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Introduction

Given the complexity of our life today, people have to make lots of de-
cisions during their everyday life. Some decisions may be made considering
a single criterion, but these are very limited to the simple and relatively
unimportant ones. Therefore, the two terms “multi-criteria” and “decision-
making” are nearly inseparable, especially when making complex decisions
that require consideration of all the different aspects.

The problems considered in this master thesis consist of a finite set of
alternatives which are evaluated on the basis of multiple, usually conflicting,
criteria are called Multi-Criteria Decision Making (MCDM) problems.

Within the framework of MCDM, there exists a large amount of methods
each designed to tackle certain specificities of real-life MCDM problems. We
have then two large families of methods. On the one hand, the outranking
approach introduced by Roy where some methods like Electre and Promothee
are developed (Brans et al., 1986) (Figueira et al., 2005). On the other hand,
the value and utility theory approaches mainly started by Keeney and Raiffa
(Keeney & Raiffa, 1976), and then implemented in a number of methods
(Triantaphyllou, 2000).

In the recent years, it has become more than apparent that MCDM meth-
ods should be able to take into account uncertainty and imprecision in the
parameters. Hence, the classical methods applying both multi-attribute util-
ity theory and outranking model do not accomplish this. In order to overcome
this limitation, many researches have been done to adapt standard approach
to this kind of environment. The idea was to introduce theories managing
uncertainty and/or imprecision, such as probability theory, evidence theory
and fuzzy set theory in the development of these MCDM methods.

Our aim, through this work, is to investigate the Analytic Hierarchy Pro-
cess (AHP) which is one of the most well-established and frequently used
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methods for solving a MCDM problem, due to its good results and to its
simplicity. It provides a structured simple solution to decision making prob-
lems. Thus, this approach has gained wide popularity in different applica-
tions such as country risk evaluation, portfolio selection and management,
water resources planning, highway planning, job evaluation, etc.

However, the AHP method uses precise estimates of the decision maker.
This condition cannot be satisfied in many applications because judgments
elicited from experts are usually imprecise and unreliable due to the limited
precision of human assessments.

Therefore, we propose to develop a new method for solving a multi-criteria
decision problem in the framework of AHP under condition that the decision
maker may express his preferences with some degrees of uncertainty.

At first, we propose a method that deals with uncertainty in two levels:
the criterion and alternative levels. On the one hand, our proposed ap-
proach allows the decision maker to express the importance of criteria with
incomplete and imprecise preferences. So, the decision maker determines his
opinions on groups of criteria instead of single ones. On the other hand, our
method is able to use sets of criteria to compare sets of alternatives, which
can help the decision maker to express subjective judgments between these
alternatives. Then, we are interested in treating the uncertainty that may
appear in the comparison procedure. Hence, to evaluate the responses of
the pair-wise comparison question, the decision maker expresses his judg-
ment with some degrees of uncertainty. So, this approach deals with belief
pair-wise comparison matrix.

In both methods, the uncertainty will be managed using the belief func-
tion theory as interpreted in the Transferable Belief Model (TBM). The
choice of the TBM seems appropriate as it provides a convenient frame-
work for dealing with incomplete and uncertain information, notably those
given by experts. This theory is chosen because it has a powerful evidence
combination rule, and it represents properly partial and total ignorance; it
assigns beliefs to individual elements of the hypothesis set as well as their
subsets.

Finally, to illustrate the feasibility of our approaches and to judge their
performances, we have applied our proposed methods on a real application
problem: The life cycle assessment. In fact, we have considered the PVC
(Polyvinyl chloride) life cycle especially the end of life phase. The challenge
facing an expert here is the choice of the country where the environmental
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impact is the least important for the destruction of a kilogram of PVC.

This report is organized in four chapters belonging to two main parts:

Part I: Theoretical aspects. This part presents the necessary theoretical
aspects regarding the belief function theory and the AHP method which are
detailed respectively in chapter 1 and chapter 2.

Part II: Belief AHP method details our proposed methods namely Belief
AHP methods. Chapter 3, details the different steps that we have developed
relatively to the building procedure of the MCDM within an uncertain con-
text. Chapter 4 deals with implementation and application of our proposed
approaches on a real application problem.

Finally, a conclusion summarizes all the work presented in this report and
proposes further works that may be done to improve our method.



Part I

Theoretical Aspects
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Chapter 1

Belief function theory

1.1 Introduction

The belief function theory, sometimes called evidence theory or Dempster-
Shafer theory, is considered as a useful theory for representing and managing
uncertain knowledge. This theory is introduced as a model to represent
quantified beliefs (Shafer, 1976).

The term Dempster-Shafer refers to the origin of the theory. In fact, in the
1960s, Dempster developed the basic ideas of a new mathematical theory of
uncertainty that includes a kind of upper and lower probabilities (Dempster,
1967) (Dempster, 1968). Then, in 1970s, it was extended by (Shafer, 1976)
to what is now known as belief function theory.

Several interpretations of this theory have been proposed (Smets, 1991)
among them: the Dempster’s model (Dempster, 1967) (Dempster, 1968), the
lower probability model (Roy, 1996), the theory of hints (Kohlas & Monney,
1995) and the Transferable Belief Model (TBM) (Smets & Kennes, 1994).

In this master thesis, we deal with the interpretation of the belief function
theory as explained by the TBM. In this model, beliefs can be held at two
levels: a credal level where beliefs are quantified and entertained, and a
pignistic level, where beliefs are used for decision making. In each level,
the TBM provides several tools for representing and managing beliefs under
uncertainty (Smets & Kennes, 1994).

In this chapter, the basic concepts of this theory are introduced. After

5



6

that, we will describe some special belief functions. Then, we will present
some notations like the combination, the discounting, etc.

1.2 Basic concepts

In this Section, we are going to present the main concepts underlying
the belief function theory. There are three important functions: the basic
belief assignment function (bba), the belief function (bel), and the plausibility
function (pl).

1.2.1 Frame of discernment

In belief function theory, Θ is a non empty set which contains all the
possible elements of interest in each particular context and its elements are
exhaustive and mutually exclusive events (Smets & Kennes, 1994). Θ is
called the frame of discernment or the universe of discourse. It is also the
initial set of possible states in the problem domain.

All the subsets of Θ belong to the power set of Θ, denoted by 2Θ, and
every element of 2Θ is called a proposition or an event.

2Θ = {A/A ⊆ Θ} (1.1)

In the Shafer’s model, Θ is assumed to be exhaustive (Shafer, 1976) which
means that the solution to a given problem is unique and is necessarily in-
cluded in this frame of discernment. However, in the TBM, Smets relaxed
this condition, considering that it is sometimes difficult to list a priori all the
possible hypotheses related to a given problem domain. He induced what he
called the open-world assumption and the closed-world assumption (Smets,
1990) (Smets, 1998).

Under the open-world assumption, Θ is not necessarily exhaustive. It
means that we admit that the problem domain can include some unknown
hypotheses that we did not mention into the frame of discernment, whereas
under the closed-world assumption the frame of discernment is exhaustive
(on which our work is based).
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Example 1.1

Let us treat a problem of identification of childhood diseases. Some of
the most common illnesses of childhood cause skin eruptions and are known
as exanthems. The childhood exanthems include measles, rubella and fifth
disease. All of these infections have the same symptoms.

Suppose the frame of discernment Θ related to this problem is defined as
follows:

Θ = {measles, rubella, fifth disease}

Then, the power set of Θ is:

2Θ = {∅, {measles}, {rubella}, {fifth disease},
{measles, rubella}, {measles, fifth disease}, {rubella, fifth disease},Θ}

1.2.2 Basic belief assignment

The basic belief assignment (bba), called initially by Shafer basic prob-
ability assignment (Shafer, 1976), assigns a belief in range [0, 1] to every
member of 2Θ (bba can assign belief to any proposition in the frame and not
only to the elementary ones) such that their sum is 1.
That means, a function is called a basic belief assignment such that (Shafer,
1976): ∑

A⊆Θ

m(A) = 1 (1.2)

The value m(A), named a basic belief mass (bbm), represents the portion
of belief committed exactly to the event A and not for a particular subset
of A. In this way, committing belief to a proposition A does not necessarily
imply that the remaining belief is committed to Ā.

The massm(Θ) quantifies the part of belief committed to the whole frame
Θ. It represents the beliefs that are not assigned to the different subsets of
Θ.

Similarly, m(∅) represents the part of belief allocated to the empty set.
Shafer has initially imposed the condition m(∅) = 0. This condition reflects
the fact that no belief ought to be allocated to the empty set. Such bba is
called a normalized basic belief assignment.
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However, this condition is relaxed in the TBM, the allocation of a positive
mass to the empty set (m(∅) > 0) is interpreted as a consequence of the open-
world assumption (Smets, 1990). A mass of belief is assigned to each possible
subset of classes.

Example 1.2

Let us continue with Example 1.1. Suppose a doctor expressing a piece of
evidence concerning the diseases.
The bba is then defined as follows:

m({measles}) = 0.6;

m({measles, rubella}) = 0.2;

m(Θ) = 0.2;

For example, 0.6 represents the part of belief exactly committed to the
hypothesis “the patient has measles”.

1.2.3 Focal elements, body of evidence, core

The subsets A of the frame of discernment Θ such that m(A) is strictly
positive, are called the focal elements of the bba m.

The pair (F,m) is called a body of evidence where F is the set of all the
focal elements relative to the bba m.

The union of all the focal elements of m are named the core and are
defined as follows:

φ =
∪

A:m(A)>0

A (1.3)

Example 1.3

Let us continue with the Example 1.2, the subsets {measles}, {measles,
fifth disease}, and Θ are the focal elements of the bba m.

So, F = {{measles}, {measles, fifth disease},Θ} is the set of the focal
elements of m, and (F,m) is called the body of evidence.
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The core of this bba m is defined as follows:
φ = {measles} ∪ {measles, fifth disease} ∪Θ = Θ

1.2.4 Belief function

Belief function or credibility function, denoted bel, corresponding to a
specific bba m, assigns to every subset A of Θ the sum of the masses of belief
committed exactly to every subset of A by m (Shafer, 1976).

Unlike the bbm m(A) which measures the exact portion of belief assigned
to the subset A, bel(A) quantifies the total amount of belief assigned to the
subsets implying A without implying Ā. It is obtained by summing all the
bbm’s given to the subsets of A. Since m(∅) supports not only A, but also
Ā, the empty set must be discarded from the sum.

The belief function bel is defined for A ⊆ Θ and A ̸= ∅ as:

bel : 2Θ → [0, 1]
bel(A) =

∑
∅≠B⊆Am(B)

The belief function bel satisfies the following condition (Shafer, 1976):
For all A1, ... ,An ∈ 2Θ,

bel(A1 ∪ ... ∪ An) ≥
∑
i

bel(Ai)−∑
i>j

bel(Ai ∩ Aj)− ...− (−1)nbel(Ai ∩ An) (1.4)

Shafer assumed that bel(Θ) = 1 (Shafer, 1976). This can be ignored in
the TBM, under the open world assumption, requiring only that bel(Θ) < 1.

Properties

• Sub-additivity:
bel(A) + bel(Ā) ≤ 1 (1.5)

Contrary to the probability theory the belief function theory increasing
beliefs on a proposition A does not necessary require the decrease of
beliefs on Ā.
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• Monotonicity:
A ⊆ B ⇒ bel(B) ≥ bel(A) (1.6)

Θ will get the highest value of bel, whereas ∅ will get the lowest value.

• For A, B ⊆ Θ and A ∩B = ∅:

bel(A ∪B) ≥ bel(A) + bel(B) (1.7)

• It is possible to obtain the basic belief assignment from the belief mea-
sure:

m(A) =
∑
B⊆A

(−1)|A|−|B|bel(B),∀A ⊆ Θ, A ̸= ∅ (1.8)

• the bbm m(∅) is computed as follows:

m(∅) = 1− bel(Θ) (1.9)

Example 1.4

Let us continue with Example 1.2. The belief function bel corresponding
to the bba m is defined by:

bel({measles}) = 0.6;

bel({rubella}) = 0;

bel({fifth disease}) = 0;

bel({measles, rubella}) = 0.8;

bel({measles, fifth disease}) = 0.6;

bel({rubella, fifth disease}) = 0;

bel(Θ) = 1;

For example, 0.8 is the total amount of belief allocated to the proposition
“measles, rubella” that is “the patient has the disease measles or rubella”. It
is obtained by summing the mass of this set with the masses of its subsets.

1.2.5 Plausibility function

The plausibility function pl, expresses the maximum amount of specific
support that could be given to a proposition A in Θ. It measures the degree
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of belief committed to the propositions compatible with A. pl(A) is then
obtained by summing the bbm’s given to the subsets B such that B ∩A ̸= ∅
(Shafer, 1976).

The plausibility function is defined by:

pl : 2θ → [0, 1]
pl(A) =

∑
B∩A̸=∅m(B), ∀A ⊆ Θ

There is a simple relationship between the belief function bel and the
plausibility function pl associated with a mass function m: for A ⊆ Θ

pl(A) = bel(Θ)− bel(Ā) (1.10)

and
bel(A) = pl(Θ)− bel(Ā) (1.11)

where Ā denotes the complement of A.

Properties

• Over additivity:
pl(A) + pl(Ā) ≥ 1 (1.12)

• Monotonicity:
A ⊆ B ⇒ pl(B) ≥ pl(A) (1.13)

• For A, B ⊆ Θ and A ∩B = ∅:

pl(A ∪B) ≤ pl(A) + pl(B) (1.14)

• ForA ⊆ Θ
bel(A) ≤ pl(A) (1.15)

The two measures, belief and plausibility, can be derived from each other:

pl(A) = 1− bel(Ā) (1.16)

Otherwise, bel(A) and pl(A) may be viewed as lower and upper bounds on
probabilities (bel(A) ≤ pl(A)) (Smets, 1990).
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Example 1.5

Let us continue with Example 1.3. The plausibility function pl correspond-
ing to the bba m is defined by:

pl({measles}) = 1;

pl({rubella}) = 0.4;

pl({fifth disease}) = 0.2;

pl({measles, rubella}) = 1;

pl({measles, fifth disease}) = 1;

pl({rubella, fifth disease}) = 0.4;

pl(Θ) = 1;

For example, 0.4 represents the maximum degree of belief that could be
given to the the proposition “rubella”.

Remarks

• There is another function used to simplify computations like the com-
monality function (Barnett, 1991). It is defined as follows:

q : 2θ → [0, 1]
q(A) =

∑
A⊆B m(B), ∀A ⊆ Θ

However, it may represent the total mass that is free to move to every
elements of A.

• The basic belief assignment, the belief function, the plausibility func-
tion and the commonality function are considered as different expres-
sions of the same information.

• The quantity pl(A) is seen as the degree of maximal (or potential)
support attributed to the proposition A, whereas bel(A) is seen as the
degree of minimal (or necessary) support attributed to A. This infor-
mation may be conveniently expressed by the interval [bel(A), pl(A)],
called belief interval (Smets, 1990).
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1.3 Special belief functions

In this Section, we present some special belief functions relative to par-
ticular states of uncertainty.

1.3.1 Vacuous belief function

A vacuous belief function is a normalized belief function with Θ is its
unique focal element (Shafer, 1976). So, its corresponding bba is defined as
follows:

m(Θ) = 1 and m(A) = 0, ∀A ⊂ Θ, A ̸= Θ (1.17)

In other words,

bel(Θ) = 1 and bel(A) = 0, ∀A ⊂ Θ, A ̸= Θ (1.18)

Such basic belief assignment quantifies the state of total ignorance, in
which there is no reason to belief in any proposition more than another and
all the propositions are plausible.

Example 1.6

Suppose that a doctor cannot detect the nature of disease. We have a
state of total ignorance where the corresponding bba is a vacuous bba defined
by:

m(Θ) = 1 and m(A) = 0, ∀ A ̸= ∅

1.3.2 Categorical belief function

It is a normalized belief function such that its bba is defined as follows
(Mellouli, 1987):

m(A) = 1, for some A ⊂ Θ (1.19)

and
m(B) = 0, ∀B ⊆ Θ, B ̸= A (1.20)
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Such function has a unique focal element A (which is not imperatively a
singleton event) different from the frame of discernment Θ.

Example 1.7

Suppose we get a piece of evidence assuring that the disease nature cannot
be rubella. The corresponding bba is a categorical belief function such that:

m({measles, fifth disease}) = 1

1.3.3 Certain belief function

A certain belief function is a categorical belief function such that its focal
element is a singleton. It represents a state of total certainty:

m(A) = 1, for some A ⊂ Θ, |A| = 1 (1.21)

and
m(B) = 0, ∀B ⊆ Θ, B ̸= A (1.22)

Such function represents a state of total certainty as it assigns all the
belief to a unique elementary event.

Example 1.8

Let’s consider the doctor’s confirmation that the disease is “measles”.
The bba corresponding is a certain bba defined as:

m({measles}) = 1

1.3.4 Bayesian belief function

A bayesian belief function is a special belief function assigning non-zero
masses to singletons only (Shafer, 1976):

mb(A) = 0, |A| > 1 (1.23)

mb becomes a probability distribution.
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Example 1.9

Assume a piece of evidence expressed by the following bba:

mb({measles}) = 0.2;

mb({rubella}) = 0.7;

mb({fifth disease}) = 0.1;

mb(Θ) = 0;

mb is a Bayesian bba since all its focal elements are singletons.

1.3.5 Simple support function

A belief function is called a simple support function (ssf) if it has at
most one focal element different from the frame of discernment Θ. This focal
element is called the focus of the ssf.

A simple support function is defned as follows (Smets, 1995):

m(X) =


w if X = Θ
1− w if X = A for some A ⊂ Θ
0 otherwise

(1.24)

where A is the focus of the ssf and w ∈ [0, 1].

Example 1.10

Let us continue with the Example 1.1. Assume we have a bba defined as
follows:

m({measles, rubella}) = 0.7;

m(Θ) = 0.3;

m is called a simple support function where the focus is the proposition
{measles, rubella}.
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1.3.6 Consonant belief function

A consonant belief function is a belief function in which all the focal
elements (A1, A2, ..., An) are nested, that is A1 ⊆ A2 ⊆ ... ⊆ An.

Properties

• bel is a necessity measure:

bel(A ∩B) = min(bel(A), bel(B)) (1.25)

• pl is a possibility measure:

pl(A ∪B) = max(pl(A), pl(B)) (1.26)

Example 1.11

Let us consider the same bba defined in Example 1.1:

m({measles}) = 0.7;

m({measles, fifth disease}) = 0.3;

m(Θ) = 0.2;

1.3.7 Dogmatic and non-dogmatic belief functions

A belief function is said to be dogmatic if and only if its corresponding bba
m is such that m(Θ) = 0. This case involves some previous cases (certain
belief functions, Bayesian belief functions, categorical belief functions). A
non-dogmatic belief function is defined such that m(Θ) > 0 (Smets, 1995).

1.4 Combination

The belief function theory, as understood in the TBM framework, is a
mathematical theory that offers interesting tools for aggregating the basic
belief assignments defined over the same frame of discernment and induced
from distinct pieces of evidence and provided by two (or more) source of
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information. Its purpose is then to summarize and to simplify a corpus of
data.

1.4.1 Combination of two information sources

Let m1 and m2 be two bba’s induced from two distinct information
sources and defined on the same frame of discernment Θ. The combina-
tion of these bba’s induces a bba on the same frame Θ. The combination
can be either conjunctive or disjunctive.

The choice of one of these rules of combination for aggregating pieces
of evidence may be guided by meta-belief concerning the reliability of the
sources. In fact, if we know that both sources of information are fully reliable,
then we combine them conjunctively. However, if we know that at least one
of the two sources is reliable, then we combine them disjunctively (Smets,
1990) (Smets, 1991).

Conjunctive rule of combination

When we know that both sources of information are fully reliable, the
resulting bba is computed by the conjunctive rule of combination. Hence, the
induced bba quantifies the combined impact of the two pieces of evidence. It
is defined as follows (Smets, 1990):

(m1 ∩⃝m2)(A) =
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C), ∀A ⊆ Θ (1.27)

The conjunctive rule is considered as the unnormalized Demspter’s rule
of combination dealing with the closed world assumptions, defined as follows
(Shafer, 1986):

(m1 ⊕m2)(A) = K.
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C) (1.28)

where
K−1 = 1−

∑
B,C⊆Θ,B∩C=∅

m1(B)m2(C) (1.29)

and
(m1 ⊕m2)(∅) = 0 (1.30)

K is called the normalization factor.
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Properties

The conjunctive rule of combination is characterized by the following
properties:

• Commutativity:
m1 ∩⃝m2 = m2 ∩⃝m1 (1.31)

• Associativity:
(m1 ∩⃝m2) ∩⃝m3 = m1 ∩⃝(m2 ∩⃝m3) (1.32)

• Non-idempotency:
m ∩⃝m ̸= m (1.33)

• Neutral element:
The neutral element within the conjunctive rule of combination is the
vacuous basic belief assignment representing the total ignorance:

m ∩⃝m0 = m (1.34)

where m0 is a vacuous bba.

Example 1.12

Let us consider two distinct doctors’ evidences S1 and S2. The first evi-
dence is expressed by a bba m1 and defined as follows:

m1({measles}) = 0.4;

m1({rubella}) = 0.1;

m1({measles, fifth disease}) = 0.3;

m1(Θ) = 0.2;

The second evidence is expressed by m2 defined as follows:

m2({fifth disease}) = 0.5;

m2({measles, fifth disease}) = 0.4;

m2(Θ) = 0.1;
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The bba corresponding to the conjunctive combination of both pieces of
evidence is defined as follows:

(m1 ∩⃝m2)(∅) = 0.2 + 0.05 + 0.04 = 0.29;

(m1 ∩⃝m2)({measles}) = 0.16 + 0.04 = 0.2;

(m1 ∩⃝m2)({rubella}) = 0.01;

(m1 ∩⃝m2)({fifth disease}) = 0.1 + 0.15 = 0.25;

(m1 ∩⃝m2)({measles, fifth disease}) = 0.08 + 0.12 + 0.02 = 0.22;

(m1 ∩⃝m2)(Θ) = 0.03;

m1 ∩⃝m2 represents the joint bba induced from the combination of m1 and
m2 by using the conjunctive rule of combination.

1.4.2 Disjunctive rule of combination

The dual of the conjunctive rule is the disjunctive rule of combination.
We use it when we only know that at least one of the sources of information
is reliable but we do not know which one is reliable (Smets, 1998).

(m1 ∪⃝m2)(A) =
∑

B,C⊆Θ,B∪C=A

m1(B)m2(C) (1.35)

The disjunctive rule of combination (as the conjunctive rule of combina-
tion) is commutative and associative.

Example 1.13

Let us consider the same bbas represented in Example 1.10. Once the
disjunctive rule of combination is applied, we get:

(m1 ∪⃝m2)({measles, fifth disease}) = 0.2 + 0.1 + 0.16 + 0.08 = 0.54;

(m1 ∪⃝m2)({rubella, fifth disease}) = 0.05;

(m1 ∪⃝m2)(Θ) = 0.15 + 0.12 + 0.04 + 0.02 + 0.03 + 0.04 + 0.01 = 0.41;

m1 ∪⃝m2 represents the joint bba induced from the combination of m1 and
m2 by using the disjunctive rule of combination.
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1.4.3 Combination of several information sources

Since the conjunctive and the disjunctive rules of combination are both
commutative and associative, combining several pieces of evidence induced
from distinct information sources (either conjunctively or disjunctively) may
be easily ensured by applying repeatedly the chosen rule.

Remark

In addition to the conjunctive and disjunctive combination rule, a larger
choice of combination rules has been recognized by many researchers involved
in real-world applications (Lefevre et al., 2002) (Yager, 1987): Yagers rule
(Yager, 1987), the cautious rule (Denoeux, 2006), and Inagakis unified com-
bination rule (Inagaki, 1991), etc.

1.5 Generalized bayes theorem

Smets has Generalized the Bayesian Theorem (GBT) (Smets, 1991), of-
fering an interesting tool for inverting conditional belief functions within the
TBM framework. Assume that we have a vacuous a priori belief on a frame
Θ (that is we are in state of total ignorance), and we know for each ele-
ment θ ∈ Θ, what would be our belief on another frame X, if this element
happened.

Suppose that we learn that the actual value of X is in x ∈ X, then the
GBT allows us to derive the conditional belief function over the frame Θ
given this observation. One has (Smets, 1991):

plΘ[x](θ) = 1−
∏
θi∈Θ

(1− plX [θi](x)) (1.36)

Furthermore, if we assume we have only some beliefs on the value of x,
and these beliefs are represented by a belief function belX over X (mX its
bba), then the GBT becomes:

plΘ[mX ](θ) =
∑
x⊆X

mX(x)plΘ[x](θ) (1.37)

where
plΘ[∅](θ) = 0 (1.38)
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The bba’s and the belief functions on Θ are computed from these plau-
sibility functions.

1.6 Discounting

In the Transferable Belief Model, discounting allows to take in consider-
ation the reliability of the information source that generates the bba m.

For α ∈ [0,1], let (1-α) be the degree of confidence (’reliability’) we assign
to the source of information. It quantifies the strength of reliability given to
the expert (Smets, 1992).

If the source is not fully reliable, the expert’s opinions are represented as
follows:

mα(A) = (1− α)m(A), forA ⊂ Θ (1.39)

mα(Θ) = α+ (1− α)m(Θ) (1.40)

Where α is the discounting factor.

Properties

• α = 0 means that the expert is totally reliable. So, the discounting
does not affect the bba m. That’s:

mα = m (1.41)

• α = 1 means that the expert is not reliable at all. Then, his opinions
have to be totally ignored. Thus, the bba m is reduced to a vacuous
belief function.

Example 1.14

The degree of reliability given to the expert is equal to 0.7. If we consider
this bba defined as follows:

m({measles}) = 0.4;

m({measles,fifth disease}) = 0.3;
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m(Θ) = 0.3;

So, we obtain after discounting this bba:

mα({measles}) = 0.4× 0.7 = 0.28;

mα({measles,fifth disease}) = 0.3× 0.7 = 0.21;

mα(Θ) = 0.3 + (0.3× 0.7) = 0.51;

1.7 Coarsening and refinement

Sometimes, beliefs are induced by information sources with different but
compatible frames of discernment. The coarsening and refinement operations
allow to establish relationships between these different frames in order to
express beliefs on anyone of them.

1.7.1 Refinement and coarsening

Let Ω and Θ be two finite sets. The idea behind the refinement consists
in obtaining one frame of discernment α from the set Θ by splitting some or
all of its events (Shafer, 1976).

Conversely, the coarsening consists in forming a frame Θ by grouping
together the events of the frame of discernment Ω.

Let us define a mapping ρ: 2Θ → 2Ω such that (Shafer, 1976):

ρ({θ}) ̸= ∅ ∀θ ∈ Θ (1.42)

ρ({θ}) ∩ ρ({θ′}) = ∅ if θ ̸= θ
′

(1.43)∪
θ∈Θ

ρ({θ}) = Ω (1.44)

So, given a disjoint partition ρ({θ}) one may set (Shafer, 1976):

ρ(A) =
∪
θ∈A

ρ({θ}) (1.45)

For each A ∈ Θ, ρ(A) consists of all the possibilities in Ω by splitting the
elements of A (Shafer, 1976).



23

The mapping ρ: 2Θ → 2Ω is called a refining, Ω is a refinement of Θ and
Θ is the coarsening of Ω.

Example 1.15

Let us continue with the same problem domain.

Θ = {measles, rubella, fifth disease} (1.46)

A possible refinement of the frame of discernment Θ is:

Ω = {childhood measles, congenital measles, childhood rubella, congenital rubella,
childhood fifth disease, congenital fifth disease}

where
ρ(measles) = {childhood measles, congenital rubella}
ρ(rubella) = {childhood rubella, congenital fifth disease}
ρ(fifth disease) = {childhood fifth disease, congenital fifth disease}

Inversely, Θ is considered as the coarsening of Ω.

1.7.2 Definition of bba’s

Due to refinement and regarding bba’s, it is easy to update a bba mΘ

defined on the frame of discernment Θ to a refinement Ω, we get the bba mΩ

defined as follows:

mΘ(B) =

{
mΩ(A) if B = ρ(A) for some A ⊆ Θ
0 otherwise

(1.47)

1.8 Decision making

It is necessary when making a decision, to select the most likely hypoth-
esis. Some solutions are developed to ensure the decision making within
the belief function theory. One of the most used is the pignistic probability
proposed within the TBM (Smets & Kennes, 1994).

The TBM is a model whose aims at quantifying someone’s degree of
belief. It is based on a two level (Smets & Kennes, 1994):
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• The credal level where beliefs are entertained and represented by belief
functions.

• The pignistic level where beliefs are used to make decisions and repre-
sented by probability functions called the pignistic probabilities.

When a decision must be made, beliefs held at the credal level induce a
probability measure at the pignistic measure denoted BetP (Smets, 1998):

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1−m(∅))
, ∀A ∈ Θ (1.48)

It includes normalization and division of bba’s assigned to focal elements
by their cardinality.

Example 1.16

Assume that at the credal level, beliefs are represented by the following
bba:

m({measles}) = 0.7;

m({measles,rubella}) = 0.2;

m(Θ) = 0.1;

To select the most probably hypothesis, we have to compute the corre-
sponding pignistic probabilities BetP to make the optimal decision, so we
have:

BetP ({measles}) = 0.84;

BetP ({rubella}) = 0.13;

BetP ({fifth disease}) = 0.03;

We notice that the most probable disease is “measles”. So, if we have to
decide, we will choose this hypothesis.

We mention other methods like the maximum of credibility which con-
sists in choosing the hypothesis having the highest value of the belief function
bel, that is the most credible hypothesis and the maximum of plausibility,
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contrary to the maximum credibility criterion, this method consists in sup-
porting the hypothesis having the highest value of the plausibility function
(Barnett, 1991).

1.9 Conclusion

In this chapter, we have presented the basic concepts of belief function
theory as understood in the Transferable Belief Model.

This presentation shows that the belief function theory provides a con-
venient tool to handle uncertainty in decision problems, especially within
Multi-Criteria Decision Making Methods. The following chapter will deal
with these methods more precisely the Analytic Hierarchy Process.



Chapter 2

Multi-Criteria Decision Making

2.1 Introduction

Within the framework of Multi-Criteria Decision Making (MCDM) prob-
lems, a decision maker often needs to make judgments on decision alterna-
tives that are evaluated on the basis of its preferences (criteria) (Zeleny,
1982). However, this is not an easy task because often these criteria may be
conflicting with each other.

As a result, a number of MCDM methods were proposed, and each one
has its own characteristics. Amongst the most well known ones is the Ana-
lytic Hierarchy Process (AHP) (Saaty, 1977) (Saaty, 1980).

In this chapter, we firstly present an overview of MDCM: we will briefly
introduce the basic concepts. Then, we expose several MCDM methods,
organized into two major families: Multi-attribute Utility Theory (MAUT)
and outranking methods. We are interested especially in AHP method: we
focus on its standard version where its procedure will be described, then an
example will be detailed to illustrate this approach.

The last part of this chapter deals with another kind of this approach
under uncertain environment which is briefly exposed combining this method
with one theory managing this kind of environment such as fuzzy theory,
probability theory and belief function theory.

26
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2.2 What is Multi-Criteria Decision Making?

2.2.1 Definition

Our life is filled with many decisions: from the simple everyday problem
of selecting a school to the complex problems of economic planning. Real-life
decisions involve multiple criteria that are most likely conflicting with each
other (Zeleny, 1982).

The mathematical representation of these decision making problems started
in the 19th century with economists and applied mathematicians like Pareto,
VonNeumann, Morgenstern, etc. The first approaches considered monocri-
terion decision problems, and in 1951, the multi-criteria problem was intro-
duced by Koopmans, Kuhn and Tucker (Figueira et al., 2005).

By definition, MCDM will allow the decision maker to determine which
the best alternatives are, considering multiple conflicting criteria or goals. Its
general purpose is to serve as an aid to thinking and decision making. That’s
why, the concept of optimum does not exist in a multicriteria framework.

In the MCDM field, three kinds of problems are distinguished (Roy,
1996): choice problems (Pα), ranking problems (Pβ) and sorting problems
(Pµ). The goal of the decision maker in each type of problem is different: in
choice problems, the aim is to find the best alternative. In ranking problems,
we want to know the goodness of all alternatives, which is usually presented
as a ranking from the best to the worst, and in sorting problems we want to
know which alternatives belong to each class of a predefined set of classes.

2.2.2 Basic concepts

Although MCDM problems could be very different in context, they share
the following common features. There are the notions of alternatives, criteria,
etc. In this section, we define the different concepts (Triantaphyllou, 2000)
(Figueira et al., 2005):

• Decision maker: Actor for whom the decision-aid tools are developed
and implemented.

• Alternative: Usually alternatives represent the different choices of
action available to the decision maker.
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• Attribute: Attributes are also referred to as “goals” or “decision
criteria”. Attributes represent the different dimensions from which the
alternatives can be viewed.

We assume an application g, such that it appears meaningful to com-
pare two alternatives a1 and a2 according to a particular point of view,
on the sole basis of g(a1) and g(a2).

We will follow C = {c1, c2, ..., cm} to denote the criteria, being gj the
function attached to cj. Besides with vij, we denote the value of gj(ai).
That is vij = gj(ai).

Criteria can be both well defined and quantitatively measurable (price,
size, etc.) or qualitative and difficult to measure (appearance, satisfac-
tion, etc.). It should be:

– able to discriminate among the alternatives and to support the
comparison of the performance of the alternatives,

– complete to include all goals,

– operational and meaningful,

– non-redundant,

– few in number.

• Weight: Value that indicates the relative importance of one criterion
in a particular decision process (denoted by w). These weights are
usually normalized.

• Performance matrix: Consider a MCDM problem with m criteria
and n alternatives. Let c1, ..., cm and a1, ..., an denote the criteria and
alternatives, respectively. A standard feature of MCDM methodology
is the decision table as shown below (see Table 2.1).

In the table each column belongs to a criterion and each row describes
the performance of an alternative. The score vij describes the perfor-
mance of alternative aj against criterion ci.

Table 2.1: Decision matrix

Criteria
Alternatives c1 c2 ... cm

a1 v11 v12 ... v1m
...
an
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2.3 Decision making process

Whether simple or complex, all decisions involve the same basic process
(Belton & Stewart, 2003):

1. Establish aims of the MCDM, and identify decision makers and other
key players.

2. Identify the alternatives to be appraised.

3. Identify objectives and criteria.

• Identify criteria for assessing the consequences of each alternative.

• Organise the criteria by clustering them under high-level and lower-
level objectives in a hierarchy.

4. Assign weights for each of the criterion to reflect their relative impor-
tance to the decision.

5. Select a decision making tool.

6. The alternatives are then evaluated using key available information and
the set of established criteria.

7. Finally, a decision is made regarding the best alternative, and probable
consequences of this decision are assessed. It may be necessary to
repeat the whole process if it is found that a misjudgment has been
made.

2.4 Multi-Criteria Decision Making methods

A large number of MCDM method exist in the literature and there are
many ways to classify them. One way is to classify them according to how
they process the basic information in the performance matrix. That means,
the principal difference between the main families of MCDM methods is the
way in which this aggregation is done. That’s why these methodologies are
classified into two distinct families (Figueira et al., 2005) (Triantaphyllou,
2000): On the one hand, the outranking approach introduced by Roy where
some methods like Electre and Promothee are developed (Brans et al., 1986)
(Figueira et al., 2005). On the other hand, the value and utility theory
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approaches mainly started by Keeney and Raiffa (Keeney & Raiffa, 1976),
and then implemented in a number of methods (Triantaphyllou, 2000).

2.4.1 Outranking methods

The Outranking methods, proposed by Roy (1968) (Zeleny, 1982) (Figueira
et al., 2005), are one of the most known approach of MCDM.

The basic idea is that small differences between alternatives are indiffer-
ent, and differences over some certain magnitude do not bring any additional
value. For example, when buying a car, it does not make a difference for
most of the decision makers whether the car costs 10000 euros or 20 euros
more. In analogy, if one car costs 10000 and two others 2000000 and 3000000,
probably there is no difference between preferability of the first over the sec-
ond one to the first over the third one. Both of the latter ones are considered
“bad” with respect to the price of the first one.

Outranking methods are called such, because instead of aggregating their
criterion values to a single attribute describing goodness of the alternative,
they form an outranking relation between alternatives. An alternative is
said to outrank another if it is considered as good as or better. In fact, their
main idea is to establish preference ordering of alternatives by comparing
all feasible alternatives or actions by pairs. Then, a concordance relation is
established by aggregating the relative preferences. After having determined
for each pair of alternatives whether one alternative outranks another, these
pair-wise outranking assessments can be combined into a partial or complete
ranking.

The basis of these methods is the definition of an outranking relation
S. By definition, S is a binary relation: a′Sa holds that’s “a′ outranks
alternative a”. If given the information about the preferences of the decision
maker, there are enough arguments to confirm that “a′ is at least as good as
a”, and there is really no important reason to refuse this statement.

For alternative pairs a′ and a, preferences are expressed for each criterion
as one of the following types (Linkov et al., 2004):

• a′Pa, strict preference a′ over a.

• a′Qa, weak preference for a′ over a.
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• a′Ia, indifference between the two actions.

• a′Ja, inability or refusal to compare the actions.

The indifference threshold is the difference beneath which a decision-
maker has no preference: that is, a difference that is too small to be used
as a basis of distinction between the two. The preference threshold is the
difference above which the decision maker strongly prefers one management
alternative to another.

Two conditions must be fulfilled in order to accept that a′Sa holds:

1. A concordance condition: a majority of criteria must support a’Sa
(classical majority principle).

2. A non discordance condition: among the non concordant criteria, none
of them strongly refutes a′Sa (respect of minorities principle)

The two most popular families of the outranking methods are: Electre
(Figueira et al., 2005) and Promothee (Figueira et al., 2005) (Brans et al.,
1986) methods.

2.4.2 Multi-Attribute Utility Theory

The multi-attribute utility theory (MAUT) is one of the oldest and well
established MCDM theory. It was introduced by Keeney and Raiffa (1976).

The basis of MAUT is the use of utility functions. Its role is to trans-
form diverse criteria into one common scale of utility or value. These values
describe the “goodness” of alternatives taking into account the preferences
of the decision maker. The alternative with the highest expected utility is
the most preferred one, or “best” in the considered problem setting.
The goal of decision maker is then to maximize the utility function. In other
term, to maximize some function that aggregates the utility of each different
criterion.

U = U(c1, c2, ..., cm) (2.1)
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Different models exist according to different expressions for function U :
the additive model (Triantaphyllou, 2000), the multiplicative model (Tri-
antaphyllou, 2000), etc.

Another approach based on the MAUT principles is the Analytic Hier-
archy Process (Saaty, 1977) (Saaty, 1980) where the problem is structured
hierarchically. The purpose of constructing the hierarchy is to evaluate the
influence of the criteria on the alternatives to attain objectives. This method
was extended to Analytic Network Process (ANP) (Saaty, 1996), a general-
ization of the AHP method.

Remark:

The choice of MCDM method depends not only on the criteria and the
preferences of the decision maker, but also on the type of the problem. There-
fore, for all the methods applied, the analyst as well as the decision maker
should acknowledge the prerequisites for its use, as well as the advantages
and disadvantages the method has.

2.5 Analytic Hierarchy Process as a MCDM

method

The Analytic Hierarchy Process has been developed by (Saaty, 1977)
(Saaty, 1980) and is one of the best known and most widely used MCDM
approaches.

The AHP has attracted the interest of many researchers because it pro-
vides a flexible and easily understood way to analyze and decompose the
complex decision problem through breaking it into smaller and smaller parts.
In addition, It is a MCDM methodology that allows subjective as well as ob-
jective factors to be considered in the evaluation process. The pertinent data
are then derived by using a set of pair-wise comparisons. These comparisons
are used to obtain the weights of importance of the decision criteria, and the
relative performance measures of the alternatives in terms of each individual
decision criterion.

Indeed, that is the reason why AHP has successfully been applied to many
practical problems (Saaty, 1990): from the simple problem of buying a car
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to the complex problems of economic planning, portfolio selection, ressource
allocation, etc.

The AHP, as a compensatory method, assumes complete aggregation
among criteria and develops a linear additive model. The weights and scores
are achieved basically by pair-wise comparisons between all alternatives and
criteria. The basic procedure to carry out the AHP method will be presented
in the following subsections.

2.5.1 Constructing the hierarchy

Constructing the hierarchical structure is the most important step in
AHP method. In fact, this approach requires the decision maker to represent
the problem within a hierarchical structure. The purpose of constructing the
hierarchy is to evaluate the influence of the criteria on the alternatives to
attain objectives.

The number of levels depends upon the complexity of the problem and
the degree of detail in the problem. So, an AHP hierarchy has at least three
levels: the main objective of the problem is represented at the top level
of the hierarchy. Then each level of the hierarchy contains criteria or sub-
criteria that influence the decision. The last level of the structure contains
the alternatives.

2.5.2 Pair-wise comparison

In AHP, once the hierarchy has been constructed, the decision maker be-
gins the prioritization procedure to determine the relative importance of the
elements on each level of the hierarchy (criteria and alternatives). Elements
of a problem on each level are paired (with respect to their common relative
impacts on a property or criteria) and then compared.

To compare elements on each level of the hierarchy, AHP uses a quantita-
tive comparison method that is based on pair-wise comparisons of the follow-
ing type “How important is criterion ci relative to criterion cj ?” Questions
of this type are used to establish the weights for criteria and similar questions
are used to assess the performance scores for alternatives on the subjective
(judgmental) criteria. “How important is alternative A when compared to
alternative B with respect to a specific criterion cj (in the level immediately
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higher)?”

The responses to the pair-wise comparison question use the following
nine-point scale (Saaty scale) Table 2.2 expressing the intensity of the pref-
erence for one element versus another.

Table 2.2: The Saaty Rating Scale

Intensity of
importance

Definition Explanation

1 Equal impor-
tance

Two factors contribute equally to the objective.

3 Somewhat more
important

Experience and judgement slightly favour one over
the other.

5 Much more im-
portant

Experience and judgement strongly favour one
over the other.

7 Very much more
important

Experience and judgement very strongly favour
one over the other. Its importance is demonstrated
in practice.

9 Absolutely more
important.

The evidence favouring one over the other is of the
highest possible validity.

2,4,6,8 Intermediate
values

When compromise is needed.

Let cij denote the value obtained by comparing criterion ci relative to
criterion cj. Of course, we set cii = 1. Furthermore, if we set cij = k , then
we set cji =

1
k
. For example, if criterion ci is absolutely more important than

criterion cj and is rated at 9, then cj must be absolutely less important than
ci and is valued at 1

9
. Next, the comparison matrix is formed by repeating

the process for each criterion.

Extracting the judgments enables the construction of the matrix of A
(n× n), where n elements compared to each other with respect to a specific
criterion ci.

2.5.3 Priority vector

After filling the pair-wise comparison matrices according to the 1-9 scale,
the local priority weights are determined by using the eigenvalue method.
The objective is then to find the weight of each element, or the score of each
alternative by calculating the eigenvalue vector.
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The formulation used in this method is shown below:

Aw = λmaxw (2.2)

Where w is the right eigenvector and λmax the maximum eigenvalue for the
comparison matrix A.

2.5.4 Consistency ratio

In decision-making, it is important to know how good the consistency
is. Consistency in this case means that the decision procedure is producing
coherent judgments in specifying the pair-wise comparison of the criteria or
alternatives.

However, perfect consistency rarely occurs in practice. In the AHP the
pair-wise comparisons in a judgment matrix are considered to be adequately
consistent if the corresponding consistency ratio (CR) is less than 10%. The
CR coefficient is calculated as follows.

First, the consistency index (CI) needs to be estimated. This is an
index to assess how much the consistency of pair-wise comparison differs
from perfect consistency. This is done by:

CI = (λmax − n)/(n− 1) (2.3)

where n is the matrix size and λmax the maximum eigenvalue.

Then, AHP measures the overall consistency of judgment by means of
consistency ratio CR. The CR index is obtained by dividing the computed CI
index by a random index (RI). Table 2.3, derived from Saaty’s book, shows
the RI for matrices of order 1 through 10.

CR =
CI

RI
(2.4)

Table 2.3: Average random consistency (RI)

1 2 3 4 5 6 7 8 9 10
0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

If CR ≤ 0.1, the judgement matrix is acceptable otherwise it is considered
inconsistent, and the entries that are given by the decision maker have to be
revised until a satisfactory consistency ratio is obtained.
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2.5.5 Synthetic utility

Once the alternatives are compared with each other in terms of each one
of the decision criteria and the individual priority vectors are derived, the
synthesis step is taken.

The priority vectors become the columns of the decision matrix. The
weights of importance of the criteria are also determined by using pair-wise
comparisons. Therefore, if a problem has m alternatives and n criteria, then
the decision maker is required to construct n judgment matrices (one for each
criterion) of order m ×m and one judgment matrix of order n × n (for the
n criteria).

Finally, given a decision matrix the final priorities, denoted by AAHP
i , of

the alternatives in terms of all the criteria combined are determined according
to the following formula:

AAHP
i =

m∑
j=1

vij.wj, for i = 1, ..., n (2.5)

where vij describes the performance of alternative ai against criterion cj, and
wj indicates the relative importance of one criterion cj.

The global priorities thus obtained are used for final ranking of the al-
ternatives and selection of the best one.

Example 2.1

Let us treat a problem of purchasing a car. Suppose that this problem
involves three criteria, and four alternatives as shown in Figure 2.1.

To apply the AHP method, we must follow these main steps :

1. Pair-wise comparison:

The first step in AHP is to calculate the relative importance of the dif-
ferent criteria. We provide an initial matrix (see Table 2.4) for the
pair-wise comparison criteria in which the principal diagonal contains
entries of 1, as each factor is as important as itself. For instance,
when fuel economy criterion is compared to style criterion then the
decision maker has determined that fuel economy is between to be clas-
sified “somewhat more important” than style. Thus, the corresponding
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Figure 2.1: Hierarchy of car choice AHP model

comparison assumes the value of 3. A similar interpretation is true for
the rest of the entries.

Table 2.4: Weights on criteria

Criteria Style Reliability Fuel Economy
Style 1 1

2
3

Reliability 2 1 4
Fuel Economy 1

3
1
4

1

Our next step is to evaluate all the alternative on each criterion. For
instance, if we take style criterion, then we might get the following
matrix (see Table 2.5):

Table 2.5: Comparison matrix for style criterion

Style Mazda Ford Renault Citroen
Mazda 1 1

4
4 1

6

Ford 4 1 4 1
4

Renault 1
4

1
4

1 1
5

Citroen 6 4 5 1

2. Priority vector:

For each pair-wise comparison matrix, we use the eigen vector method
to get the priority vector. For the criteria matrix, for example, we get
the following priority vector (see Table 2.6):
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Table 2.6: Computing the criteria priority values

Criteria Style Reliability Fuel Economy Priority
Style 1 0.5 3 0.3196

Reliability 2 1 4 0.5584
Fuel Economy 0.33 0.25 1 0.1210

3. Consistency ratio:

Perfect consistency rarely occurs in practice. Ratings should be consis-
tent in two ways: First, Ratings should be transitive. That means that
if “Reliability” is better than “Style”, and “Style” is better than “Fuel
Economy”, then “Reliability” must be better than “Fuel Economy”.
Second, ratings should be numerically consistent. For example, we know
that “Reliability = 3 Style” and “Reliability = 5 Fuel Economy” that
means that “Style = (5/3) Fuel Economy”.

To calculate the consistency ratio we must solve:

Aw = λmax.w

by solving

det(λI − A) = 0

We get λmax = 3.0180. Then, the CI index is found by:

CI = (λmax − n)/(n− 1) = 0.009

The final step is to calculate the CR by using the table derived from
Saaty’s book (Table 2.3).

CR = CI/RI = 0.0090/0.58 = 0.01552

where RI = 0.58 because the pair-wise comparison matrix is a matrix
of order 3.

CR value is less than 0.1, so the evaluations are consistent. A similar
procedure is repeated for the rest of matrix.
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Table 2.7: Decision matrix

Criteria
Style Reliability Fuel Economy Utility
0.3196 0.5584 0.120 1

Ford 0.1160 0.3790 0.3010 0.2854
Mazda 0.2470 0.2900 0.2390 0.2700
Renault 0.2600 0.740 0.2120 0.0864
Citroen 0.5770 0.2570 0.2480 0.3582

4. Synthetic utility:

The next step is to calculate the global priorities to obtain the final
ranking of alternatives and to select the best one. So, to determine
these final scores, we will apply the Equation (2.5) by multiplying the
criteria weights’ by the ratings for the decision alternatives for each
criterion, and summing the respective products (see Table 2.7).

As a result, the citroen car will be preferred since it has the highest
values.

2.6 AHP method under uncertainty

Standard versions of the AHP method gives good results in a context in
which everything is known with certainty. However, the reality is connected
to uncertainty and imprecision by nature. A decision maker may encounter
several difficulties when expressing his own level of preferences between al-
ternatives or also criteria. These difficulties arise due to different situations.
Such uncertainty may badly affect the final decision making.

Moreover, in such uncertain and imprecise context, standard AHP cannot
be applied. So, it is inadequate and badly adapted to ensure its role.

In order to overcome these difficulties and to extend the AHP on a more
real elicitation procedure, several AHP methods are combined within un-
certain theories such as probability theory, fuzzy set theory, belief function
theory and possibility theory.

One of these extensions is the Fuzzy AHP appeared in (Laarhoven &
Pedrycz, 1983), which utilized triangular fuzzy numbers to model the pair-
wise comparisons. Since then, several fuzzy AHP developments have been
proposed (Lootsma, 1997). Besides, probabilistic AHP methods are intro-
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duced in (Basak, 1998), handling pair-wise comparisons matrices based on
probability theory, where each element of which is the prior probability.

In particular in the belief function framework, (Beynon et al., 2000) have
proposed a method called the DS/AHP method comparing not only single
alternatives but also groups of alternatives. Besides, Smarandache et al.
(Dezert et al., 2010) have developed the DSmT/AHP which is based on the
Dezert-Smarandache theory (Smarandache & Dezert, 2004). This method
aimed at performing a similar purpose as DS/AHP that is to compare groups
of alternatives.

2.6.1 Fuzzy AHP method

AHP method has been criticized because it cannot handle the inher-
ent uncertainty and imprecision which are associated to mapping of decision
maker perceptions to exact numbers. So, AHP requires exact or crisp num-
bers. That’s why, many fuzzy AHP methods are proposed by various authors
(Laarhoven & Pedrycz, 1983) (Lootsma, 1997).

Fuzzy AHP approach use triangular fuzzy numbers to model the pair-
wise comparisons (Laarhoven & Pedrycz, 1983).

A fuzzy number is a special fuzzy set F = {(x, µ(x)), x ∈ ℜ}, where x
takes its values on the real line, and µ(x) is a continuous mapping from ℜ to
the closed interval [0, 1].

A triangular fuzzy number is denoted by M̃ = (a, b, c), where a ≤ b ≤ c,
has the following triangular-type membership function:

µM̃(x) =


0 , x < a
x−a
b−a

, a ≤ x ≤ b
c−x
c−b

, b ≤ x ≤ c

0 , x > c

(2.6)

As a result, the ratio comparison between the relative preference of ele-
ments of the hierarchy can be modelled through a fuzzy scale value associated
with a degree of fuzziness as shown in Table 2.8.

By using triangular fuzzy numbers, via pair-wise comparison, a fuzzy
judgment matrix is then constructed. As a solution and in oder to compute
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Table 2.8: The fuzzy Saaty scale

Intensity of importance Definition

1̃ = (1, 1, 3) Equal importance

3̃ = (1, 3, 5) Somewhat more important

5̃ = (3, 5, 7) Much more important

7̃ = (5, 7, 9) Very much more important

9̃ = (7, 9, 9) Absolutely more important

2̃,4̃,6̃,8̃ Intermediate values

the priority vector, the fuzzy eigen value is then used.

2.6.2 DS/AHP method

Though the popularity and efficiency of the AHP approach, this method
is often criticized, because it cannot be applied in an uncertain and imprecise
context. In fact, in some cases, the decision maker cannot make pair-wise
comparisons between all the alternatives.

To solve this problem, (Beynon et al., 2000) (Beynon, 2002) propose to
extend the AHP on a more real elicitation procedure. Beynon et al. have
proposed a method called the DS/AHP method, which extended the AHP
approach with belief function theory to compare not only a single alternatives
but also groups of alternatives between each other.

Within DS/AHP method, for each criterion, there are certain groups
of decision alternatives, including Θ, about which the decision maker can
express some degree of favourable knowledge.

Through comparing a group of alternative to Θ, the decision maker will
express some degree of favourable knowledge on each of these groups of alter-
native. This differs from the AHP method that makes pair-wise comparisons
between individual decision alternatives (Beynon et al., 2000) (Beynon et al.,
2001), here each group of alternatives identified is compared to all possible
alternatives in the frame of discernment.

After identifying the candidate sets of criteria, what is left is setting prior-
ities of the sets of alternatives. At this point, classical pair-wise comparisons
of the elements are made to obtain these priorities.
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In DS/AHP method, the Saaty’s scale was modified for simplicity, it is
reduced to 5 unit scale (see Table 2.9).

Table 2.9: Knowledge/favourable scale

Opinion/Knowledgeable Numerical rating
Extremely favourable 6
Strongly to extremely 5
Strongly favourable 4

Moderately to strongly 3
Moderately favourable 2

To calculate the priority vector, the weight of criteria must be incorpo-
rated in the pair-wise comparison matrix. This is done by multiplying the
elements in the last column (except the last entry in that column) by the re-
spective importance value for that criterion. If p is the weight of the criterion
j and vij is the favourability opinion for a particular group of alternatives,
then the resultant value is p× vij (the resultant change in the bottom row of
the matrix is similarly (1/(p× vij)).

After computing the priority vector, the priority values in each column
sum to one. As a result, Beyon et al. consider that these priorities values
are a basic belief assignment.

Then, the obtained priorities vectors are combined using the Dempster’s
rule of combination to integrat them into a single bba. In fact, Beyon et al.
assume that criteria are independent pieces of evidence, offering information
on the decision makers knowledge towards the favourability of the identified
groups of alternatives, hence the associated bba’s are independent.

Finally, to choose the best alternative, the presented approach uses the
belief and plausibly functions.

Example 2.2

To describe the DS/AHP method, we will use a simple example. Indeed,
the decision involves buying a new car, from a choice of three well-known
types of car (A, B and C). However, there are four criteria: price, fuel econ-
omy, comfort and style that are believed influence the choice of car. Hence,
the overall objective is to decide which is the best car to buy.
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First, we establish the hierarchy frame for purchasing a car, as shown
in Figure 2.2. So, for each criterion, there are certain groups of decision
alternatives, including Θ.

Figure 2.2: Hierarchy of modified car choice model

To calculate the weigth of criteria, the standard AHP method is applied
to get the priority vector (see Table 2.10).

Table 2.10: Criteria priority values

Criterion Price Fuel Comfort Style
Priority 0.3982 0.0851 0.2159 0.2988

Also, the same process is used to get the alternatives priorities. For
example, for the comfort criterion we get (Table 2.11):

Table 2.11: Initial pair-wise matrix for comfort criterion

Comfort {A} {B,C} {A,B,C}
{A} 1 0 4
{B,C} 0 1 6
{A,B,C} 1/4 1/6 1

The zero’s which appears in the knowledge matrix indicates no attempt
to assert knowledge between groups of decision alternatives.

Next, to calculate the priority vector, we multiply each element of the
pair-wise matrices (except the last entry in that column) by the respective
importance value for that criterion.

Let us continue with the comfort criterion, which had an importance value
p = 0.2159, we obtain Table 2.12:
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Table 2.12: Pair-wise matrix for comfort criterion after influence of its pri-
ority rating

Comfort {A} {B,C} {A,B,C}
{A} 1 0 0.8714
{B,C} 0 1 1.3072
{A,B,C} 1.1475 0.7650 1

Table 2.13: Pair-wise matrix for price, fuel and style

Price {A,B} Θ
{A,B} 1 6

Θ 1/6 1

Fuel {B} Θ
{B} 1 3
Θ 1/3 1

Style {A} {C} Θ
{A} 1 0 5
{C} 0 1 2
Θ 1/5 1/2 1

For the other three criteria, we get Table 2.13:

In these knowledge matrices the right eigenvector method is again used
to calculate the priority values (see Table 2.14). That is, the normalised
elements of the eigenvector associated with the largest eigenvalue from the
matrix.

Table 2.14: Priority values

Price Priority Fuel Priority Comfort Priority Style Priority
{A,B} 0.7054 {B} 0.2037 {A} 0.2419 {A} 0.4265

Θ 0.2946 Θ 0.7963 {B,C} 0.3628 {C} 0.1706
Θ 0.3953 Θ 0.4029

The priority values in each column sum to one. These are directly defined
as basic belief assignments. So, for comfort criterion, we note mc as the
associated bba:

mc({A}) = 0.2419, mc({B}) = 0.3628, mc(Θ) = 0.3953
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We can go through a similar process with price, fuel and style (see Table
2.15). These bba’s are independent pieces of evidence. Hence, the associated
bba are independent. So, we use the Dempster’s rule of combination to get a
single bba and the resulting bba is then:

Table 2.15: The bba mcar after combining all evidence

DA {A} {B} {C} {A,B} {B,C} Θ
mcar 0.4668 0.2292 0.0482 0.1420 0.0545 0.0593

Now, we can calculate the belief and plausibility functions:

Table 2.16: Belief and plausibility values for subsets of cars

Cars Bel Pl
{A} 0.4309 0.6650
{B} 0.2312 0.5180
{C} 0.0511 0.1729
{A,B} 0.8271 0.9489
{A,C} 0.4820 0.7688
{B,C} 0.3350 0.5691

If we consider the focal element {A}, then there is a small amount of
evidence in favour as well as against the hypothesis A being the best car. For
{C} the table shows strong evidence against being the best choice. Interest-
ingly the set {A,B} shows strong evidence in favour of including within its
elements the best choice of car.

2.7 Conclusion

In this chapter, we have presented the basic concepts of the AHP method.
We have defined its procedure. Then, we have given an example to explain
this approach.

Despite the advantages of AHP method, several researches are focusing
on improving more and more the results provided by this approach, especially,
in an environment where uncertainty may exist in the different levels relative
to a decision making problem. One of these extensions is the fuzzy AHP
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approach and also the DS/AHP approach, and many researches are still
needed in order to deal with the uncertainty.

Thus, our objective will be the adaptation of this method to the belief
function theory and to develop what we call belief AHP approach that will
be detailed in the next chapter.



Part II

Belief AHP Approach
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Chapter 3

Belief AHP approach

3.1 Introduction

As mentioned in Chapter 2, the Analytic Hierarchy Process (AHP) is
considered as one of the most well known Multi-Criteria Decision Making
(MCDM) method, due to its ability to solve complex problems by breaking
them into smaller and smaller parts. The strength of AHP is that it is easier
to understand and it can effectively handle both qualitative and quantitative
data.

However, standard AHP is criticized because, in an environment charac-
terized by uncertain and imprecise data this method does not perform well.
In fact, the decision maker may express his preferences with some degrees of
uncertainty, that means he may have a certain doubt or a lack of knowledge
about alternatives or criteria.

To overcome this limitation, we propose, as a solution, to develop what
we call a belief AHP method, a new MCDM method based on the AHP
approach in order to cope with uncertain preferences.

Firstly, we have developed a method that deals with uncertainty into two
levels namely the criterion and alternative levels. So, the decision maker may
express his preferences with some degrees of uncertainty.

Secondly, we have extended our proposed approach on a more flexible
method that integrates additional uncertain and/or imprecise knowledge re-
garding the comparison procedure.

48
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Our methods are based on the belief function theory as understood in
the Transferable Belief Model (TBM). This theory provides a convenient
framework for dealing with incomplete and uncertain information, notably
those given by experts.

In this chapter, we give an insight into our proposed methods. We first
give some motivations to develop the belief AHP method for handling un-
certainty. Next, we define the objectives of the belief AHP approach and we
explain the uncertainty concealed in this standard method. Then, we detail
each of the proposed methods and we give some examples to illustrate them.

3.2 Definition and motivations

A belief AHP method is an extension of the AHP approach in an uncer-
tain environment. The uncertainty will be represented and handled by the
means of the belief function theory as explained in the TBM.

Contrary to the standard AHP approach where the preferences of the
decision maker are known with certainty, in a belief AHP method these
preferences may be uncertain and imprecise. Such uncertainty can appear
either in the criterion or in the alternative levels. In a first part, our method
will be able to compare groups of alternatives instead of comparing only single
alternatives between each other. In a second part, to judge the importance
of criteria, our approach offers a formalism allowing the expert to express
his ranking even over subgroups of criteria. Thus, our approach deals with
uncertainty into two levels namely the criterion and alternative levels.

3.3 Uncertainty in the AHP method

Though its popularity and efficiency, the classical AHP is criticized (Joaquin,
1990) (Holder, 1995) because, in real-life decision making situation, the de-
cision maker may encounter several difficulties when expressing his own level
of preferences between alternatives or also criteria.

These difficulties arise due to different situations. The first cause is due
to incomplete or lack of data for making decisions. In fact, the decision maker
cannot ensure pair-wise comparison between all the decision alternatives be-
cause sometimes the information about them may be incomplete due to the
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time pressure and the lack of data.
Second, the elicitation of preferences may be rather difficult when the num-
ber of alternatives is large. If the number of alternatives in the hierarchy
increases then, more comparisons are needed to be made.
In addition, in some practical problems, experts are able to compare only
subsets of alternatives and cannot compare separate or singleton alterna-
tives. Suppose that there is a lot of transport facilities which can be divided
into three groups: motor transport, air transport and water transport. An
expert cannot provide pair-wise comparisons of all the facilities, but he can
say that motor transport is more preferable than water transport (Utkin &
Simanova, 2008).

Furthermore, an expert should also make a ranking of the importance
of criteria. In many situations, it is easier for him to express his opinions
and comparisons between subsets of criteria and not compulsory on singleton
criterion. For example, for the fuel, we may get two subgroups: the first one
containing both natural gas and gasoline criteria and the second one only
singleton criterion which is diesel.

As a result, in such uncertain and imprecise context, standard AHP
cannot be applied.

3.4 Objectives

The objective of this work is to develop a new concept that we will call
belief AHP method. In addition to the objectives of the standard AHP
method, the belief AHP aims at realizing two major objectives:

• Building an order of preference on a number of decision alternatives,
that is to obtain priorities from uncertain and imprecise preferences’
sets on all the levels of the hierarchy in AHP decision problem (criteria
and alternatives).

• choosing the best alternative: the uncertainty will be taken into account
in the final decision.

This new approach is based on both the AHP method and the belief
function theory in order to cope with uncertainty.
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3.5 Estimation of pertinent data

3.5.1 Data acquisition

One of the most crucial steps in many decision making methods is the
accurate estimation of the pertinent data. This is a problem not only found
in the AHP method, but it is crucial in many other methods which need to
elicit preferences from the decision maker. Very often preferences cannot be
known in terms of absolute values.

Generally, any MCDM method is constructed from two levels of judg-
ment. The first one is used to represent the weight of criteria and the second
one is composed of alternatives where for each alternative, we know exactly
its performance against each criterion.

However, due to the uncertainty, the structure of these data may be dif-
ferent from the traditional one. In fact, AHP method elicits preferences from
decision maker’s answers. As mentioned above, these preferences may be
incomplete and imprecise because, in real-life decision making situation, the
decision maker may have a certain doubt or a lack of knowledge about alter-
natives and also criteria. As a result, he may encounter several difficulties
when expressing his own level of preferences between these alternatives and
criteria.

As a solution, we propose to represent this uncertainty by comparing
groups of alternatives instead of comparing only single alternatives between
each other. Then, we assume that the obtained priorities are transformed into
basic belief assignments (bba’s). Each bba represents the opinions-beliefs of
the decision maker about his preferences. On the other hand and in order to
judge the importance of criteria, our method offers a formalism allowing the
expert to express his ranking even over subgroups of criteria.

Among the advantages of working under the belief function framework, is
that this theory provides a convenient framework for dealing with individual
elements of the hypothesis set as well as their subsets.

Example 3.1

This is an example, to illustrate our new structure of the data: data
acquisition.



52

We will use an everyday situation related to the fact of buying a car.
We assume there are three alternatives A, B and C that will be compared
according to four criteria: price (P), fuel (F), comfort (C) and style (S).
Hence, our major objective is to make up mind about the suitable car to be
bought.

Table 3.1: Data acquisition

Price Fuel Comfort Style
A 25000 ? Average economic
B 30000 7.5 ? luxe
C ? ? ? ?

In Table 3.1, the judgments made by the decision maker are given over
the four criteria: (P), (F), (C) and (S). For a single criterion, values in
the column related to the performance of an alternative against the specific
criterion, where no value is given, it may be due to the lack of knowledge
about alternatives.

To illustrate our approach, for the criterion (P) for example, alternatives
which have the same performance value are grouped together. In other terms,
we will get two subsets of alternatives: {A,B} and {A,B,C}: A and B have
almost the same degree of preferences and the set {A,B,C} to express the
ignorance.

The next step is to assign an important level to each criterion. The
decision maker assigns a degree of preferences for each criterion. Criteria
which have the same degree of preference are grouped together. We will get
the following sets of criteria: {P}, {F} and {C, S}. The (C) and (S) criteria
are grouped together because they have the same degree of preference. Figure
3.1 resumes the candidate alternatives and criteria.

3.5.2 Special cases

Within the belief function framework, two extreme cases such as the total
ignorance and the total knowledge can be easily expressed.
For the criterion level:

1. When the preferences of the decision maker are perfectly known and
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Figure 3.1: The hierarchy frame

are unique. This case will be represented by a single criteria instead of
group of criteria.

2. When the expert is not able to give any information about criteria.
So, we will get a single set of criteria which all of them have the same
degree of preferences. This case is referred to as total ignorance.

For the alternative level:

1. When the preferences of the decision maker are perfectly known, and
he is able to compare single alternatives between each other instead
of sets of alternatives. This case will be represented by a singleton
alternative.

2. When the expert is not able to give any information about alternatives.
Thus, the obtained bba will be a vacuous basic belief assignment (see
Section 1.3.1), and we will get a single subset Θ. This case is referred
to as total ignorance.
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3.6 Belief AHP approach

3.6.1 Introduction

As with standard AHP method, building a belief AHP falls to the def-
inition of its fundamental steps seen in the previous chapter, namely, hier-
archical model, pair-wise comparisons, local priorities and global priorities.
These concepts must take into account the uncertainty encountered in the
obtained data.

3.6.2 Computational procedure of the belief AHP ap-
proach

Since impression and uncertainty are common characteristics in many
decision making problems, a belief AHP method should be able to deal with
this uncertainty. In other words, the conventional AHP allows the decision
maker to express his preference on a number of decision alternatives, that is
to obtain priorities of the preferences’ sets on all the levels of the hierarchy
in AHP decision problem (criteria and alternatives).

Due to the uncertainty and contrary to the traditional judgment proce-
dure where it includes only certain preferences, the structure of our obtained
data may be different from the traditional one. So, the decision maker may
have a certain doubt or a lack of knowledge about alternatives and also crite-
ria. Indeed, in many practical problems, the uncertainty may appear into two
levels namely the criteria and the alternatives. Thus to solve this problem,
we propose a method for solving complex problems under the condition that
it tolerates imprecision and uncertainty when the expert expresses his pref-
erences between criteria and also alternatives. In other words, our approach
will be able to compare groups of criteria and also groups of alternatives
between each other.

Identification of the candidate criteria

One of the key questions being issued over the implementation of any
MCDM problem is the identification of the candidate criteria.

By nature, the importance of criteria is relative to each other. There-
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fore, a decision maker may encounter some difficulties to compare separate
ones. Thus, he can give subjective and imprecise assessments. In this case,
conventional AHP seems inadequate to determine the relative weight.

In our work, and in order to overcome this difficulty, a new method for
judging the importance of these criteria is proposed, instead of the stan-
dard one. In fact, we suggest to extend the AHP method to an imprecise
representation rather than forcing the decision maker to provide precise rep-
resentations of imprecise perceptions.

We suppose that there is a set of criteria Ω = {c1, ..., cm} consisting of m
elements. Denote the set of all subsets of C (the power set) by 2Ω, and let
Ck be the short notation of a subset of C, i.e., Ck ⊆ C and Ck ∈ 2Ω.

An expert chooses a subset Ck ⊆ C of criteria from the set C and com-
pares this subset with another subset Cj ⊆ C. In other terms, the deci-
sion maker expresses his preferences by comparing these subsets of criteria
Ck ≻ Cj, which means that an expert chooses Ck from Cj, and Ck is more
preferable than Cj. Thus, criteria that belong to the same group have the
same degree of preferences.

Since we are not performing pair-wise comparisons of criterion but relat-
ing groups of criteria, these sets of criteria should not consider a criterion in
common, because if one criterion is included in two groups, then each group
will give a different level of favorability.

The decision maker compares these subsets of criteria, and he provides
preference values according to the Saaty’s scale.

By generalization, the subsets of criteria can be defined as:

Ck ≻ Cj, ∀ k, j|Ck, Cj ∈ 2Ω, Ck ∩ Cj = ∅ (3.1)

To conclude, the main idea is to allow the expert to express his opinions
on groups of criteria instead of single one. It means that our method is based
on a measure of preferences between criteria. So, an expert chooses a subset
of criteria by assuming that criteria having the same degree of preference are
grouped together. If an expert chooses a group of criteria, then we could
suppose that all of them have the same importance and consequently have
the same distributed weights.
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Identification of the candidate alternatives

In many complex problems, experts are able to compare only subsets of
alternatives and cannot evaluate separate alternatives in these subsets, or in
the same case, expert may have an incomplete decision matrix.

To solve this problem, that means to reduce the number of alternatives
which decrease the number of comparisons, our method suggests not to con-
sider all of them but just to choose groups of those alternatives. In other
terms, the decision maker compares not only a single alternative but also
sets of alternatives between each other.

One of the possible solutions of this task is to use the DS/AHP method
(Beynon et al., 2000) (Beynon, 2002). According to this idea, the decision
maker is able to compare groups of alternatives instead of single one. He
has to identify favorable alternatives from all the set of the possible ones. As
explained in the previous chapter, this method allows measures of uncertainty
and ignorance to be calculated on the judgment made by the decision maker.

Similarly to the criterion level, we assume that there is a set of alterna-
tives Θ = {a1, ..., an} consisting of n elements. Denote the set of all subsets
of A (the power set) by 2Θ, and let Ak be the short notation of a subset of
A, i.e., Ak ⊆ A and Ak ∈ 2Θ.

The decision maker expresses his preferences by comparing subsets of
alternatives including Θ, about which the expert can express his preferences.
For example, Ak ≻ Aj, which means that Ak is more preferable than Aj. Θ
as a set of alternatives allows the decision maker to express his ignorance.
The main aim behind this method was explained in the previous chapter
(Beynon et al., 2000) (Beynon, 2002).

Computing the weight of considered criteria

After identifying the candidate sets of criteria, what is left is “how to
calculate the weight of these criteria?”. At this point, classical pair-wise
comparisons of the elements are made to obtain these priorities.

In this study, we have adopted the Saaty’s scale (see Table 2.2) to evaluate
the importance of pairs of grouped elements in terms of their contribution.
Thus, the comparison matrix is modified to take into account the partial
uncertainty by comparing both singletons and disjunctions elements. The
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priority vectors are then generated using the eigenvector method.

The objective is then to find the eigen vector w for each pair-wise com-
parison matrix. According to Saaty, the eigen vector can be generated in dif-
ferent ways, and amongst the most used one is the geometric means (Saaty,
2003).

If A = [aij] is a pair-wise comparison matrix, then the geometric means
for each row is defined by:

ri =
l∏

j=1

aij
1/l (3.2)

and the weight wi as the components of the normalized eignvector, where:

wi =
ri

r1 + r2 + ...+ rl
(3.3)

where l the number of sets of criteria.

Example 3.2

If we consider the previous example where: {P}, {F} and {C, S} are the
groups of criteria which belong to the power set of 2Ω. The decision maker can
define his preferences by using the pair-wise comparison of the following type
“How important is criterion {P} relative to criterion {F} ?”. To respond to
this question, the decision maker uses the following Saaty’s scale expressing
the intensity of the preference for one criterion versus another.

Table 3.2: Pair-wise comparison matrix for the criterion level

Criteria {P} {F} {C, S} Priority (w) Nomalized vector
{P} 1 2 6 0.58 1
{F} 1

2
1 4 0.32 0.55

{C, S} 1
6

1
4

1 0.1 0.17

To get the priority vector, we apply the geometric means formula:

1. Multiply out each row of the matrix.

2. Since there are l entries (the number of sets of criteria) in each row,

take the lth root of multiplication.
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3. Normalize these roots by deriving the total and dividing them by the
total.

Let us show how to compute the eigen vector:

x = 3
√
1× 2× 6 = 2.29

y = 3

√
1
2
× 1× 4 = 1.26

z = 3

√
1
6
× 1

4
× 1 = 0.34

total = x+ y + z

then, w =


x

total
y

total
z

total

 =

 0.58
0.32
0.1


From Table 3.2, we conduct the preferred order of proposed criteria (the

importance) based on their final priorities values as follows: {P} ≻ {F} ≻
{C, S}, where {P} is preferred to {F} and {F} is preferred to {C, S}.

Then, we propose to calculate the normalized vector, which is given by
the division of the importance of criteria by the maximum of priorities. For
each wi, we get:

normalized wi =
wi

wmax

Computing the alternatives priorities’

In standard version of AHP method, all the alternatives are evaluated
regarding each criterion. The comparison takes this form: “how important
is alternative Ak when compared to alternative Aj with respect to criterion
c1?”

As in the DS/AHP method (Beynon et al., 2000) (Beynon, 2002), un-
certain comparison matrices are constructed with respect to each criterion.
That means, classical pair-wise matrix is used to compare sets of alternatives
between each other with respect to a specific criterion instead of comparing
only single alternative. So, the same procedure used in the previous step is
adopted to calculate the priority of the considered alternatives.
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Example 3.3

Let us continue with Example 3.1. A sample matrix for the price crite-
rion, for example, being shown in Table 3.3.

Table 3.3: Comparison matrix for price criterion

P {A,B} {A,B,C} Priority
{A,B} 1 9 0.896
{A,B,C} 1

9
1 0.104

Updating the alternatives priorities’

Once the priorities of decision alternatives and criteria are computed,
we have to define a rule for combining them. The problem here is that we
have priorities concerning criteria and groups of criteria instead of single
ones, whereas the sets of decision alternatives are generally compared pair-
wise with respect to a specific single criterion. Within this structure of
alternatives and criteria, our belief AHP method cannot use the strategy
used by the standard method which aggregates all local priorities from the
decision table by a simple weighted sum.

In order to overcome this difficulty, we choose to apply the belief function
theory because it provides a convenient framework for dealing with individual
elements of the hypothesis set as well as their subsets.

At the decision alternative level, we propose to represent the uncertainty
on the decision maker preferences over the set of alternatives by a bba defined
on the set of possible alternatives. In fact, within our framework, we have
Ak ⊆ 2Θ and we have the priority values of each Ak in each comparison
matrix representing the opinions-beliefs of the expert about his preferences.
So, we assume that the set of alternatives is the frame of discernment, and
we notice that the priority vector sums to one which can be considered as a
bba (m(Ak)) which represents its power set.

Given a pair-wise comparison matrix which compares the sets of alter-
natives according to a specific criterion. For each set of alternatives Ak ∈ 2Θ

and Ak belongs to this pair-wise matrix, we get:

m(Ak) = wk (3.4)
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where wk is the eigen value of the kth sets of alternatives.

The next step is to combine the obtained bba with the importance of
their respective criteria to measure their contribution. In this context, our
approach proposes to regard each priority value of a specific set of criteria as
a measure of reliability. In fact, this factor is used to update experts’ beliefs
(bba) by taking into account the important of each set of criteria. The idea
is then to measure most heavily the bba evaluated according to the most
important criteria and conversely for the less important ones.

If we have Ck (as defined above) a subset of criteria, then we get βk its
corresponding measure of reliability.

βk = normalized wk =
wk

wmax

(3.5)

As a result, two cases will be presented: First, if the reliability factor
represents a single criterion, then the corresponding bba will be directly
discounted.

If Ck is a singleton criterion, then we apply the discounting rule and we
get:

mαk
Ck
(Aj) = βk.mCk

(Aj), ∀Aj ⊂ Θ (3.6)

mαk
Ck
(Θ) = (1− βk) + βk.mCk

(Θ) (3.7)

where Aj a subset of alternatives that are evaluated with respect to the
criterion Ck, mCk

(Ak) the relative bba for the subset Ak, βk its corresponding
measure of reliability, and we denote αk = 1− βk.

Second, if this factor represents a group of criteria, their corresponding
bba’s must be combined using the conjunctive rule, then it will be discounted
by the measure of reliability relative to this group of criteria.

In other terms, we consider that each group of criteria has a set of pair-
wise comparison matrix. That means, each element of a specific group of
criteria has its own pair-wise matrix that evaluates the sets of alternatives
with respect to this specific criterion. As mentioned above, our main pur-
pose is to compare the sets of decision alternatives regarding certain groups
of criteria. Therefore, our proposed approach assumes that each pair-wise
comparison matrix is considered as a distinct source of evidence, which pro-
vides information on opinions towards the preferences of particular decision
alternatives. Then, based on the belief function framework, we can apply
the conjunctive rule of combination to obtain a single representation value
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of these different bba’s. As a result, the obtained bba compares the sets of
alternatives according to this set of criteria.

Let Ck a subset of criteria, and ci ∈ Ck, then we apply the conjunctive
rule of combination to obtain mCk

:

mCk
= ∩⃝mci , i = {1, ..., h} (3.8)

where h is the number of element of a specific group of criteria Ck and ci is
a singleton criterion.

Finally, these obtained bba’s (mCk
) will be discounted by their corre-

sponding measure of reliability βk. We apply the same idea used in Equation
3.6 and 3.7, to get mαk

Ck
.

Example 3.4

Let us continue with the previous examples. From Table 3.3, we can no-
tice that the priority value is sum to one. So, we suppose that these priorities
are the bba’s. We denote these bba’s by mp and we get:

mp({A,B}) = 0.896 and mp({A,B,C}) = 0.104.

Then, we can go through a similar process with comfort, fuel economy
and style. We get the following information shown on Table 3.4.

Table 3.4: Priorities’ values

C mC S mS F mF

{A} 0.526 {A} 0.595 {B} 0.833
{B,C} 0.404 {C} 0.277 {A,B,C} 0.167
{A,B,C} 0.07 {A,B,C} 0.128

Then, these bba’s must be combined with their criteria. Firstly, this step
concerns the groups of criteria, that is the {C, S} criteria. Our aim is to up-
date the priority alternatives relative to the comfort and style criteria. There-
fore, by using the Equation 3.8, we propose to combine the bba relative to the
comfort and style criteria:

mC,S = mC ∩⃝mS
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Then, these obtained bba’s are discounted by the measure of reliability
βC,S = 0.17 (see Table 3.2) and we use the Equation 3.6 and 3.7 to get the
following Table 3.5.

Table 3.5: The bba mC,S after discounting

∅ {A} {C} {B,C} Θ1

m
αC,S

C,S 0.06564 0.07173 0.02232 0.00879 0.83152

After that, this step concerns the single criterion {P} and {F}, the rel-
ative bba are directly discounting using the Equation 3.6 and 3.7, where the
reliability measure βP = 1 and βF = 0.55. We get the following Table 3.6
and Table 3.7.

Table 3.6: The bba mP after discounting

{A,B} Θ1

mαP
P 0.896 0.104

Table 3.7: The bba mF after discounting

{B} Θ1

mαF
F 0.45815 0.54185

Synthetic Utility

After updating the priorities of the alternatives sets with respect to their
set of criteria, we must compute the overall bba. An intuitive definition of the
strategy to calculate these bba’s will be the conjunctive rule of combination
generally used as an aggregate operator in the belief function framework
combining between two or several bba’s.

mfinal = ∩⃝mαk
Ck
, k = {1, ..., l} (3.9)

where l is the number of subsets of criteria.

Example 3.5

Let us consider the same example. The conjunctive rule of combination
is applied (Equation 3.9), this leads us to get a single bba denoted by mcar

(see Table 3.8).
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Table 3.8: The bba mcar after combining all evidences

∅ {A} {B} {C} {A,B} {B,C} {A,C} Θ1

mcar 0.1196 0.0389 0.3892 0.0013 0.4037 0.0005 0 0.0468

Decision making

To this end, the final step is to choose the best alternative. In this
context and through the use of the belief function theory which offers a
process to help the expert to make a decision, we choose to use the pignistic
transformation Equation 1.48 (Transformation from the power set to the
frame of discernment). The decision maker will choose the alternative which
has the highest value of pignistic probabilities.

Example 3.6

The final step is then to choose the best alternatives; After computing the
pignistic probabilities, we get:

BetPcar(A) = 0.2911, BetPcar(B) = 0.6894 and BetP (C)car = 0.0195.

As a result, the car B will be preferred since it has the highest values.

Remark: By adopting the belief AHP method, our method provides
some advantages to the decision maker: first, it is able to tolerate uncer-
tainty and imprecision in our preferences. Second, the proposed approach
has reduced the number of comparisons. In fact, if we have adopted the
classical AHP, then there would be three comparisons per criterion between
the decision alternatives level. That means, we will get 12 comparisons, and
at the criterion level, we will have 6 comparisons. As a result, the number
of pair-wise comparisons is then 18. However, by using the belief AHP, the
number of comparisons decreases because instead of using single elements,
we have used subsets.

3.6.3 The belief AHP procedure

The belief AHP procedure has the same skeleton as standard AHPmethod.
So, to summarize the previous section, and to present the main steps of our
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belief AHP method, we introduce its different construction steps, described
as follows:

1. Model the problem as a hierarchy containing the decision goal, the sets
of alternatives for reaching it, and the sets of criteria for evaluating the
sets of alternatives.

2. Establish priorities among the elements of the hierarchy by making a
series of judgments based on pair-wise comparisons of the elements.

3. For the criterion level: normalize the priorities’ vectors and assume
that each priority value is a measure of reliability for its corresponding
subset of criteria.

4. For the alternative level, assume that each priority vector is a bba
corresponding to a specific subsets of alternatives.

5. Synthesize the overall judgment, that is updating the sets of alter-
natives priorities with the importance of their corresponding criteria.
Two cases will be presented: first, if we have a singleton criterion then
Equation 3.6 and 3.7 are applied, else if we have a subset of criteria
then Equation 3.8 is used.

6. Combine the overall bba’s to get a single representation by using the
conjunctive rule.

7. Come to a final decision based on the the pignistic transformation.

3.7 Belief pair-wise comparison matrix

Pair-wise comparisons aims at quantifying relative priorities for a given
set of alternatives as well as the set of criteria, on a ratio scale, based on the
judgment of the decision maker.

Using this approach, the decision maker has to express his opinion about
the value of one single pair-wise comparison at a time. Usually, the decision
maker has to choose his answer among discrete choices. Each choice is a
linguistic phrase. Some examples of such linguistic phrases are: “A is more
important than B”, or “A is of the same importance as B”, or “A is a little
more important than B”, and so on.



65

The decision maker uses the Saaty’s scale (see Table 2.2) to map the
labels which indicate the decision maker view to a numeric value.

However, as shown in (Joaquin, 1990) (Holder, 1995), this scale was
criticized. With the Saaty’s scale, the user cannot be consistent because it
is not complete. Sometimes, the decision maker may well want to say that
A is twice as important as B, and A is 3 times as important as C, and B is
1.5 times as important as C, yet he is constrained to make the last judgment
1 or 2. In addition, the decision maker might find difficult to distinguish
among them and tell for example whether one alternative is 6 or 7 times
more important than another. Furthermore, the AHP method cannot cope
with the fact that alternative A is 25 times more important than alternative
C.

As a result, the scale is further incomplete and unnecessarily restricting
because of the arbitrary cut-off at 9 for the maximum allowable ratio of
weights.

Thus, our problem is as follows: how to quantify the linguistic choices
selected by the decision maker during the evaluation of the pair-wise com-
parisons? Is it necessary to decompose even more the different levels of the
Saaty’s scale?

3.7.1 Acquisition and representation of uncertain de-
cision knowledge

In this section, we propose to modify the structure of the Saaty’s scale
by adopting a new set of choices. Thus, to evaluate the responses of the pair-
wise comparison question, decision maker only selects the related linguistic
variable. In fact, the expert only indicated whether a criterion was more or
less important to its partner.

One aspect of the extended belief AHP method is the prevalence and
allowance for uncertainty in the judgments made by decision maker. For
instance, if a decision maker is unwilling or unable to specify a certain pref-
erence, then he is able to express his preferences with some degrees of uncer-
tainty. Moreover, since the preferences in AHP are essentially human judg-
ments based on knowledge and experience, the pair-wise comparison agrees
well with the definition of these judgments with some levels of uncertainty.

In order to illustrate our proposed idea, we define for each alternative
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(criteria) its own frame of discernment Θ , which consists of the possible
answers to the question: “Is alternative A important?”. To answer this
question, the decision maker responds by “yes” or “no”. In other terms:

ΘA = {yes, no} (3.10)

After identifying the frame of discernment ΘA corresponding to the alter-
native A, our approach proposes to use a belief pair-wise comparison matrix.
That is, each element of the matrix is described by a distributed assessment
using a belief structure denoted by mΘA

A (.). In other words, the decision
maker can express his preferences with some degrees of uncertainty because
in evaluation of qualitative criteria, for example, uncertain judgments could
be used. For instance, in a problem of purchasing a car, the following type of
uncertain subjective judgments was frequently used: “the comfort criterion
is evaluated to be more important than style with a confidence degree of 0.6”.
Thus, under each criterion or alternative, we will have a belief function.

To model the pair-wise matrix, some priorities must be respected. We
consider X, the pair-wise comparison matrix, is an n × n matrix in which
n is the number of elements being compared. Entries of X, dij’s are the
judgments or the relative scale of alternative i to alternative j. dij is the
entry from the ith column of X. It has the following characteristic:

1. dii = mΘi
i (Θi) = 1, where i=j.

2. If dij = mΘi
j (Θi), then m

Θj

i (Θj) = dij, where i ̸= j

3. Otherwise, if dij = mΘi
j , then dji = m

Θj

i = m̄Θi
j , where i ̸= j and m̄ is

the negation of m.

The negation (or complement) m̄ of a bba m is defined as the bba
verifying (Dubois & Prade, 1986):

m̄(A) = m(Ā),∀A ⊆ Θ (3.11)

The same procedure is applied to compare criteria.

Example 3.7

We assume there are three alternatives A, B and C that will be compared



67

Table 3.9: Belief pair-wise matrix

C1 A B C

A
- mΘA

B ({yes}) = 0.6 - mΘA
C ({yes}) = 0.8

- mΘA
A (ΘA) = 1 - mΘA

B ({no}) = 0.3 - mΘA
C ({no}) = 0.1

- mΘA
B (ΘA) = 0.1 - mΘA

C (ΘA) = 0.1

B
- mΘB

A ({yes}) = 0.3 - mΘB
C ({yes}) = 0.7

- mΘB
A ({no}) = 0.6 - mΘB

B (ΘB) = 1 - mΘB
C ({no}) = 0.2

- mΘB
A (ΘB) = 0.1 - mΘB

C (ΘB) = 0.1

C
- mΘC

A ({yes}) = 0.1 - mΘC
B ({yes}) = 0.2

- mΘC
A ({no}) = 0.8 - mΘC

B ({no}) = 0.7 - mΘC
C (ΘC) = 1

- mΘC
A (ΘC) = 0.1 - mΘC

B (ΘC) = 0.1

according to the criterion c1: we can get the following belief matrix (see Table
3.9).

where mΘi
j represents the importance of the alternative i relative to j

(i, j = {A,B,C}).

3.7.2 Partial combination

Once the pair-wise comparison matrix is complete, what is left is how to
calculate the priority vector. In fact, within this structure of the comparison
matrix, our belief AHP method cannot apply the eigenvector method to get
the priority vector.

Thus, our problem is as follows: what is the appropriate function to use
in order to obtain a single representation value of these different bba’s to get
the priority vector.

To perform this task, we have to define a rule for combining these bba’s.
In this context, we propose to regard each element belonging to the com-
parison matrix as a distinct source of information which provides distinct
pieces of evidence. Then, based on the belief function framework, we can
apply the conjunctive rule of combination to obtain a single representation
value of these different bba’s. Consequently, the obtained bba represents the
importance of a specific alternative.

To better understand, we consider X, as defined above, the pair-wise
comparison matrix. For each row of the matrix, we apply the conjunctive
rule. That means, for each alternative i (i = {1...n}), we will get the following
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bba:
mΘi = ∩⃝mΘi

j ,where j = {1...n} (3.12)

Example 3.8

Let us continue with the previous example. For the alternative A, for
example, we will get the following bba (see Table 3.10):

mΘA = mΘA
A ∩⃝mΘA

B ∩⃝mΘA
C

A similar procedure is repeated for the rest of alternatives, and we will
get mΘB and mΘC .

Table 3.10: Belief pair-wise matrix: Partial combination

C1 Priority

A

mΘA({yes}) = 0.62
mΘA({no}) = 0.07

mΘA(∅) = 0.3
mΘA(ΘA) = 0.01

B

mΘB({yes}) = 0.31
mΘB({no}) = 0.2
mΘB(∅) = 0.48
mΘB(ΘB) = 0.01

C

mΘC ({yes}) = 0.05
mΘC ({no}) = 0.71
mΘC (∅) = 0.23
mΘC (ΘC) = 0.01

3.7.3 Standardization of the frame of discernment

The main purpose of this stage is to standardize all the frames of dis-
cernment. In fact, when people use the same words, individual judgment of
events is invariably subjective and may differ. In other terms, the problem
here is that these introduced bba’s are defined on different frames of dis-
cernment. Indeed, each alternative has its own frame of discernment. For
example, if we say that alternative A is more important than alternative B,
and alternative C is more important than alternative B, this does not mean
that alternative A and alternative C have the same degree of importance.
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In order to allow the combination of this information, we propose to
use the concept of refinement operations (Shafer, 1976), which allows to
establish relationships between different frames of discernment in order to
express beliefs on anyone of them. The idea is then consists in obtaining one
frame of discernment Θ from the set Θk by splitting some or all of its events.

So, each belief functionmΘk represents the belief over all possible answers
(yes or no). However, at this stage, we want to know which alternative is the
best (Θ = {A,B,C}). As a result, Θ is considered as a a coarsening of Θk,
and we get the following relation:

mΘk↑Θ(ρk(A)) = mΘk(A), ∀A ⊆ Θk (3.13)

where the mapping ρk from Θk to Θ is a refinement, and ρk({yes}) = {k}
and ρk({no}) = ¯{k}. After redefining the frame of discernment Θ, what is
left is updating the different bba’s.

Example 3.9

Let us continue with the previous example. For the alternative A for
example, if we apply the Equation 3.13 then we get the following bba:

mΘA↑Θ({A}) = mΘA({yes})

mΘA↑Θ({Ā}) = mΘA({no})

mΘA↑Θ({Θ}) = mΘA(ΘA)

To simplify, we can note by mA,Θ the bba mΘA↑Θ, and the similar process
is repeated for the rest of alternatives. We get the following matrix (see Table
3.11).

3.7.4 The overall combination

The aim of this step is to combine the obtained bba in order to compute
the overall bba and to answer the question “What is the most important
alternative?”.
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Table 3.11: Belief pair-wise matrix: Refinement

C1 Priority

A

mA,Θ({A}) = 0.62
mA,Θ({Ā}) = 0.07
mA,Θ(∅) = 0.3
mA,Θ(Θ) = 0.01

B

mB,Θ({B}) = 0.31
mB,Θ({B̄}) = 0.2
mB,Θ(∅) = 0.48
mB,Θ(Θ) = 0.01

C

mC,Θ({C}) = 0.05
mC,Θ({C̄}) = 0.71
mC,Θ(∅) = 0.23
mC,Θ(Θ) = 0.01

Once we have identified the same frame of discernment Θ , and the
obtained belief functions are expressed on the same frame of discernment,
we can combine them using the conjunctive rule. So, we obtain a belief
function reflecting the importance of alternatives to a given criterion. That
is, we will apply the following rule:

mΘ = ∩⃝mi,Θ,where i = {1...m} (3.14)

where m is the number of alternatives.

Example 3.10

Let us continue with the previous example. The corresponding bba mC1

is defined by:

Table 3.12: The combined bba

∅ {A} {B} {C} {A,B} {B,C} {A,C} Θ
mC1 0.7472 0.096 0.00014 0.1565 0.00002 0.000007 0.000071 0.000001
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Remark

After obtaining the combined bba’s, which reflect the importance of the
alternatives with respect to a specific criterion, we notice that the same
procedure used in the previous approach can be applied.

In fact, this proposed approach can be applied with the belief AHP
method. So, instead of using the classical pair-wise comparison matrix,
which is based on the Saaty’s scale, the decision maker can use the belief
pair-wise comparison and the main steps of the belief AHP approach can be
then applied.

3.8 Conclusion

We have presented our method which consists in developing a new AHP
method in an uncertain environment for MCDM methods. Our method is
based on the belief function theory in order to represent the uncertainty
relative to decision maker’s preferences.

In this chapter, the belief AHP method was developed. We have exposed
what kind of uncertainty is handled by this approach as well as its different
objectives. Then, we have explained the main steps of our method.

Another part of the work provides some criticisms related to the com-
parison procedure, and we have proposed a more flexible method.

In the next chapter, we will present the implementation for checking the
performance of our belief AHP method. Then, we will show the application
of our approach on a real application problem.



Chapter 4

Implementation and application
of the belief AHP method

4.1 Introduction

Implementing then applying our belief AHP approach are important since
it allows us to have an idea concerning the flexibility of our proposed method.

In this chapter, we present the implementation of our new method, the
belief Analytic Hierarchy Process (belief AHP) approach. To this end, we
have developed all programs in MATLAB V7.4.

Once the different programs are implemented, for checking the flexibility
and feasibility of our approach regarding belief AHP method and judging its
performances, we have applied our proposed method on a real application
problem. The problem considered here is the “PVC life cycle” especially its
“end of life phase”: the disposal problem.

Hence, this chapter is composed of two major parts. First, Section 4.2
deals with the implementation of belief AHP approach: we detail the major
variables and programs used in our software. Then, we present the belief
AHP algorithms. Second, Section 4.3 provides and analyzes the application
of our proposed methods on a real world problem.

72
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4.2 Implementation

4.2.1 Framework

In order to ensure the implementation of our approach, we have developed
programs in Matlab V7.4.

As detailed in the previous chapter, these programs are developed to
handle imprecision and uncertainty in two levels: the criteria and alternatives
levels. In fact, our proposed method deals with groups of criteria and/or
alternatives instead of single one.

These programs have as inputs:

1. The sets of different criteria.

2. The sets of different alternatives regarding each criterion.

3. The pair-wise comparison matrix which represents the preference of the
decision maker by comparing all criteria, sub-criteria and alternatives
with respect to upper level decision elements.

The outputs of our programs are mainly:

1. The different criteria with their corresponding weight.

2. The ranking of the alternatives according to the value of the pignis-
tic probabilities, that is we will choose the alternative which has the
highest pignistic probabilities.

4.2.2 Principal variables

The major variables that we have used in our programs to implement the
belief AHP procedures are the following:

• criteria matrix: a matrix whose first row contains the labels of the
different sets of criteria, and in the remaining rows the corresponding
values.
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• data criteria: a matrix that contains only the corresponding values for
the sets of criteria.

• set criteria: a vector that contains the different labels of criteria.

• vec criteria: a vector that contains the priority vector.

• criteria: a record composed of:

– .label: the label of a given criterion or group of criteria.

– .value: the eigen value having that criterion label.

• alternative matrix: a matrix whose first row contains the labels of the
different sets of alternatives, and in the remaining rows the correspond-
ing values.

• data alternative: a matrix whose contains only the corresponding val-
ues of each sets of alternatives.

• set alternative: a vector that contains the different labels of alterna-
tives.

• vec alternative: a vector that contains the priority vector.

• alternative: a record composed of:

– .focal: the label of a given alternative (or a set of alternatives).

– .bba: the eigen value having that alternative label.

– .criterion: the label of the compared criterion.

• resultat: a record composed of:

– .focal: the label of a given alternative (or a set of alternatives).

– .bba: the resulting bba after discounting.

• inter: a record composed of:

– .focal: the label of a given alternative (or a set of alternatives).

– .bba: the combined bba’s.

• nbre alternative: the number of alternatives.

• number criteria: the number of the sets of criteria.
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• rule: a record composed of:

– .focal: the label of a given alternative (or a set of alternatives).

– .bba: the combined bba’s.

• BetP: a record composed of:

– .focal: the label of a given alternative.

– .BetP: the pignistic probability for a given alternatives.

4.2.3 Belief AHP programs

In this subsection, we will present the major programs that we have de-
veloped to construct our software. We will regroup these programs according
to the task they are used for.

Pair-wise matrix

For each level of the hierarchy, we get sets of pair-wise comparisons ma-
trices. In fact, to get the weight of criteria the relative pair-wise comparison
is usually gained by expert via questionnaire. For the alternative level, the
idea is to get for an incomplete decision matrix the pair-wise comparison of
all the alternative regarding each criterion.

• Init criteria: allows to load the information concerning sets of criteria.

• Init alternative: allows to load the information concerning sets of
alternatives by respecting each criterion.

Belief AHP procedure

The implementation of “Belief AHP” procedure relative to the belief
AHP approach represents the important task. Many programs have been
developed to ensure this purpose. Allowing the computation of different pri-
orities values for each alternative and criterion to rank alternatives according
to the value of the pignistic probabilities, and to find the best alternative.
These main programs are defined as follows:
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• Get Preferences Weights: is an iterative function allowing to com-
pute the corresponding weight of each criterion and also groups of crite-
ria relatively to the generated data from the loaded one. This procedure
has as output “the info criteria” record.

This Function uses the following main functions:

– Eig Matrix: consists in computing the eigen vector of a given
matrix.

– Normalize Cr: normalizes the eigen vector of a given matrix to
get the reliability degree.

• Get Priority Alternative: is an iterative function allowing to com-
pute the priority vector for each pair-wise comparison matrix (alterna-
tive matrix).

– Eig Matrix: it consists in computing the eigen vector of a given
matrix.

– Normalize Alt: normalizes the eigen vector of a given matrix.

Once the priorities’ vector for each set of alternatives and the importance
weight are generated, we have to develop programs that will ensure the up-
dating of each sets of criteria with their respective importance of criterion.
These programs are the following ones:

• Update alternative: allows to discount the priority vector relative
to each sets of alternatives according to the reliability degree of the
followed criterion.

– Get criteria: allows to get the label of the different criteria.

– Conjunctive Rule: computes the conjunctive bba relative to a
given matrix.

– Discount: allows to discount the relative bba’s according to the
reliability degree.

• Conjunctive Rule: computes the conjunctive bba relative to a given
matrix.

• Pignistic function: computes the pignistic probability BetP relative
to a given matrix.
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Belief pair-wise comparison

The implementation of “Belief pair-wise comparison” procedure rel-
ative to the extended belief AHP approach represents the important task.
Many programs have been developed to ensure this purpose. In fact, the main
aim of this procedure is to compute the priorities values for each alternative
and also criterion from a certain/uncertain preferences.

• Get Belief Priority: allows the computation of a certain/uncertain
preferences from a belief decision matrix. This procedure uses the
Conjunctive Rule procedure to combine the conjunctive bba relative
to a given matrix.

4.2.4 Belief AHP algorithms

In this section, we will present the major algorithms relative to the belief
AHP procedure, namely, the belief AHP algorithm and the belief pair-wise
comparison algorithm.

Belief AHP

Input: criteria matrix, alternative matrix,criteria tab, alternative tab
Output: BetP
1. Begin
2. (* Load data set to criteria *)
3. [data criteria]← Init criteria(criteria matrix)
4.

5. (* Getting the list of different sets of criteria and computing the relative
weight *)

6. number criteria← size(criteria, 2)
7. for i = 1 to number criteria do
8. set criteria← [1 : number criteria]
9. vec criteria← Get Preferences Weights(data criteria)

10. criteria(i).label← set criteria
11. criteria(i).bba← vec criteria
12. end for
13.

14. (* Load data set to alternatives (for each pair-wise matrix) *)
15. [data alternative]← Init Alternative(alternative matrix)
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16.

17. (* For each comparison matrix: Getting the list of different sets of alter-
native and calculate the relative priority *)
(*the number of criteria is the number of pair-wise comparison matrix*)

18. for i = 1 to number criteria do
19. set alternative← [1 : number alternative]
20. vec alternative← Get Priority Alternative(data alternative)
21. criterion← Get Criterion(Init Alternative)
22. alternative(i).focal← set alternative
23. alternative(i).bba← vec alternative
24. alternative(i).criterion← criterion
25. end for
26.

27. (* Initialization of useful variables *)
28. k ← 1
29. l← 1
30. j ← 0
31. inter.focal ← {}
32. inter.bba← []
33. resultat.focal← {}
34. resultat.bba← []
35. nbre alternative← size(alternative, 2)
36.

37. (* Updating the alternatives priorities: two cases will be presentated: if
the selected criterion is single or group of criteria *)

38. for i = 1 to number criteria do
39. criterion← criteria.label(i)
40. trouve← false
41. while (trouve← false and k ≤ nbre alternative) do
42. j ← j + 1
43. if criterion == alternative(j).criterion then
44. var ← Discount(alternative(j), criteria.value(i))
45. resultat(k)← var
46. k ← k + 1
47. trouve← true
48. end if
49. end while
50. if trouve == false then
51. for j = 1 to nbre alternative do
52. tmp = intersect(criterion, alternative(j).criterion)
53. if (tmp == alternative(j).criterion) then
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54. inter(l).focal ← alternative(j).focal
55. inter(l).bba← alternative(j).bba
56. l← l + 1
57. end if
58. end for
59. comb← Conjunctive Rule(inter)
60. temp← Discount(comb, criteria.value(i))
61. resultat(k)← temp
62. k ← k + 1
63. end if
64. end for
65. (* Combination of the groups of alternative *)
66.

67. rule← Conjunctive Rule(resultat)
68. (* Pignistic Probability *)
69.

70. BetP ← pignistic(rule)
71. nbre final ← size(BetP, 2)
72. for j = 1 to nbre final do
73. print BetP(i).focal
74. print BetP(i).BetP
75. end for
76. End

Belief pair-wise matrix

Input: alternative matrix, alternative tab
Output: bba
1. Begin
2. (* Load data set to alternatives (for each pair-wise matrix) *)
3. [data alternative]← Init Alternative(alternative matrix)
4.

5. (* For each comparison matrix: Getting the list of different sets of alter-
native and calculate the overall bba *)

6. for i = 1 to number alternative do
7. for j = 1 to number alternative do
8. set alternative← [1 : number alternative]
9. vec alternative← Get Preference(data alternative)

10. alternative(i, j).focal ← set alternative
11. alternative(i, j).bba← vec alternative
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12. temp← Conjunctive Rule(alternative)
13. end for
14.

15. bba← Conjunctive Rule(temp)
16. end for
17.

18. nbre final ← size(bba, 2)
19. for i = 1 to nbre final do
20. print bba(i).focal
21. print bba(i).bba
22. end for

4.3 Application

4.3.1 Introduction

In this section, the concepts presented in the previous chapter are applied
on a real application problem.

The potential of this belief AHP method may be illustrated by consid-
ering a real application problem. Here, we consider “the PVC (Polyvinyl
chloride) life cycle” especially “the end of life” phase of PVC. The prob-
lem considered here attempts to rank countries based on their environmental
impact to the disposal of PVC product. Ideally, the rank of a country for
attention must be judged over a number of different environmental criteria.

The main aim is then to demonstrate an applicable way of improving
evaluation tactics in complex decision problems, where there is a large num-
ber of criteria and there is a need to follow human behavior. So, uncertainty
comes closer to reality compared to classical evaluation processes using crisp
data.

The PVC life cycle is not the main focus of this study. The focus is to
demonstrate the principal feasibility of the belief AHP approach in combi-
nation with a real application problem.

The application of the belief AHP method to the data from the PVC
disposal case study is described in the following section.
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4.3.2 PVC disposal

Introduction

Polyvinyl chloride (PVC) is one of the three most important polymers
currently used worldwide. This is because PVC is one of the cheapest poly-
mers to make and it has a large range of properties. So, it can be used to
make hundreds of products.

PVC has become widespread among our daily lives and industrial activ-
ities in the form of various products. For such reasons, its safety and impact
on human health has become the center of concern by the general public.

The aim of this part of the report is to discuss the life cycle impacts of
PVC polymer. So, the PVC life cycle can be structured in different phases
and it is divided into three phases: the production phase (of the main com-
ponents of PVC products, including raw materials), the use phase and the
end-of-life phase. This application covers only “the end of life” phase of
PVC. This final stage of PVC’s life cycle creates the most severe environ-
mental hazards.

From the processing of its raw materials through to its disposal, PVC
creates environmental and human health problems. The origins of these prob-
lems lie in the properties of the toxic chemicals that are used to make PVC
product. So, many PVC products contain additional chemicals to change the
chemical consistency of the product.

In fact, after its useful life, the vinyl product is disposed of, typically
in incinerators or landfills. Environmental impacts at this stage include the
long-term persistence of vinyl products in land disposal facilities, the product
being leached of hazardous substances. As a result, many negative effects
were appeared from burning or landfilling products containing PVC plastics.
Dioxins and furans are released when they are burnt. When landfilled, they
contaminate groundwater because of the leaching of toxic additives in the
PVCs and contaminate the air because of toxic emissions in landfill gases.

Problematic

There is a growing concern regarding the potential human health and
environmental impacts of producing, using and disposing of PVC-containing
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materials. That is why, the problem here is to use or not the PVC in general,
but to know in which country the environmental impact is less important for
the destruction of a kilogram of PVC?

Especifically and in this context, the challenge facing an expert here is the
choice of the country where the environmental impact is the least important
for the destruction of a kilogram of PVC.

As a result, this problem can be considered as a multi-criteria decision
making problem. In this decision making problem, environmental criteria
are playing the role of multiple criteria, which are the crucial keys to solving
this problem, and “Switzerland, France, USA or England” are the set of
alternatives.

So, classical AHP is thought to be a robust way to solve determined de-
cision making problem. However, it neglects the uncertainty and imprecision
caused by subjective preference of decision maker in criteria and alternative
scoring. Accordingly, belief AHP was used to improve this situation.

Problem comes out naturally that whether or not belief AHP is appro-
priate to solve this problem. The applicability of our proposed method to
this specified problem is justified in the next section.

4.3.3 Identification of the PVC production problem

This section presents the details of the PVC disposal problem investi-
gated throughout this study. Firstly, we will apply the belief AHP approach
introduced in the previous chapter (Section 3.6). Then, we will use the belief
AHP method with the belief pair-wise comparison (Section 3.7).

Belief AHP approach

In this application problem, an expert in the area of PVC life cycle
assessment was asked to take part in the study. The decision maker was
familiar with the PVC disposal environment.

Within belief AHP approach, there are two levels of judgment making
to be undertaken by each of the decision maker. Firstly, a weighting on the
importance of each criterion needs to be expressed. Secondly, the preference
judgments on the countries over each of the criteria were needed to be made.
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• The candiadate criteria:

The first stage was the identification of the necessary criteria to be con-
sidered, which here was a consequence of a semi-structured interview
with the expert. So, the selection of these appropriate criteria is an
important step.

Following discussion with the expert concerning the nature of the ap-
plication, it was decided to restrict the number of criteria to ten areas:

1. Abiotic depletion (C1): reflects the consumption of minerals and
fossil resources, calculated in kg antimony equivalent, based on
available reserves.

2. Acidification (C2): the gradual decrease in the pH of the oceans.

3. Eutrophication (C3): refers to natural or artificial addition of nu-
trients to bodies of water and to the effects of the added nutrients.
When the effects are undesirable, eutrophication may be consid-
ered a form of pollution.

4. Ozone layer depletion steady state (C4): Depletion of the ozone
layer method developed by WMO (World Meteorological Organi-
zation).

5. Human toxicity infinite (C5): this category concerns effects of
toxic substances on the human environment.

6. Fresh water aquatic ecotoxicity infinite (C6): this category indi-
cator refers to the impact on fresh water ecosystems, as a result
of emissions of toxic substances to air, water and soil.

7. Terrestrial ecotoxicity infinite (C7): this category refers to impacts
of toxic substances on terrestrial ecosystems.

8. Photochemical oxidation (C8): is the formation of reactive sub-
stances (mainly ozone) which are injurious to human health and
ecosystems and which also may damage crops.

9. IPCC (C9): Explains the Greenhouse Effect. The result of water
vapor, carbon dioxide, and other atmospheric gases trapping radi-
ant (infrared) energy, thereby keeping the earth’s surface warmer
than it would otherwise be.

10. Cumulative energy demand (C10): is a method for calculating the
environmental impacts of products and services throughout their
entire life cycle.
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Given the necessary details of the criteria, the expert was asked to in-
dicate an order of preferences between criteria through the structured
interview. One characteristic of this questionnaire was that it stated
that the expert could give his preferences on groups of criteria. The
questionnaire was designed to avoid pressuring the expert into an inap-
propriate decision by allowing comparisons between subsets of criteria
and not compulsory on singleton criterion. This advantage is one facet
of the utilization of belief AHP method.

Then, for each criterion the decision maker indicates his level of pref-
erence. Importantly, the decision maker was made aware that when
assigning the same scale values to criteria, he was grouping them to-
gether in subsequent analysis. The judgments made by the decision
maker are reported in Table 4.1.

Table 4.1: The weights assigned to the criteria according to the expert’s
opinion

Criteria {C5} {C6} {C1, C3, C7} {C2, C4, C8, C9, C10}
{C5} 1 4 6 9
{C6} 1

4
1 1

4
6

{C1, C3, C7} 1
6

4 1 1
3

{C2, C4, C8, C9, C10} 1
9

1
6

3 1

From Table 4.1, we conclude that the decision maker has identified four
subsets of criteria {C5}, {C6}, {C1, C3, C7}, and {C2, C4, C8, C9, C10}.
In fact, criteria which belong to the same subsets have the same degree
of preferences, that means criteria which have the same value scale are
grouped together. Thus, we could suppose that these criteria have the
same importance and consequently have the same distributed weights.

By grouping the criteria in subsets of criteria, the decision maker has
reduced the number of pair-wise comparison. Indeed, by adopting stan-
dard AHP, the decision maker has to make m(m−1)

2
pair-wise compar-

isons with m is the number of criteria. However, by using the belief
AHP approach, in the worst case, the decision maker makes m(m−1)

2

pair-wise comparisons (when he compares singleton criterion between
each other). Otherwise, if we consider p is the number of subsets of

criteria, the decision maker needs only p(p−1)
2

pair-wise comparisons,
where p < m. The number of subsets p depends on the judgments
made by the expert whether to include a criterion in a particular group
of criteria or not.
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In our case for example, if we use the standard AHP, we need to make
45 pair-wise comparisons. With belief AHP, we only make 6 pair-wise
comparisons.

• The candiadate alternatives:

Apart from the ten criteria, the initial interview also identified four
selected countries: “Switzerland (SW), France (FR), USA (US) and
England (ENG)” which are the set of alternatives. We would gener-
ate a decision hierarchy by which it is possible to evaluate different
alternatives.

The next stage within belief AHP is then to make judgments on the
alternatives over the different criteria. Judgments on the identified
countries are with respect to all considered alternatives (the frame of
discernment). To differentiate between the preferences on the groups
of alternatives identified by a decision maker, a set of verbal preference
scales are utilized with an associated set of numerical scale values. That
means, we followed the suggestion of Saaty method (Saaty’s scale).

For this purpose, we take the quantitative data from SIMAPRO soft-
ware (Ecoinvent database), on the basis of which we evaluate the four
identified alternatives. In this respect, it has to be mentioned, that data
collection was done by a simple, spreadsheet-based computer program.
Importantly, the decision maker was made aware that when assigning
the same scale values to decision alternatives, he was grouping them
together in subsequent analysis.

To illustrate this, for the criteria C1 (Abiotic depletion), we get two
sets of alternatives {ENG,US} and {FR} (see Table 4.2). All the
alternatives in the same group are considered to be of equal preference.
Hence, no two groups identified can have the same scale values assigned
to them, since if they had they should be combined into a single group.

The inability of the decision maker to make a preference judgment on
the alternative {SW} (Switzerland) may be due to: that no informa-
tion/knowledge exists for the decision maker to make a judgment with
respect to the “Abiotic depletion” criterion (C1). This is what makes
up the uncertainty inherent in the decision making process, underly-
ing the advantage of utilizing belief AHP. So, each group of alterna-
tives identified is compared to the frame of discernment Θ to allow
for the opportunity of the allocation of ignorance on the knowledge
of evidence. This group of alternatives Θ is then used to express the
uncertainty/imprecision when, for example, the decision maker is not
able to express his preferences on a particular alternative.
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Similarly to the criterion level, the judgments between decision alter-
natives over different criteria are dealt within an identical manner. In
our case, we get the following pair-wise comparisons matrices:

Table 4.2: Comparison matrix regarding C1 criterion

C1 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

Table 4.3: Comparison matrix regarding C2 criterion

C2 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

Table 4.4: Comparison matrix regarding C3 criterion

C3 {FR, S} Θ
{FR, S} 1 2

Θ 1
2

1

Table 4.5: Comparison matrix regarding C4 criterion

C4 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

Table 4.6: Comparison matrix regarding C5 criterion

C5 {FR,US,ENG} Θ
{FR,US,ENG} 1 2

Θ 1
2

1
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Table 4.7: Comparison matrix regarding C6 criterion

C6 {FR, SW} Θ
{FR, SW} 1 2

Θ 1
2

1

Table 4.8: Comparison matrix regarding C7 criterion

C7 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

Table 4.9: Comparison matrix regarding C8 criterion

C8 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

Table 4.10: Comparison matrix regarding C9 criterion

C9 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

Table 4.11: Comparison matrix regarding C10 criterion

C10 {ENG,US} {FR} Θ
{ENG,US} 1 1

2
4

{FR} 2 1 2
Θ 1

4
1
2

1

• Results:

In fact, after identifying the sets of criteria and also the sets of al-
ternatives and their corresponding preferences, we can now use our
implemented software to get the final rank of the identified alterna-
tives. So, the main steps of the belief AHP method are already defined
in the previous chapter. Out of the pair-wise comparison matrix, we



88

can follow these main stages:

1. Computing the weight of considered criteria: {C5}, {C6}, {C1, C3, C7},
and {C2, C4, C8, C9, C10} using the eigen vector method. Then,
we normalize this eigen vector, and we assume that each eigen
value corresponding to a particular subsets of criteria is consid-
ered as a measure of reliability.

2. Computing the alternatives’ priorities using the eigen vector method,
and transforming this eigen vector into a bba. As a result, we get
ten bba’s relative to each criterion.

3. Updating the alternatives priorities. First, the reliability measure
of the criterion {C5} and {C6} is directly discounted with their
corresponding bba’s. Then, for the subsets of criteria {C1, C3, C7}
and {C2, C4, C8, C9, C10}, we have combined their correspond-
ing bba’s using the conjunctive rule. After that, the obtained bba
is discounted by the measure of reliability relative to the specific
group of criteria.

4. Combine the overall bba’s to get a single representation by using
the conjunctive rule.

5. Ranking of the alternatives according to the pignistic transforma-
tion.

Furthermore, in this Section, we have identified the structure of the
proposed problem in order to show the feasibility of our proposed ap-
proach on a real application problem.

By using our implemented software, we get this final result (see Table
4.12):

Table 4.12: The final result using the belief AHP approach

Belief AHP
ENG 0.088249
FR 0.53811
USA 0.087038
SW 0.2866

The decision maker wants to know in which country the environmental
impact is less important for the destruction of a kilogram of PVC.
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The end results using belief AHP process are shown in Table 4.12. The
table shows that alternative {FR} has the highest pignistic probabil-
ities 0.53811. Consequently, “ France ”is the recommended country
since it has the highest values.

In order to compare our belief AHP approach with the standard version
of AHP method, we propose to convert all the pair-wise matrix in the
standard form. That is for criterion level, we have converted the pair-
wise comparison matrix from 4× 4 matrix into 10× 10, where 4 is the
number of subsets of criteria and 10 is the number of criteria. A similar
process is also repeated for all the pair-wise matrix which compare the
alternatives according to each criterion. Then, for each criterion, we
get 4× 4 matrix. After that, we have applied the Saaty approach and
we have got the following result (see Table 4.13):

Table 4.13: The final ranking using standard AHP method

Standard AHP
ENG 0.1654
FR 0.502
USA 0.0906
SW 0.242

By the use of belief AHP method, there is a slight shift from less
important to more important alternatives. Thus, alternatives have kept
the same ranking.

This research proposes that the differences between classic AHPmethod
and belief AHP approach are raised by two potential factors. One, be-
lief AHP method can provide the decision maker to express his prefer-
ences with some uncertainty and imprecision rather than deterministic
value options. This gives an advantage over classic AHP method in
solving complex problems. The use of subsets of criteria and/or al-
ternatives for pair-wise comparison is hence the first factor. Two, by
using belief AHP method the number of comparison is reduced (see
Table 4.14).
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Table 4.14: Comparison between standard AHP and belief AHP

Standard AHP Belief AHP

Criteria m(m−1)
2

p(p−1)
2

Alternatives m.n(n−1)
2

m.k(k−1)
2

Total m
2
(n2 − n+m− 1) 1

2
(m.k2 −m.k + p2 − p)

Where:

– m and n are respectively the number of criteria and alternatives.

– p and k are respectively the number of subsets of criteria and
alternatives.

– m ≽ p, p is equal tom when the decision maker compares singleton
criterion between each other.

– n ≽ k, k is equal to n when the decision maker compares singleton
alternative between each other.

In our case, if we have adopted the classical AHP, then there would
be 6 comparisons per criterion between the decision alternatives level.
That means, we will get 60 comparisons, and at the criterion level,
we will have 45 comparisons. As a result, the number of pair-wise
comparisons is then 105. However, by using the belief AHP, the number
of comparisons decreases because instead of using single elements, we
have used subsets. In fact, in our case the decision maker had made
6 pair-wise comparisons at the criterion level, and at the alternative
level, he had made 24 pair-wise comparisons.

Furthermore, regarding to the computational complexity, our proposed
approach reduces the complexity in term of pair-wise comparison. In
fact, the number of levels in the hierarchy depends on the complexity
of the decision problem. However, looking into the AHP methodology,
the number of pair-wise comparisons increases exponentially with each
additional criterion. So, the theoretical complexity of this method is
then O(m2), here m is the number of criteria. In the worst case, our
belief AHP method has the same computational complexity as standard
AHP approach.

Belief AHP approach with belief pair-wise comparison

Though the popularity and efficiency of the AHP approach, this method
is often criticized, because it cannot faithfully represent decision maker’s
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preferences given by a numerical representation of his judgments.

The only difference between this proposed approach and the belief AHP
method is the use of the pair-wise comparisons procedure. In fact, with
belief pair-wise comparison, the decision maker will be able to introduce
uncertainty in the alternative or criterion judgments. Instead of using crisp
number to express the preferences, the decision maker will be able to make
uncertain judgment.

Let us consider our application problem with the same sets of criteria
and alternatives. We will consider the same weight of criteria obtained with
the belief AHP method, and we will apply the belief pair-wise comparaison
on the alternative level.

Using the belief pair-wise comparison, the decision maker does not need
to introduce the set Θ to express his uncertainty. Thus, to evaluate the
responses of the pair-wise comparison question, he will be able to express
his judgment with some degrees of uncertainty. That’s, each element of
the matrix will be labeled by a bba or mass function expressing a belief on
judgment value. So, the question is how construct these bba’s to obtain
uncertain preferences.

For this purpose, several interviews with the expert were realized in order
to model these bba’s. Consequently and after these discussions, the expert
has validated the following procedure in order to create these bba’s.

Indeed, the resulting bba’s has 2 focal elements:

• The first is the actual preference’s value regarding the alternative A
with bbm, m(A) = p ∗ 0.1 (In our case p is obtained from the classical
Saaty’s scale comparaison).

• The second is Θ such as m(Θ) = 1−m(A)

As a result, the expert has validated the following belief pair-wise matri-
ces (see Table 4.15 to Table 4.24). For example, to evaluate the alternatives
according to the criterion C1 (Abiotic depletion), the decision maker is asked
to evaluate the following subsets of alternatives: {ENG,US}, {FR} and
{SW} according to the criterion C1. For instance, he may say that {FR} is
evaluated to be more important than {ENG,US} with a confidence degree
of 0.2. That means, 0.2 of beliefs are exactly committed to the alternative
{FR} is more important than {ENG,US}, whereas 0.8 is assigned to the
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whole frame of discernment (ignorance). We get the following matrix (see
Table 4.15)

Table 4.15: Belief pair-wise matrix regarding C1 criterion

C1 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.2
- mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.8

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.2 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.8

Similarly, the belief pair-wise matrixes among the four alternatives to-
wards the ten criteria are computed below in the following tables.

Table 4.16: Belief pair-wise matrix regarding C2 criterion

C2 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.2
- mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.8

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.2 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.8

Table 4.17: Belief pair-wise matrix regarding C3 criterion

C3 {FR, SW} {ENG} {US}

{FR, SW} mΘ{FR,SW}(Θ{FR,SW}) = 1 mΘ{FR,SW}({no}) = 0.2 mΘ{FR,SW}({yes}) = 0.2
mΘ{FR,SW}(Θ{FR,SW}) = 0.8 mΘ{FR,SW}(Θ{ENG,US}) =

0.8

{ENG} mΘ{ENG}({yes}) = 0.2 mΘ{ENG}(Θ{ENG}) = 1 mΘ{ENG}({yes}) = 0.05
- mΘ{ENG}(Θ{ENG}) = 0.8 - mΘ{ENG}(Θ{ENG}) = 0.95

{US} mΘ{US}({no}) = 0.2 mΘ{US}({no}) = 0.05 mΘ{US}(Θ{US}) = 1
- mΘ{US}(Θ{US}) = 0.8 - mΘ{US}(Θ{US}) = 0.95

Table 4.18: Belief pair-wise matrix regarding C4 criterion

C4 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.8
mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.2

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.8 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.2
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Table 4.19: Belief pair-wise matrix regarding C5 criterion

C5 {FR,ENG,US} {SW}

{FR,ENG,US} mΘ{FR,ENG,US}(Θ{FR,ENG,US}) = 1 mΘ{FR,ENG,US}({yes}) = 0.2
mΘ{FR,ENG,US}(Θ{FR,ENG,US}) =
0.8

{SW} mΘ{SW}({no}) = 0.2
mΘ{SW}(Θ{FR}) = 0.8 mΘ{SW}(Θ{SW}) = 1

Table 4.20: Belief pair-wise matrix regarding C6 criterion

C6 {FR, SW} {ENG} {US}

{FR, SW} mΘ{FR,SW}(Θ{FR,SW}) = 1 mΘ{FR,SW}({no}) = 0.2 mΘ{FR,SW}({yes}) = 0.2
mΘ{FR,SW}(Θ{FR,SW}) = 0.8 mΘ{FR,SW}(Θ{ENG,US}) =

0.8

{ENG} mΘ{ENG}({yes}) = 0.2 mΘ{ENG}(Θ{ENG}) = 1 mΘ{ENG}({yes}) = 0.05
- mΘ{ENG}(Θ{ENG}) = 0.8 - mΘ{ENG}(Θ{ENG}) = 0.95

{US} mΘ{US}({no}) = 0.2 mΘ{US}({no}) = 0.05 mΘ{US}(Θ{US}) = 1
- mΘ{US}(Θ{US}) = 0.8 - mΘ{US}(Θ{US}) = 0.95

Table 4.21: Belief pair-wise matrix regarding C7 criterion

C7 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.2
- mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.8

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.2 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.8

Table 4.22: Belief pair-wise matrix regarding C8 criterion

C8 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.2
- mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.8

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.2 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.8

After the elicitation of the preferences of the decision maker and the
identification of the belief pair-wise comparisons matrices, we can now use
our implemented software to get the final rank of the identified alternatives.
In fact, the main procedure of our extended belief AHP is then:

1. Computing the alternatives priorities using the belief pair-wise com-
parison approach introduced in the previous chapter. As a result, we
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Table 4.23: Belief pair-wise matrix regarding C9 criterion

C9 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.2
- mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.8

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.2 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.8

Table 4.24: Belief pair-wise matrix regarding C10 criterion

C10 {ENG,US} {FR} {SW}

{ENG,US} mΘ{ENG,US}(Θ{ENG,US}) = 1 mΘ{ENG,US}({no}) = 0.05 mΘ{ENG,US}({yes}) = 0.4
mΘ{ENG,US}(Θ{ENG,US}) =
0.95

mΘ{ENG,US}(Θ{ENG,US}) =
0.6

{FR} mΘ{FR}({yes}) = 0.05 mΘ{FR}(Θ{FR}) = 1 mΘ{FR}({yes}) = 0.2
- mΘ{FR}(Θ{FR}) = 0.95 - mΘ{FR}(Θ{FR}) = 0.8

{SW} mΘ{SW}({no}) = 0.4 mΘ{SW}({no}) = 0.2 mΘ{SW}(Θ{SW}) = 1
- mΘ{SW}(Θ{SW}) = 0.6 - mΘ{SW}(Θ{SW}) = 0.8

get ten bba’s relative to each pair-wise comparison matrix with respect
to each criterion.

2. Updating the alternatives’ priorities. First, the reliability measure of
the criterion {C5} and {C6} is directly discounted with their corre-
sponding bba’s. Then, for the subsets of criteria {C1, C3, C7} and
{C2, C4, C8, C9, C10}, we have combined their corresponding bba’s
using the conjunctive rule. After that, the obtained bba is discounted
by the measure of reliability relative to the specific group of criteria.

3. Combining the overall bba’s to get a single representation by using the
conjunctive rule.

4. Ranking of the alternatives according to the pignistic probability.

Then, by using our implemented software, we get this final result (see
Table 4.25):

Consequently, by applying the extended belief AHP approach on our
real application problem, the decision maker is recommended to choose the
alternative {FR} since it has the highest pignistic probabilities 0.322.

In this application problem, both belief AHP approach and extended
belief AHP yield to the same alternative ranking.



95

Table 4.25: The final result with belief pair-wise comparison

Belief AHP
ENG 0.23
FR 0.322
USA 0.178
SW 0.27

However, from this study it cannot be concluded that one method is more
preferable compared to another, but, each method is applied in a particular
context. So, the decision maker has the choice to select the method that best
fit with the real problem situation.

4.4 Conclusion

In this chapter, the major variables and the main programs that we have
used in order to implement our belief MCDM method are detailed. The
principal belief AHP algorithm is also presented.

Then, we have shown the flexibility and feasibility of our proposed ap-
proaches by applying it on a real application problem. On one hand, in this
study the belief AHP method is applied because it offers a process of judg-
ment which allows the reduction of the number of pair-wise comparisons. On
the other hand, the extended belief AHP approach is also applied on our ap-
plication to solve the problem of uncertainty that may appear in expressing
the preferences of the expert.



Conclusion

In real-life decision making situation, the decision maker may encounter
several difficulties when expressing his own level of preferences between al-
ternatives or also criteria. However, standard version of AHP method is
badly adapted to ensure its role in such environment. Thus, the need of the
development of appropriate approach to this kind of environment is vital.

In this master thesis, we have defined a new AHP approach appropriate
to this kind of environment. For this purpose, we were interested in belief
function theory which presents an appropriate framework to handle the un-
certainty related to the elicitation of preferences of the decision maker. So,
we have developed what we call belief AHP method, a combination between
the AHP method and the belief function theory.

The uncertainty that our approach is dealing with concerns two levels
namely the criteria and the alternatives. The proposed method allows the
decision maker to express his preferences with some degrees of uncertainty.
In fact, our proposed approach allows the decision maker to express the
importance of criteria with incomplete and imprecise preferences. So, the
decision maker determines his opinions on groups of criteria instead of single
one. To rank the alternatives, our method is able to use sets of criteria to
compare sets of alternatives, which can help the decision maker to express
subjective judgments between these alternatives.

Another part of the work provides some criticisms according to the com-
parison procedure. In fact, we have extended the belief AHP approach on a
more flexible method by introducing uncertainty in the pair-wise comparison
matrix. Thus, to evaluate the responses of the pair-wise comparison question,
the decision maker expresses his judgment with some degrees of uncertainty.
This uncertainty is represented via basic belief assignments (bba’s).

Then, we have applied the two proposed approach on a real application

96
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problem: the life cycle assessment, to demonstrate an applicable way of
improving evaluation tactics in complex decision problems, where there is a
large number of criteria and there is a need to follow human behavior.

Nevertheless, the proposed work is still subject to improvements. It can
be extended into different directions. In fact, our method can be improved
by defining a new consistency ration in a belief function framework. Thus,
the proposed method will be more flexible, if it will be able to calculate the
consistency of a belief pair-wise matrix.

In addition to the uncertainty on elicitation of preferences, another line
of research will be to assume that each set of criteria can be defined with a
degree of uncertainty. This uncertainty will be represented by a bba.

An interesting future work is to make our method able to solve more
complex hierarchical problems. That is the hierarchical structure is charac-
terized by more than three levels: the overall objective, criteria, sub-criteria
and alternatives.

Further work may be suggested on the connection between the belief AHP
approach and other methods. It would be interesting to combine our pro-
posed approach with the technique for order preference by similarity to ideal
solution (TOPSIS) method, the simple additive weighting (SAW) method.
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