover, we have explored
the decisional aspect and extended compilation concepts to evaluate pos-
sibilistic in�uence diagrams by taking advantage of our compilation-based
inference methods proposed in the �rst part. Our idea consists in re-using
the polynomial transformation phase of [52] to morph the initial min-based
possibilistic in�uence diagram into a min-based possibilistic network and
proposing an evaluation phase in which we generate the optimal strategy
under compilation.

An interesting future work is to develop a compiler that generates DNNFs
(without the need for either the determinism property i.e., d as it is the case
in the standard publicly available c2d compiler [31] or the structured de-
composability of [71]). This remains a real challenge [62]. Another line of
research will be to explore the idea of arithmetic circuits augmented with
maximization nodes using variable elimination proposed for standard in�u-
ence diagrams [19] in the possibility theory framework. From an applicative
point of view, we will explore the issue of fault detection. In fact, in complex
systems, fast detection of faults and accurate diagnosis of root cause of fail-
ure is a crucial aspect of operational safety and considered as a critical factor
in reducing system down-time. We are thinking about the use of compila-
tion in qualitative models which have proved their e�ciency by providing a
realistic representation and accurate diagnosis in [45].
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