
Université de Tunis

Institut Supérieur de Gestion

MASTERE RECHERCHE

Spécialité

Science et Technique de l’informatique décisionnelle (STID)

Option

Informatique et Gestion de la Connaissance (IGC)

A NEW FRAMEWORK FOR DYNAMIC
COMMUNITY-BASED RECOMMENDATION

Sabrine Ben Abdrabbah

Nahla Ben Amor Professeur, ISG Tunis Directeur du mémoire

Raouia Ayachi Maitre assistante, ESSEC Tunis Co-directeur

Lieu: LARODEC

2013-2014

Acknowledgment

In the end of this work, I would like to express my sincere thanks to my advisor Pr. Nahla

Ben Amor for her guidance and help throughout my studies and for valuable advice. It

has been an honor to work with you.

I would thank my co-advisor Dr. Raouia Ayachi for her help, her advice and especially

for reading carefully this report allowing me to improve its content.

I would thank Dr. Rémy Cazabet for his precious help and clarifications on everything

related to community detection and for providing me the pseudo code of his algorithm

(iLCD).

I am also grateful to all the professor of Institut Supérieur de Gestion de Tunis for

providing me the background that i need for study and research. I thank all the members

of the LARODEC laboratory.

The most special thanks goes to my fiance Eymen Kadri for his unconditional encour-

agement, patience and love through all this long process.

In closing, i would like to thank my two families (Ben Abdrabbah and Kadri) and my

friends who have been of great support through my studies.

ii

Contents

Introduction 1

1 Basics on recommendation and community detection 3

1.1 Introduction . 3

1.2 Recommender systems . 3

1.2.1 Notations and definitions . 4

1.2.2 Recommendation methods . 5

1.2.3 Collaborative Filtering . 5

1.3 Community detection . 12

1.3.1 Notations and definitions . 13

1.3.2 Static community detection methods 13

1.3.3 Dynamic community detection methods 17

1.4 Conclusion . 22

2 Community-based Recommendation 23

2.1 Introduction . 23

2.2 Static community-based recommendation 23

2.3 Dynamic community-based recommendation 27

iii

CONTENTS iv

2.4 Conclusion . 28

3 Proposed architecture for Dynamic Community-based Recommendation 29

3.1 Introduction . 29

3.2 Proposed architecture . 30

3.2.1 The pre-processing step . 30

3.2.2 Dynamic community detection step 33

3.2.3 Recommendation step . 39

3.3 Conclusion . 41

4 Experimental study 42

4.1 Introduction . 42

4.2 Experimental protocol . 42

4.2.1 Dataset . 42

4.2.2 Evaluation metrics . 43

4.2.3 Implementation . 45

4.2.4 Experimental platform . 46

4.3 Experimental results . 47

4.4 Conclusion . 50

Conclusion 51

References 53

List of Figures

1.1 Collaborative filtering process . 6

1.2 An example of static graph with community structure 14

1.3 An example of dendrogram . 15

1.4 Example of overlapping communities . 16

1.5 An illustrative example of CPM . 17

1.6 The community basic events . 18

1.7 Dynamic community detection principle on a set of snapshots 19

1.8 A union graph . 20

1.9 Community based on structures of current and previous snapshots 20

1.10 The principle methods using temporal network 21

2.1 Example of a bipartite network . 25

2.2 Twitter graph representation (A− >B: A follows B, A< − >B: A is a

followee of B and vice versa . 26

3.1 Proposed D2CF architecture . 31

3.2 A sequence of snapshots . 34

3.3 Example of a network evolution . 35

v

LIST OF FIGURES vi

3.4 The principle of user’s preference computation taking into account the com-

munity structure in the network . 39

4.1 A capture screen showing the evolution of communities extracted via iLCD

on the MovieLens data . 47

4.2 Impact of the dataset size on the recommendation quality 48

4.3 Performance of D2CF, S2CF and item-based: how many items (y-axis) have

been selected on average as good recommendations out of a total of 10

recommended items for both D2CF, S2CF and item-based CF in Set 1,

Set 2 and Set 3 (x-axis). 49

List of Tables

1.1 Users’ ratings matrix . 8

3.1 Example of ratings database . 32

4.1 Items’ categorization . 44

4.2 Precision and Recall values for Set 1 . 50

4.3 Precision and Recall values for Set 2 . 50

4.4 Precision and Recall values for Set 3 . 50

vii

List of Algorithms

1 iLCD pseudo-code . 37

viii

Introduction

Recommender systems have emerged in the past several years as an efficient tool to deliver

users with more intelligent and proactive information service. They recommend products or

services that fit well with the learned users’ preferences and needs. These systems generally

combine, on one hand, information extracted from users’ profiles and social interactions,

and on the other hand, machine learning techniques that are used to predict the user

ratings or preferences. Each recommender system has its particular specifications which

are related to the application domain, the used technique for recommendation and the kind

of its users (i.e. a person or a social group). Several types of recommenders have been

proposed that can be categorized into three major categories (Song, Lin, Tseng, & Sun,

2006), namely content-based filtering, collaborative filtering, and hybrid approaches.

In this work we focus on collaborative filtering which predicts users interests/preferences

from those of remaining users sharing similar tastes. Collaborative filtering is considered as

one of the most used techniques due to its efficiency and its high accuracy (Qiang & Yan,

2012). Typically, the recommendation process for this technique starts when users express

their preferences by rating items. The system analyzes these ratings to determine the exact

preferences of the users, then, matches the active user’s preferences and the preferences

collection to discover users having similar taste with the active user. Finally, the system

recommends a set of items for the active user according to the preferences of their similar

users.

From another side, the community detection presents a growing interest for many re-

searchers, especially in the web applications. A panoply of community detection algorithms

exist in literature and most of them focus on static community detection but recently the

dynamic aspect of networks has sparked a new line of research. Static community detec-

tion algorithms have been explored in collaborative filtering based on the idea that using

community structure in networks will enhance the performance of the recommendations

1

Introduction 2

(Fatemi & Tokarchuk, 2013; Qiang & Yan, 2012; Qin, Menezes, & Silaghi, 2010; Sahebi

& Cohen, 2011; Zhao, Lee, Hsu, Chen, & Hu, 2013). Nevertheless, the accumulation of

an important mass of data in the same time and in the same graph can lead to illegible

graphs, not able to deal with the dynamic aspect of real world networks.

In this paper we model the dynamic behavior of users interests in recommender systems.

Users’ interests are learned from users’ ratings data and more specially by looking firstly

at the items which have been rated by users and then finding a way to link items to each

other in order to build the dynamic network of items. Our major contribution consists

in presenting a novel approach named Dynamic Community-based Collaborative Filtering

(denoted D2CF for short) capturing dynamic users communities to offer recommendations

more suitable for real world networks. Our D2CF approach will be based on 3 main steps,

namely:

• Pre-processing step which consists in exploiting the timestamped data collecting dur-

ing a long period in order to build a dynamic network where the nodes are the objects

and the links represent the interactions between them.

• Dynamic community detection step which aims to find the groups of nodes that are

more connected to each other than to other nodes over time.

• Recommendation step which consists in computing the prediction score for a given

user-item pair based on the detected communities.

This report is organized as follows: Chapter 1 briefly presents the basic concepts of

both recommendation and community detection. Chapter 2 enumerates community based

recommendation methods related to our work. Chapter 3 details our proposed architecture

for dynamic community-based recommendation. Finally Chapter 4 presents experimental

results evaluating the performance of our proposed architecture.

Chapter 1
Basics on recommendation and

community detection

1.1 Introduction

Recommender systems have been widely used in various domains and diverse applications,

and have drawn increasing intention from different research communities such as machine

learning, electronic commerce and information retrieval (Qin et al., 2010). In parallel,

community detection have been attracting the interest of researchers during the last decade

and it becomes one of the most prominent domain in complex network analysis (Xie, Chen,

& Szymanski, 2013). This popular research topic has applications in many fields such as

biology, social science, etc.

This chapter will be devoted to basic on both recommendation and community detec-

tion. Section 1.2 presents Recommender systems and focus in particular on Collaborative

filtering approach and Section 1.3 gives an overview on static and dynamic community

detection methods.

1.2 Recommender systems

With the vast growth of information on the Internet, recommender systems have been

proposed to address the information overload problem by filtering the relevant data and

suggesting items of potential interest to users. They have become fundamental applications

in diverse web areas such as:

3

Section 1.2 – Recommender systems 4

1. The e-commerce websites like Amazon and eBay in which recommendation systems

provide an intelligent mechanism to find out items that users will probably like to buy

according to their behavior history of prior purchase transactions (Schafer, Konstan,

& Riedl, 1999).

2. The video websites like Youtube and Netflix where recommendation systems predict

items that fulfill users’ needs and preferences on movies, music and videos among the

tremendous amount of available items (Qin et al., 2010).

3. The online web journal like LiveJournal and Web library which make use of recom-

mender systems to identify articles and journals of interest to readers to ease the

task of finding preferred items from a huge collection of items (Porcel, Moreno, &

Herrer-Viedma, 2009).

In this section, we will first give some notations and definitions relative to recommender

systems. Then, we will briefly present existing recommendation methods with a particular

focus on collaborative filtering.

1.2.1 Notations and definitions

• U = {u1, u2, ..., un} denotes the set of users in the system where n is the number of

users.

• I = {i1, i2, ..., im} denotes the set of items in the system where m is the number of

items.

• Active user : the user that is currently interacting with the application and for whom

recommendations need to be generated.

• Target item: the current item for which we would like to predict user’s preference.

• Browsed item: the current item that a user has bought, visited, heard, viewed or

rated positively.

• Good item: the recommended item that can satisfy user’s needs.

• The preference: is a numerical value Pu,i expressing the predicted preference or like-

liness degree of item i given by the active user u.

• Top-N recommendations : the N recommended items that have the top highest pref-

erence value and that are not already seen by the active user.

• User profile: a set of user’s preferences.

Section 1.2 – Recommender systems 5

1.2.2 Recommendation methods

Recommendation methods can be classified into three major categories: content-based

filtering, collaborative filtering and hybrid approaches.

• Content-based approach (Belkin & Croft, 1992) selects items based on their content

along user’s profile. Its principle is to recommend new items similar to the ones that

the user has preferred in the past. In this approach, the system must have access

to a set of items features to be able to compute similarity of items. For example, if

a user has positively rated a pop song, then the system recommends to him other

songs similar to pop.

• Collaborative filtering approach (Resnick, Iacovou, Suchak, Bergtrom, & Riedl, 1994)

infers user’s preferences from remaining users having similar tastes. The similarity of

two users is computed using their ratings history. The recommendation process for

this technique takes as input a matrix of given user-item ratings and as an output

either a numerical value indicating the degree of likeliness of a certain item or a list

of Top-N recommendation. Google+ circles exploit our content using a collaborative

filtering approach.

• Hybrid approach (Soboroff & Nicholas, 1999) combines several recommendation tech-

niques to exploit merits of each one using different hybridization strategies (mixed,

weighted, cascade, ect.). Commonly, Collaborative filtering is combined with Content-

based filtering since Content-based approach cannot recommend items that have no

available features, while collaborative filtering predicts new items according to users’

ratings.

In this work, we will focus on Collaborative Filtering (denoted CF for short) as it is the

most widely implemented technology. It works well with complex objects and it proves an

explainable result which is an important aspect in recommender systems.

1.2.3 Collaborative Filtering

Collaborative Filtering methods rely on a matrix of user-item ratings to predict missing

user-item preferences. The more users express their preferences on items, the more accurate

the recommendations become. The output is a top N recommendation list L containing

items with the highest preference value for the active user or a degree of likeliness of a

certain item as depicted in Figure 1.1.

The typical collaborative filtering scenarios are based on three steps:

Section 1.2 – Recommender systems 6

�� �� �� �� �� ���.

�� ���,��
���,��

���,��

�	 ���,��
���,��

�
 ���,��

�� ���,��
���,��

���,��
���,��

���.

U
se
rs

Active user

Prediction

Top-N

recommen

dations

Items

Active

user’s

preference

of a certain

item

Figure 1.1: Collaborative filtering process

1. Collect preferences of users.

2. Match the active user’s preferences and the preferences collection to discover users

having similar taste in the past.

3. Recommend items liked by users similar to the active user.

Collaborative filtering systems are often characterized as either being memory-based

exploiting users’ ratings database to compare users against each other using similarity

measures, or model-based in which a model is learned from the historical rating data and

used to predict a user’s rating for a particular item that he had not seen before. In what

follows, we provide details of memory-based and model-based method categories.

Memory-based Collaborative Filtering

Memory-based methods (also called user-based CF) consist in using the entire users’

rating data to compute the similarity between users and select the most similar ones for

recommendation. User-based CF executes the following tasks to generate recommendations

Section 1.2 – Recommender systems 7

for an active user:

1. Compute similarity between users based on their rating patterns (if two users rated

the same items in the past then they are similar).

2. Select the most similar users to the active user.

3. Compute the preference value Pu,i for the target item i as a weighted average of

ratings assigned for i by the most similar users to the active user u. Equation (1.1)

expresses Pu,i where r̄u is the average ratings of user u, ru′,i is the rating given by user

u′ to item i, S refers to the most similar users to user u and s(u, u′) is the similarity

degree between users u and u′.

Pu,i = r̄u +

∑
u′∈S s(u, u

′)(ru′,i − r̄u′)∑
u′∈S |s(u, u′)|

(1.1)

4. Extract the highest predicted preference to select the Top-N recommendations.

There are several similarity measures (B. Sarwar, Karypis, Konstan, & Riedl, 2000), we

cite in particular:

• Pearson correlation-based similarity : Pearson correlation computes the extent to

which two users are linearly related to each other. It is only based on items rated by

both u and u′. Formally:

S(u, u′) =

∑
i∈I′(ru,i − r̄u)(ru′,i − r̄u′)∑

i∈I′(
√
ru,i − r̄u)2

√
(ru′,i − r̄u′)2

(1.2)

where I ′ is the set of items that both u and u′ have rated, ru,i is the rating of the

user u for the item i and r̄u is the average rating of the co-rated items of the user u.

• Vector cosine-based similarity : similarity s(u,u′) is computed by considering each

user as a vector of users’ ratings and measuring the cosine of the angle formed by

these vectors. Formally:

S(u, u′) = cos(u, u′) =
~A • ~B
~‖A‖ ∗ ~‖B‖

(1.3)

where A, B correspond to vectors of u and u′ respectively and • denotes the dot-

product.

Section 1.2 – Recommender systems 8

Table 1.1: Users’ ratings matrix

i1 i2 i3 i4 i5

u1 5 4 ? 3 3

u2 4 ? 3 5 ?

u3 3 3 3 ? 5

Example 1.1. Let us consider the user-item matrix of Table 1.1 composed of three users

{u1, u2, u3} and five items {i1, i2, i3, i4, i5}. Our aim is to recommend to u2 the most pre-

ferred item not yet used (i2ori5). To this end, we should compute both of Pu2,i2 and Pu2,i5.

So, we should first compute s(u2, u1) and s(u2, u3) to select the most similar user to u2

using Equation (1.2) as follows:

s(u2, u1) =
(ru2,i1− ¯ru2)(ru1,i1− ¯ru1)+(ru2,i4−ru2)(ru1,i4− ¯ru1)√

(ru2,i1− ¯ru2)2
√

(ru1,i1− ¯ru1)2+
√

(ru2,i4− ¯ru2)2
√

(ru1,i4− ¯ru1)2

= (4−4)(5−3.75)+(5−4)(3−3.75)√
(4−4)2

√
(5−3.75)2+

√
(5−4)2

√
(3−3.75)2

= −1

s(u2, u3) =
(ru2,i1− ¯ru2)(ru3,i1− ¯ru3)+(ru2,i3− ¯ru2)(ru3,i3− ¯ru3)√

(ru2,i1− ¯ru2)2
√

(ru3,i1− ¯ru3)2+
√

(ru2,i3− ¯ru2)2
√

(ru3,i3− ¯ru3)2

= (4−4)(3−3.5)+(3−4)(3−3.5)√
(4−4)2

√
(3−3.5)2+

√
(3−4)2

√
(3−3.5)2

= 1

We will only consider the one most similar user to u2, namely u3. The predicted pref-

erence PB,I2 is therefore computed as follows:

Pu2,i2 = ¯ru2 +
s(u2,u3)(ru3,i2− ¯ru3)

|s(u2,u3)| = 4 + 1(3−3.5)
1

= 3.5

With the same manner, we compute Pu2,i5 and we obtain:

Pu2,i5 = ¯ru2 +
s(u2,u3)(ru3,i5− ¯ru3

|s(u2,u3)| = 4 + 1(5−3.5)
1

= 5.5

As Pu2,i5 > Pu2,i2, then item i5 is more preferred than i2 and consequently i5 will be in

the top one recommendation list of u2.

Model-based Collaborative Filtering

Section 1.2 – Recommender systems 9

Model-based methods (also called item-based CF) consist in using the historical rating

data of users to learn a model in order to make predictions. To make a prediction for the

active user u, on a certain item i, the item-based collaborative filtering uses the similarities

between the rating patterns of items as follows:

1. Select items which are already rated by the active user

2. Compute similarity between target item and the selected items (if two items are liked

or disliked by the same users, then these latters are similar).

3. Select the most similar items to the target item.

4. Compute the user’s preference for item i using the average ratings given by the active

user for the similar items as expressed by Equation (1.4).

Pu,i =

∑
j∈S s(i, j) ru,j∑

j∈S |s(i, j)|
(1.4)

Where S represents the most similar items to i, s(i, j) denotes the similarity degree

between items i and j and ru,j corresponds to the ranting of user u on item j.

5. Extract the highest predicted preference to select the Top-N recommendations.

Among the most commonly used traditional metrics, we cite Cosine similarity and

Pearson Correlation (B. Sarwar, Karypis, Konstan, & Riedl, 2001).

• Pearson correlation-Based Similarity : similarity s(i, j) between two items i and j is

calculated based on users who rated both i and j. Formally:

s(i, j) =

∑
u∈U(ru,i − r̄i)(ru,j − r̄j)√∑

u∈U(ru,i − r̄i)2
√∑

u∈U(ru,j − r̄j)2
(1.5)

where U is the set of users who rated both item i and j, ru,i is the rating of user u

on item i and r̄i is the average rating of the ith item by U .

• Cosine-based Similarity : similarity is computed by considering items as vectors and

measuring the cosine of the angle between these two vectors. The similarity is given

by:

S(i, j) =
~i •~j
~‖i‖ ∗ ~‖j‖

(1.6)

Section 1.2 – Recommender systems 10

Example 1.2. Consider the same ratings matrix of Table 1.1. We want to compute user

u2’s prediction for item i2 and i5 in order to recommend the most close item to user’s

taste. So, we need to find the two most similar items for both i2 and i5 based on Pearson

Correlation similarity Equation(1.5) as follows:

s(i2, i1) =
(ru1,i2− ¯ri2)(ru1,i1− ¯ri1)+(ru3,i2− ¯ri2)(ru3,i1− ¯ri1)√

(ru1,i2− ¯ri2)2+(ru3,i2− ¯ri2)2
√

(ru1,i1− ¯ri1)2+(ru3,i1− ¯ri1)2

= (4−3.5)(5−4)+(3−3.5)(3−4)√
(4−3.5)2+(3−3.5)2

√
(5−4)2+(3−4)2

= 1

s(i2, i3) =
(ru3,i2− ¯ri2)(ru3,i3− ¯ri3)√

(ru3,i2− ¯ri2)2
√

(ru3,i3− ¯ri3)2
= (3−3.5)(3−3)√

(3−3.5)2
√

(3−3)2
= 0

s(i2, i4) =
(ru1,i2− ¯ri2)(ru1,i4− ¯ri4)√

(ru1,i2− ¯ri2)2
√

(ru1,i4− ¯ri4)2
= (4−3.5)(3−4)√

(0.5)2
√

(−1)2
= −1

This means that the most similar two items to i2 are i1 and i3. Based on this, the

prediction Pu2,i2 is therefore computed as follows:

Pu2,i2 =
s(i2,i1)ru2,i1+s(u2,i3)ru2,i3

|s(i2,i1)|+|s(i2,i3)| = (1∗4)+(0∗3)
1+0

= 4

With the same manner, we select the two most similar items to i5.

s(i5, i1) =
(ru1,i5− ¯ri5)(ru1,i1− ¯ri1)+(ru3,i5− ¯ri5)(ru3,i1− ¯ri1)√

(ru1,i5− ¯ri5)2+(ru3,i5− ¯ri5)2
√

(ru1,i1− ¯ri1)2+(ru3,i1− ¯ri1)2

= (3−4)(5−4)+(5−4)(3−4)√
(−1)2+12

√
12+(−1)2

= −1

s(i5, i3) =
(ru3,i5− ¯ri5)(ru3,i3− ¯ri3)√

(ru3,i5− ¯ri5)2
√

(ru3,i3− ¯ri3)2
= (5−4)(3−3)√

(5−4)2
√

(3−3)2
= 0

s(i5, i4) =
(ru1,i5− ¯ri5)(ru1,i4− ¯ri4)√

(ru1,i5− ¯ri5)2
√

(ru1,i4− ¯ri4)2
= (3−4)(3−4)√

(−1)2
√

(−1)2
= 1

Items i4 and i3 are selected as the most similar items to i5 and they are used to compute

the preference value of u2 for item i5 as follows:

Pu2,i5 =
s(i5,i3)ru2,i3+s(i5,i4)ru2,i4

|s(i5,i3)|+|s(i5,i4)| = 5

Section 1.2 – Recommender systems 11

Item i5 has the highest predicted preference and consequently it will be in the top one

recommendation list for user u2.

Due to the nature of data used in collaborative filtering, both user-based and item-based

approaches suffer from one or more weakness. In fact, there is a cold start problem when

a new user starts with an empty profile. The sparsity problem occurs when available data

are insufficient for identifying similar items/users. When there is an excessive information

of users and items the scalability problem gives rise.

To outcome these problems, several recommendation methods were implemented using

different techniques. We cite in particular, clustering techniques (Ungar & Foster, 1998;

B. M. Sarwar, Karypis, Konstan, & Riedl, 2002), Bayesian techniques (Langseth & Nielsen,

2009; Zhang & Koren, 2007), community detection (Kamahara, Asakawa, Shimojo, &

Miyahada, 2005; Qiang & Yan, 2012; Qin et al., 2010; Sahebi & Cohen, 2011), ect.

• Clustering techniques: based on rating of users, these techniques group users or

items into clusters. Once the clusters are created, items’ predictions can be made

using ratings average of users pertaining to that cluster. A user can belong to more

than one cluster, in this case the prediction is an average across the clusters, weighted

by degrees of membership. The clustering techniques reduce the sparsity by shrinking

the dimensions of user- item rating matrix and improve the scalability of the systems

since the similarity is calculated only for users in the same clusters.

Ungar and Foster (Ungar & Foster, 1998) proposed to repeat K-means clustering

technique more than one time in order to group users into clusters with similar rated

items and group items into clusters which tend to be liked by the same users. Then,

the Gibbs sampling method is applied to update the clusters structure.

Sarwar et al. (B. M. Sarwar et al., 2002) proposed to use the clustering technique to

group users into clusters based on their similarities. In this approach, users belonging

to the same cluster are considered as neighbors. Collaborative filtering is used in the

recommendation step in which the prediction score is computed based on aggregating

ratings of active user’s neighbors.

• Bayesian techniques: consist in learning as a first step a model from the available

information in the database and exploit it to generate a recommendation list. This

process is practical when the user preference information changes slowly but is not

suitable when user preference models are updated quickly (B. Sarwar et al., 2001).

Langseth and Nielsen (Langseth & Nielsen, 2009) propose a probabilistic collabora-

tive filtering model that explicitly represents all items and users simultaneously in

Section 1.3 – Community detection 12

the same model. Each item is represented by a vector wi and each dimension of wi

describes a unique feature of the item. Each user is represented by a vector which

describes user’s liking for each item feature. These vectors are incorporated in the

Bayesian network in order to predict user’s ratings about unrated items using his

previous ratings on other items.

Zhang and koren (Zhang & Koren, 2007) introduce a bayesian hierarchical model

for content-based recommendation. They model each user as a k-dimentional vector,

sampled randomly from a gaussian distribution, and items as k-dimensional features

vectors. Then, they incorporate data from all users in a Bayesian hierarchical model

in order to learn a large number of individual user profiles. These latters are finally

user to predict a label-rating of an item for a specific user.

• Community detection techniques: aim to exploit network interactions to con-

struct dense groups (communities) composed of a set of nodes strongly connected

among them and more weakly to the remaining of the network. In the context of

recommender systems, a community is generally defined as a group of users or items

that may have the same interests and properties. In this case, recommendation is

only restricted on communities into which the active user belongs instead of the en-

tire network. Recommendation techniques focusing on community detection will be

detailed in Chapter 2.

1.3 Community detection

Community detection in networks becomes recently a well known problem in many fields

especially for social network applications (Deitrick, Valyou, Jones, Timian, & Hu, 2013). In

fact, people naturally tend to form groups within their work environment, family, friend,

ect. In the last few years, the study of groups and communities becomes fundamental

in mining and analysis of sociological graphs and real networks for many applications

ranging from statics, computer science, biology, ect. (Chen & Yan, 2010). This can help

to understand the collective behavior of users.

For a while the detection of communities within networks was related to the problem

of graph partitioning. Both terms refer to the division of a network into dense groups.

However, in community detection approach, the number and size of groups are unspecified,

but determined by the organization of the network contrarily to the graph partitioning

where the number and the size of groups should be known in advance, which reduces the

efficiency of such a tool.

Section 1.3 – Community detection 13

A community in a network is generally defined as a set of nodes strongly connected

among them and more weakly to the remaining of the network. In fact, community must

be dense and clearly separated from the rest of network. Based on this, many partitions

could represent meaningful community structures for a given network. That’s why many

works such as (Gfeller, Chappelier, & Rios, 2005) have been related the significance of a

community structure to the stability of a partition against random perturbation of the

graph structure.

A growing number of community detection methods have been recently proposed. The

goal of this section is to present the most common ones including static and dynamic

approaches.

1.3.1 Notations and definitions

• G(V,E): an undirected graph with V the set of vertices (nodes) and E the set of its

edges (links).

• C(VC , EC): C is a community of G where VC is a set of nodes belonging to V and

EC is a set of all links belonging to E.

• Community structure: This property means that the nodes tend to create dense local

structures (i.e a set of nodes strongly connected among them and more weakly to the

remaining of the network).

• Modularity : a metric that evaluates the quality of a given community decomposition.

• Snapshot : an overview of the network at a given time.

• Overlapping community : this property means that the nodes can belong to more

than one community in the same time.

• Edge-betweenness : a metric that represents the number of shortest paths between

two different nodes of the graph, which run along this edge.

• k-clique: a complete sub graph of k nodes connected with k(k-1)/2 possible links.

1.3.2 Static community detection methods

Static community detection algorithms are applied in graphs called static networks or

network of interactions constructed by aggregating all observed interactions over a period

of time and representing it as a single graph. These graphs are used as a tool for modeling

Section 1.3 – Community detection 14

complex phenomena by modeling the actors of the phenomena by the vertices and the

interactions between them, by links or edges between the vertices. Formally, there is a

graph G = (V,E) where V is the set of vertices and E is the set of links, the aim is to

find a partition of the vertices of the graph P = (C1, C2, ..., Ck), where each subset Ci

represents a community without knowing in advance neither the number nor the size of

different communities. Figure 1.2 represents an example of community structure in graph.

Static community

detection algorithm

Figure 1.2: An example of static graph with community structure

There exists several works that attempt to detect communities on static networks. We

intend to present two analytical categories of static community detection, namely non over-

lapping and overlapping community detection methods.

Non-overlapping community detection

The first idea of non overlapping communities was to find a simple partitioning for

a given network: each node in the network belongs to only one community and there

is only one possible community decomposition. The first algorithm has been proposed by

Girvan and Newman (Newman & Girvan, 2004) by considering that all nodes belong to the

same community, then edges are successively removed according to their Edge-betweenness

values until obtaining a disconnected graph (i.e each node represents one community). A

dendrogram typically created in the end of this process, which represents the different

possible cuts for the graph (i.e starting with a community in the root, two communities

in the next step, until each node belongs to its own partition). The resulting number

Section 1.3 – Community detection 15

of partitions depends on the dendrogram cut. An example of a dendrogram is shown in

Figure 1.3. In this step, Girvan and Newman have introduced the Modularity metric to

Figure 1.3: An example of dendrogram

determine the optimal cut level in the dendrogram. A high value of modularity indicates

a better partitioning of the network into communities.

Motivated by the modularity definition, many works have been proposed. The idea

consists in finding the partition corresponding to the maximum value of modularity. The

most popular heuristic using agglomerative methods is Louvain method (Blondel, Guil-

laume, Lambiotte, & Lefebvre, 2008). The algorithm uses a greedy optimization method

that attempts to optimize the modularity of a partition of the network in a local way. The

idea is to consider each node as a single community. Then, the gain in weighted modu-

larity that can be obtained by integrating each community in its neighbor community is

computed in order to aggregate nodes of communities that offer maximal gain.

These steps are repeated iteratively until obtaining a stable modularity value. At the

end of each iteration, the algorithm yields the partitioning scheme and considers formed

communities as new nodes. This method is used for very extremely large networks.

In (Brandes et al., 2008), it has been proved that modularity optimization is an NP-hard

problem. In fact, the resulting values of modularity as well as the community memberships

are affected by network topology (i.e the order in which the vertices in the network are

processed). Besides, modularity maximization suffers from the problem of resolution limit,

when communities smaller than a certain size cannot be detected and they should conse-

quently merged with other communities to just obtain the expected size. A large value of

the modularity maximization does not necessarily reveal the optimal division.

Section 1.3 – Community detection 16

Overlapping community detection

Overlapping community structures can be observed in many real-world networks such

as social networks where an individual usually belongs to different circles at the same time

(work colleagues, relatives, sport associations, etc.) as shown in Figure 1.4 and biological

networks where a protein may belong to several protein complexes simultaneously. In such

networks, communities overlap such that nodes may belong to more than one group, and

these groups form the so-called overlapping communities.

A

Family of A

Football club of A

Figure 1.4: Example of overlapping communities

Finding such overlapping communities is a challenging problem and is not supported by

community detection algorithms discussed above. The basic technique to detect overlap-

ping communities is Clique-Percolation Method (CPM) (Palla, Derényi, Farkas, & Vicsek,

2005). CPM is based on the assumption that a community is the largest connected sub-

graph obtained by a k-clique with all k-cliques connected to it. In fact, the algorithm

works in two steps, first all k-cliques should be found then an aggregation step is ensured

for nodes of cliques sharing at least k−1 vertices, whithin the same community. Figure1.5

presents an illustrative example of CPM.

Overlapping communities have been also studied by (Gregory, 2010). In fact, a Com-

munity Overlap propagation algorithm (COPRA) has been proposed based on the principle

of label propagation. The typically idea of the Label Propagation Algorithm (LPA) was

initiated by Raghavan et al. (Raghavan, Albert, & S.Kumara, 2007), and it consists in

assigning each vertex with a unique label. Then, each vertex, repeatedly, updates its label

Section 1.3 – Community detection 17

35

1
2

3 4 5

67

Step 1: Cliques of sizes 3

{1,2,3}, {2,3,4}, {4,5,7},

{4,5,6}, {4,7,6}, {6,5,7}

1,2,3

2,3,4

5,4,6

4,5,7

7,6,4

6,5,7

Step 2: Communities

{1,2,3,4}

{4,5,6,7}

Figure 1.5: An illustrative example of CPM

by replacing it by the label used by the greatest number of its neighbors. After several

iterations, the same label tends to become associated with all members of a community.

An enhanced version of LPA was proposed by the authors in which each node is labeled

with a set of pairs (c, b) where c is a community identifier and b is a belonging coefficient

indicating the strength of the membership of the node in the community c.

1.3.3 Dynamic community detection methods

Dynamic networks, also called time varying graphs can be either a set of independent

snapshots taken at different time steps (Hopcroft, Khan, Kulis, & Selman, 2004; Palla,

Barabasi, & Vicsek, 2007) or a set of linked snapshots (Mucha, Richardson, Macon, Porter,

& Onnela, 2010) or temporal network that represents sequences of structural modifications

of network over time (Cazabet & Amblard, 2011). In fact, dynamic networks have had to

change and evolve over time, links and nodes can also appear and disappear. Figure 1.6

shows the basic events that may occur in the life of a community: a community may born

(when it emerges without predecessor) or dead (when it disappears without successor) or

merges with another community (when its join together to form a new community) or

splits (when it splits into several new communities) or grows (when it gains new members)

or contracts (when it loses members).

Section 1.3 – Community detection 18

36

1 2

3 4

65

Figure 1.6: The community basic events

Recently, a lot of research has been done on these networks to detect dynamic commu-

nities. We present two main categories of dynamic community detection methods, methods

based on snapshots and methods based on temporal networks.

Methods based on snapshots

As each snapshot is a static graph, the basic approach to detect community structure

in dynamic networks is to use a classical algorithm on each snapshot more or less inde-

pendently, then, match the resulting communities in order to characterize the evolution of

communities over time as depicted by Figure 1.7.

Hopcroft et al. (Hopcroft et al., 2004) are the pioneers of handling community structure

in dynamic networks. The idea consists in decomposing the dynamic network into a set of

snapshots where each snapshot corresponds to a single point of time. Then, they applied a

static community detection algorithm on each snapshot using an agglomerative hierarchical

method based on cosine similarity and they matched the communities detected among

different snapshots. This method is not able to deal with overlap communities which is

considered an important property.

In (Palla et al., 2007), the authors proposed to adapt the static version of Clique

Percolation Method (CPM) discussed above to detect overlapping communities in Dynamic

networks. The detection process can be described as follows:

Section 1.3 – Community detection 19

T

T+1

Community

detection

algorithm

Community

detection

algorithm

Matching

T

T+1

T+1

Figure 1.7: Dynamic community detection principle on a set of snapshots

1. Define a succession of snapshots taken at different time steps.

2. Use Clique Percolation Method (CPM) to extract communities at each time step.

3. For each consecutive time steps t and t + 1 we construct a joint graph U consisting

of the union of links from the corresponding two networks (See Figure 1.8).

4. Use Clique Percolation Method (CPM) to extract the community structure of this

joint network U .

(a) If a community in the joint graph U contains a single community from t and a

single community from t+ 1, then they are the same.

(b) If a community in the joint graph U contains a single community from t and

two communities from t+ 1, then a splitting process is produced.

(c) If a community in the joint graph U contains two communities from t and a

single community from t+ 1, then a merging process is produced.

Note that CPM communities can only grow, merge or remain unchanged.

Methods applying static algorithms on snapshots cannot cover the real evolution of

community structures over time. Analyzing each snapshot separately presents a problem

due to the instability of community detection algorithms (i.e they are often not determin-

istic and few modifications, or even no modifications of the input network may lead to

Section 1.3 – Community detection 20

37

T T+1Union Graph

Figure 1.8: A union graph

many changes in the resulting community structure). Another idea has been explored us-

ing snapshots consists in taking into account the obtained partitions in the stage t during

the community detection process of the stage t+ 1. The general principle of this approach

is displayed on Figure 1.9.

T T+1

and

T+1

Figure 1.9: Community based on structures of current and previous snapshots

This principle has motivated several researches, we cite in particular (Chakrabarti, Ku-

mar, & Tomkins, 2006) in which the authors presented a new framework for evolutionary

Section 1.3 – Community detection 21

clustering. The clustering produced during a particular time-step should not only rely on

the current data but also remain faithful to the clustering of the previous time-step. To

this end, they have modified the quality function of the classical community detection to

integrate evolution and obtain a sequence of more interesting clustering for the dynamic

networks.

Methods based on Temporal networks

Since the temporal information can be also coded in the graph itself, the network

evolution is not considered as a succession of snapshots anymore but rather as a succession

of modifications on the network. The community detection idea consists then, in taking

into consideration, where the latest modification has been carried out on the network to

update existing communities. The general principle of this approach is shown on Figure

1.10. New studies have exploited such representation of data that takes into account all

temporal changes.

T T+1

And

Figure 1.10: The principle methods using temporal network

We cite for instance (Nguyen, Dinh, S.Tokala, & M.T.Thai, 2011) where authors pre-

sented a two-phase framework for detecting, updating and tracing the evolution of overlap-

ping communities in dynamic network. The first phase consists in discovering all possible

basic communities in network by extracting at first all possible densely connected sub-

graphs of the network and then combining those who share a significant substructure

together. In the second phase all possible changes (add or remove of nodes and edges)

have been considered to update the initially basic community structure.

Section 1.4 – Conclusion 22

In (Cazabet & Amblard, 2011), the authors proposed an Intrinsic Longitudinal Com-

munity Detection (iLCD) algorithm which is capable of detecting both static and temporal

communities in large networks. The iLCD algorithm uses a longitudinal detection of com-

munities in the whole network in the form of a succession of structural changes. Details of

this algorithm will be presented in Chapter 3.

1.4 Conclusion

This chapter presented the two main concepts for recommender systems and more especially

collaborative filtering approach and community detection. We classified relevant previous

studies of community detection into static and dynamic categories. Next chapter is devoted

to community based recommendation methods related to our proposed attempt in this

work.

Chapter 2
Community-based Recommendation

2.1 Introduction

Recommender systems have become extremely common in recent years. There is a lot

research that attempt to enhance and improve the accuracy and the performance of the

existing recommendation by incorporating community detection techniques. In fact, the

community structure may help the system to personalize recommendations provided to

users by focusing on its communities instead of the whole network. The various proper-

ties of communities may be relevant because understanding the underlying structure of

these groups may have a major impact on users’ behaviors and pave the way to mapping

emergent semantics in recommender systems. Communities detected in static networks are

extremely different from the ones extracted from dynamic networks. Consequently, a con-

siderable impact on recommendation is envisaged depending on the network. This chapter

is organized as follows: Section 2.2 presents static community-based recommendation and

Section 2.3 is dedicated to the dynamic aspect of community-based recommendation.

2.2 Static community-based recommendation

The general principle of static community-based recommendation consists in detecting

communities in static networks and recommending items to the target user depending to

which community he pertains. In literature, there are several recommendation approaches

dealing with static community detection. We cite in particular (Kamahara et al., 2005)

where authors have proposed a community-based recommendation approach in which a

23

Section 2.2 – Static community-based recommendation 24

user can find new and unexpected recommendations. Firstly, they proposed an algorithm

to cluster users into virtual groups which represent the different aspects of users’ interests.

Then , they calculated the similarity between target user and communities in order to

discover the user’s tastes. A user can belong to various communities in the same time. The

recommendation of user i for item j is calculated based on the target user’s community

members using one of the mixed approaches of content-based and collaborative filtering.

The list of recommended contents is generated in order of the higher recommendation

value.

In the same context, Qin et al. (Qin et al., 2010) have proposed a recommender system

for YouTube based on communities extracted from an network of reviewers. This latter

is composed of a set of nodes representing video and a set of edges such that an edge is

drawn between two nodes if the same reviewer comments on both of them. These edges

are weighted by the number of common comments. Once the YouTube recommendation

network is build, the authors choose to apply Clique Percolation Method (CPM) community

detection algorithm (Palla et al., 2005). Then, they proposed a utility value for each node

that captures its importance in the network to recommend videos locally and globally. The

global approach recommends videos having a higher utility values while the local approach

recommends other videos connected to the one watched by the target user and pertained

to the same community.

Recommendation-based on community detection can be also useful to provide a solu-

tion to the cold start problem (Sahebi & Cohen, 2011). The basic idea of this work is to

use communities, extracted from different dimensions of social networks (e.g. Facebook

dimension, Twitter dimension, ect.) to capture the similarities between these dimensions

and accordingly help recommendation systems to find latent similarities. To this end,

they used modularity-based community detection method for multi-dimensional networks

(Tang, Wang, & Liu, 2009) to identify hidden structure shared across dimensions. There-

fore, they considered only users within a user’s community to compute the predicted rating

of each item to enhance the traditional collaborative filtering approach in terms of space

and time.

Qiang et al. (Qiang & Yan, 2012) model the recommendation system as a bipartite

graph composed of nodes representing users and items and edges depicting rating informa-

tion as shown in Figure 2.1.

Section 2.2 – Static community-based recommendation 25

�� �� �� ��

�� �� �� �� ��

2
2

2

4

3

35 1
2

Figure 2.1: Example of a bipartite network

Then, they proposed an extension of Label Propagation Algorithm (LPA) (Raghavan

et al., 2007) to detect overlapping community structure. The main idea of recommendation

consists in searching the nearest neighbors of the target user in their communities using

Pearson similarity measure, then recommending items according to ratings of candidate

users.

More recently, Zhao et al. (Zhao et al., 2013) proposed a user community-based rec-

ommendation for twitter. The main of their work is to recommend a set of users to follow

by target user. The main idea is to identify communities of users having similar influ-

ence as well as interests in a uni-directional social network and use these communities in

recommendation to reduce data sparsity. To this end, they utilized the follower-followee

relationships to model the twitter graph (see Figure 2.2). Then, they employed the LDA-

based method (Blei, Ng, & Jordan, 2003) to discover communities and finally applied

matrix factorization (Koren, Bell, & Volinsky, 2009) to each community to generate a list

of candidate followees. The output is therefore the top-k followees to recommend to target

user chosen according to their scores. We note that a target user may belong to more than

one community.

In (Fatemi & Tokarchuk, 2013), authors proposed a community-based social recom-

mender system to provide personalized recommendations for both individuals and groups.

They used the implicit relationships between items derived from the direct interactions of

users . In this work, movies are presented as nodes and are linked if at least one reviewer

has commented and edges are weighted by the number of common reviewers between a

movie pair. After building the network of items, the Louvain method (Blondel et al.,

2008) has been exploited to identify groups of movies. These latters are then used for

Section 2.2 – Static community-based recommendation 26

A

B

Figure 2.2: Twitter graph representation (A− >B: A follows B, A< − >B: A is a followee

of B and vice versa

recommendation according to the movie’s communities.

In (Wen, Liu, Zhang, Xiong, & Cao, 2014), authors proposed a community-based rec-

ommendation approach using a bipartite graph composed of users and items linked by

users preferences. In fact, latent communities are at first identified using an improvement

of traditional similarity measures based on ratings. Then, the recommendation list is gen-

erated based on ratings given by the other members of the communities to which target

user pertains.

These methods only deal with static networks derived from aggregating data over all

time, or taken at a particular time. Such aggregation can radically misrepresent the existing

community structure. Besides, information can be lost since real-world networks are always

evolving over time especially users preferences in social networks. For these reasons, new

studies has exploited this temporal information in order to identify efficient communities

and track their evolution in dynamic network. This will be the focus of the following

section.

Section 2.3 – Dynamic community-based recommendation 27

2.3 Dynamic community-based recommendation

Modeling temporal dynamics is considered as a key factor for designing both of recom-

mender users preferences model and recommender systems. In fact, the inclusion of tem-

poral patterns is proved invaluable in improving quality of prediction and consequently

lead to significant accuracy gains (Yehuda, 2009).

Despite the high impact of temporal effects on user’s preferences, the subject attracted

a quite negligible attention in community-based recommender systems literature.

A first attempt has been established by Song et al. (Song et al., 2006). In fact, authors

have proposed a community-based dynamic recommendation approach (CBDR) that takes

into account content semantics of documents, evolutionary patterns and users communities,

simultaneously. The aim is to capture dynamic patterns of users’ interests and model users’

preferences over time. To this end, Time-Sensitive Adaboost algorithm has been proposed

to adapt users’ evolving interests based on the outputs of the following steps:

1. The content analysis step: consists in recognizing documents topics from titles and

abstracts.

2. The dynamic patterns analysis step: consists in tracking the dynamic patterns exist-

ing in both documents and user’s behaviors.

3. Community construction step: consists in building communities based on the fact

that people from the same department of the same company tend to have similar

interests.

4. Recommendation step: provides a recommendation list of documents for all users

pertaining to the same community.

This approach is limited since it uses a manual method to identify communities, which is

not efficient especially when we deal with strongly evolving and large networks.

More recently, Abrouk et al. (Abrouk, Gross-Amblard, & Cullot, 2010). proposed

a community detection method that relies on fuzzy k-means clustering to automatically

construct users’ communities. In fact, they invoked the clustering method from time to

time to dynamically detect the users’ interests over time. This allow to update the current

user’s preferences. Similarity used in this method is computed based on the resources

manipulated by users. Then, they exploited these formed communities to determine user’s

preference for new items with regard to the updated users’ ratings.

Section 2.4 – Conclusion 28

In (Hönsch, 2011), the author proposed an article recommender system for new portals

in which virtual communities are extracted from the keyword relatedness graph, created

from keywords deduced from previously accessed articles. The detection of user’ interests is

repeated continuously in subsequent time intervals in order to keep pace with the dynamics

of new portals. Then, they introduced a latent analysis of content to determine the re-

latedness between communities. Recommendations come from other community members

using collaborative filtering to find the most interesting unseen content for the particular

user.

In both the previously presented methods, applying clustering techniques from time to

time cannot cover the real evolution of community structure over time. Indeed, several

structural changes may occur and lost, without being detected. Besides, the temporal

complexity of these methods increases in large networks.

To cover up these problems, we propose in the following chapter a global architecture

that takes advantage from the temporal information across users along multiple time points

to provide an efficient personalized recommendation for users.

2.4 Conclusion

This chapter surveys previous works of community based recommendation which are similar

to our attempt to include community detection as part as recommendation. Community

detection method provide a powerful tool for recommendation by focusing on the group

into which the target user pertains instead of the whole network. However, almost of these

works only deal with static networks. The few other works that attempt to take into

account the dynamic aspect of networks as well as communities have not used a dynamic

community detection algorithm. Based on this we have proposed in the next chapter a

novel approach for dynamic community based recommendation.

Chapter 3
Proposed architecture for Dynamic

Community-based Recommendation

3.1 Introduction

Delving into the dynamic aspects of network behavior has become a necessity especially

with the rapidly growing complex networks, such as social networks. Representing the

dynamic aspect of users’ interests is crucial in recommendation systems also, but it seems

harder to ensure with the current community-based recommendation methods. Indeed, all

these methods extract communities from the network at a given time (static network) or

from time to time and this is usually hard because it is not easy to recognize the commu-

nities of t at t+ 1. To this end, we propose a general architecture to automatically detect

dynamic communities using a dynamic community detection algorithm and incorporate

these ones in the recommender system based on the fact that if we enhance the quality

of the communities passed as input, the recommendation will be consequently enhanced.

Main results relative to the proposed method have been accepted for publication in 2ed In-

ternational Workshop on Dynamic Networks and Knowledge Discovery at ECML PKDD

2014.

Section 3.2 will detail the different steps and parameters of the proposed architecture.

29

Section 3.2 – Proposed architecture 30

3.2 Proposed architecture

Our target is to exploit the temporal information in order to enhance recommendation

based on community structure. We propose architecture, called Dynamic Community-

based Collaborative Filtering denoted by (D2CF for short) in which the users’ interests are

tracked over time.

D2CF comprises three main steps. The first step is to build the dynamic network

from time-stamped data. In the dynamic network the items and their interactions are

represented respectively by nodes and edges. The items interactions are modeled based on

the co-rating relationship learned from users profiles. These edges can be either inserted or

removed in order to represent the evolution of users’ interests over time. The second step

applies a dynamic community detection algorithm to extract communities from dynamic

network model prepared in the above step. A community is a group of items in which

several common users are often interested over time. This pattern is learned from the

users’ ratings for items. The last step consists in recommending for user, the most likely

items that can interest them based on certain categories given by the formed communities.

Figure 3.1 illustrates the overall flow of our proposed D2CF architecture. Section 3.2.1

presents the pre-processing step. Section 3.2.2 is devoted to the dynamic community

detection step and finally the recommendation step will be detailed in Section 3.2.3.

3.2.1 The pre-processing step

This step consists in building a dynamic network, in which the evolution of the users’

interests over time is represented. User’s interests (i.e. users profiles) means his preferences

which are gathered by observing the set of items that this user looked at or ranked. We

assume that:

• If a user does not rate the item, then this latter is not yet watched by him.

• If a user gives a rating superior to 2 for an item, he/she is then interested in this one.

So, we will consider only the instances where the ratings values are upper than 2 to

model the users’ interests in a time varying graph.

It is important to note that in this work, we suppose that the nodes are the items and not

the users and hence communities are groups of items. The interactions between nodes are

modeled based on the co-rating relationships. Indeed two nodes interact with each other,

if at least one user gives the same rating to both of them in the same time. In other words,

Section 3.2 – Proposed architecture 31

1: Preprocessing step

Recommendation list

2: Dynamic community detection step

Dynamic network

OR

Communities

3:Recommendation step

Time-stamped

Data

Figure 3.1: Proposed D2CF architecture

Section 3.2 – Proposed architecture 32

Table 3.1: Example of ratings database

UserID ItemID Rating(1− 5) Timestamp

u1 i1 3 12/03/2014

u1 i2 3 12/03/2014

u2 i2 1 14/03/2014

u3 i1 2 17/03/2014

u4 i3 5 17/03/2014

u5 i1 4 14/03/2014

u5 i2 4 14/03/2014

if the user is interested in two different items in the same date, an interaction is created

between them. An interaction can be defined as follows:

Date itemID1 itemID2

At this stage, we aim to prepare the list of network changes over time. To this end, we have

adapted the method of temporal network building (Cazabet, 2013) to our case of work.

An edge is established between two nodes if these ones have interacted with each other

at least N times over a period of P days. The estimation of N and P values varies from

one network to another and it depends not only on the network topology but also on the

information that we want to extract in order to create semantic links between the network

nodes. For instance, if we look for an extremely strong links in the mobile communication

network, we need to find at least 3 interactions (calls) over 7 days to maintain the link

between two nodes (mobile devises) else if we analyze a friendship network we need at

least 1 interaction (texto message) over 30 days to maintain the link because the texto

interactions are less intense than the calls interactions. If over a period of P days, there

are fewer than N interactions between two nodes, the edge will be automatically removed.

The removal and the creation of an edge in the dynamic network depends on both of

the number of interactions between two items (i.e. the number of common users who are

interested in both of them) and the time aspect.

Example 3.1. Let us consider a time stamped ratings database that contains three items

{i1, i2, i3} and five users {u1, u2, u3, u4, u5} . Each user must rate at least two items. The

given ratings are represents in Table 3.1. We suppose in this case that N = 2 and P = 3:

we should have at least two interactions between a pair of node over a period of three days

to create an edge between them. User u1 rates i1 and i2 with the same rating (3) on March

Section 3.2 – Proposed architecture 33

12th, so the first interaction between i1 and i2 is created: 12/03/2014 i1 i2
User u5 rates i1 and i2 with the same rating (4) on March 14th, so the second interaction

between i1 and i2 is created: 14/03/2014 i1 i2
According to this, an edge is established between i1 and i2 on March 14th. If no other

one interaction will be created between i1 and i2 in the coming 3 days, the edge will be

automatically removed on March 17th.

Once this list is prepared, these changes (edges removal and edges creation) can be

either represented in the same graph as a temporal network or in different graphs as a

sequence of snapshots. In the first case, the network evolution is considered as a succession

of network modifications. The idea is to modify the existing communities according to the

latest modifications performed on the network. In the second case, the network evolution

is considered as a succession of snapshots where each one represents the network state at

a particular time step. Indeed, if we suppose that S0 is the initial snapshot given at t0 and

S1 is the snapshot given at t1, S1 must contain all the changes that have been occurred

from t0 to t1.

Example 3.2. Consider a database that contains four items {i1, i2, i3, i4} and a list of

network changes which is described as follows:

14/03/2014 + i1 i2
14/03/2014 + i1 i3
15/03/2014 + i3 i2
16/03/2014 + i4 i1
18/03/2014 − i1 i2

We consider a snapshot for each day, and Figure 3.2 shows the sequence of snapshots

corresponding to this list.However, if we attempt to build the temporal network, we need just to consider S0 and

the corresponding list of changes.

The resulting dynamic network of items is considered as a generic model that represents

the evolution of users interests over time.

3.2.2 Dynamic community detection step

Once the dynamic network (temporal network or a sequence of snapshots) is constructed

in the pre-processing step, we are now able to use it as input to a dynamic community

Section 3.2 – Proposed architecture 34

��

��

��

��

��

��
��

��

��

��:
14

03
/2014

��
��

��

��

��:
15

03
/2014 ��:

16

03
/2014 ��:

17

03
/2014

��
��

��

��

��
��

��

��

��:
18

03
/2014

��
��

��

��

Figure 3.2: A sequence of snapshots

detection method. In this network, the nodes are the items and the edges represent the

links between them. If we consider two nodes i1 and i2, which are strongly connected, the

edge established between i1 and i2 means that these two items have at least N users who

are interested in both of them in the same time, over a period of P days. Based on this,

we can define a community as a set of items that are extremely related with each other

physically (strongly connected) and semantically (a learning pattern of items that tend to

have the same interests of several users over a period of time). The advantage here is that

a community is not restricted to item-related topics but it contains various topics (e.g.

Horror, Comedy, Romance, ect.). If the edge between i1 and i2 is removed, then the items

are no longer related.

The novelty in this work is to apply a dynamic community detection algorithm that

takes into account the evolution of the network over time. In fact, by studying the evolution

of the network behavior, we can obtain a more appropriate community structure. We

consider for instance the evolution on two steps (t1 and t2) of the small graph composed

of five nodes represented in Figure 3.3. If we only have a simple view on the last step (t2),

we will not be able to identify the appropriate community structure in the network. This

is mainly due to the fact that this network is strongly connected, since it merges the whole

observed links during the studied period. However, if we have an overview of the entire

evolution process, the predicted community structure will be closer to the real situation.

Section 3.2 – Proposed architecture 35

For instance in our example, if we consider steps (t1) and (t2), we will be able to say that

we probably have two communities (i.e. (abc) and (de)).

a

c b

d e

b

d e

t1 t2

a

c

Figure 3.3: Example of a network evolution

As detailed in Chapter 1, there are many algorithms for finding communities in dy-

namic network. To insure this step, we choose to use the iLCD algorithm (Cazabet &

Amblard, 2011).

The basic idea of iLCD algorithm was inspired from the multi-agent systems. The general

principle of the algorithm is essentially based on local computations. Indeed, the com-

munities are able to perceive only the nodes which they contain and then can interact

only with other communities with which they have at least a node in common. In other

words, the vision of the communities is then limited to its local environment and it has no

global knowledge of the network. The authors consider the community as an autonomous

entity that takes or not the decision to integrate a node based only on their local view

of the network. Every modification (edge adding or deleting) in the network can lead to

the creation of new communities, or the disappearance of the existing communities or the

fusion with neighboring communities. The principle of the algorithm can be summarized

in the following way:

• For any link addition (i,j) in the network, if i is in a community C and j does not

belong to C, iLCD check if j must be integrated in C. We find then the set of

these newly-formed communities by the appearance of this new link. Only the new

communities which were not included in an existing communities are conserved.

• For any deletion of a link, if this edge is found within a community, iLCD check if

Section 3.2 – Proposed architecture 36

the concerned community C loses one or many nodes which may lead to self division.

• After every modification of the network, if one or many communities have been mod-

ified, iLCD check if these ones may be fused with other communities. The candidate

communities are those which share some nodes with the modified communities.

Algorithm 1 outlines the iLCD pseudo-code where Te is a sequence of modification in the

network defined by (i, j, a, t). i and j are the nodes affected by the modification, a is the

modification (edge creation or edge deletion) and t represents the modification instant.

Section 3.2 – Proposed architecture 37

Algorithm 1 iLCD pseudo-code
Require: : Te (a set of networks modifications)

Ensure: : MC (a set of communities)

1: for (i, j, a, t) ∈ Te do

2: MC ← ∅
3: if a = creation then

4: for C ∈ csi do

5: if CROISSANCE(j, c) then

6: Vc ← Vc ∪{j}
7: Ec ← Ec ∪{{j, k} ∈ V : k ∈ Vc}
8: MC ← MC ∪{C}
9: end if

10: end for

11: for C ∈ csj do

12: if CROISSANCE(i, c) then

13: Vc ← Vc ∪{i}
14: Ec ← Ec ∪{{i, k} ∈ V : k ∈ Vc}
15: MC ← MC ∪{C}
16: end if

17: end for

18: if NAISSANCE(i, j) 6= ∅ then
19: for C ∈ NAISSANCE(i, j) do

20: if C /∈ Cx : Cx ∈ (csi ∪ csj) then

21: P ← P ∪ {C}
22: end if

23: MC ←MC ∪ {C}
24: end for

25: end if

26: else

27: for C ∈ (csi ∩ csj) do

28: CRIME ← CONTRACTION DIVISION(C, i)

29: for C2 ∈ CRIME do

30: if j ∈ C2 then

31: CRIME ← CONTRACTION DIVISION(C, j)

32: end if

33: end for

34: P ← P \ {C} ∪ CRIME

35: MC ←MC ∪ CRIME

36: if MORT(C) then

37: P ← P \ {C}
38: end if

39: end for

40: end if

41: for C ∈MC do

42: for C2 : VC2
∩ VC 6= ∅ do

43: P ← P \ {C,C2}∪ FUSION(C,C2)

44: end for

45: end for

46: end for

Section 3.2 – Proposed architecture 38

CROISSANCE, CONTRACTION DIVISION, FUSION, and MORT are the key func-

tions of iLCD.

• CROISSANCE(i, C): This function indicates if a node i must be added or not to a

community C.

• CONTRACTION DIVISION(C, i): This function indicates if a node i should be in

a community C, else it returns the resulting communities by deleting i.

• MORT(C): This function indicates if a community C should disappear from the

network.

• FUSION(Cold, Cnew): This function returns the community resulting by fusion Cold

and Cnew.

The implementation of these functions is ensured based on the three following metrics:

• RepresentativenessRp(i, C): a metric that indicates to what extent a node i is rep-

resentative of a community C.

• SeclusionCI(C): a metric that represents the degree of separation of a community

C from the rest of network.

• Potential belongingFA(i, C): a metric that quantifies the belonging force of a node i

to a community C.

This choice is justified by the fact that iLCD detects communities in both static and

dynamic networks depending on disposal data. Moreover, this algorithm takes into ac-

count the evolution of the network which enables to identify the dynamical communities

more accurately. Such community detection can be more powerful too, because this anal-

ysis matches with the reality of networks. This algorithm deals with both large evolving

networks and the overlap of communities. The communities extracted are ”atomic” in

the sense that there are not other relevant self communities inside of itself. Finally, all

operations in iLCD algorithm are made at a local level, which can allow to ensure that

the complexity will not grow exponentially with the size of the network but more linearly

with the number of edges.

This step reveals interesting properties:

• The dynamic of the communities which is very important to deal with the real-world

network.

• The diversity of the communities with regards to the corresponding items.

Section 3.2 – Proposed architecture 39

3.2.3 Recommendation step

In this step, the learned patterns (communities) will be exploited to help the recommender

system to predict the users’ future interests based on certain categories given by these

communities. In fact, the items pertaining to the same community are related somehow

to each other by sharing common users’ preferences. For instance, if a user is interested

in i1, then he has a high chance to be interested in i2 since i1 and i2 pertain to the same

community and i2 is not yet rated by him.

Firstly, a target item should be identified for each user. The target item in this case

is the item in which the active user is more interested (The item with the highest rating

value). The items that belong to the communities of target item and that are not yet rated

by the active user are selected as candidate items. The list of top k recommended items for

the active user contains the k candidate items that have the highest predicted preferences

(e.g. the top one recommended item for the active user is the item that has the highest

prediction value between all candidate items).

Our objective is to compute the preference of the user u on the candidate item i based

on the items that belong to the communities of i. By doing this the recommendation

is restricted to the communities to which the candidate item pertains. In fact, instead

of computing user’s preference, taking into consideration all items present on the whole

network to discover the most similar to the candidate item, we only rely on the items that

pertain to candidate item’s communities extracted from the dynamic network as presented

in Figure 3.4.

Target item

Item-based CF D2CF approach

Figure 3.4: The principle of user’s preference computation taking into account the com-

munity structure in the network

Section 3.2 – Proposed architecture 40

To compute the predicted preference of the active user on each candidate item, we

propose an adaptation of the traditional item-based Collaborative filtering method (See

Equation 1.4). Based on the communities discovered using a dynamic community detection

algorithm, we can intuitively extend the item-based collaborative filtering approach to

dynamic community-based collaborative filtering approach. The preference prediction of

the user u on the item i is typically computed based on the most similar items to the

candidate item i. Intuitively, we only need to replace the set of the most similar items by

the set of items which belong to the communities of candidate item (i.e. one community in

the non-overlap case and several communities in the overlap case). Thus, we can formally

define the preference prediction as follows:

Pu,i =

∑
j∈C s(i, j) ru,j∑
j∈C |s(i, j)|

(3.1)

where C is the set of items pertaining to the community of i, ru,j is the rating given by

the active user u to the item j and s(i, j) is the similarity degree between items i and j.

In the case where the user is new (no ratings history), the target item of this user is

learned by browsing item in the recommender system. We select then the candidate items

that belong to the communities of the target item. The recommendation list contains the

candidate items which are ranked according to their similarities relative to target item. We

propose, in all this work, to compute the similarity between two items using the Pearson

correlation similarity (see Equation 1.5) because it is proved that this one works better as

a similarity measure for collaborative filtering (Sahebi & Cohen, 2011).

Example 3.3. Let us consider the user-item ratings matrix of Table 1.1 composed of three

users {u1, u2, u3} and five items {i1, i2, i3, i4, i5} and three communities of items C1, C2,

and C3 which are defined as follows: C1 = {i1, i3}, C2 = {i4, i2}, C3 = {i5, i4}. Our aim is

to propose a recommendation list that contains one item to user u2.

Firstly, we need to select the target item for user u2. We look for the item that u2 has

assigned the highest rating value. So, i4 is selected as the target item for u2. Based on the

target user, we look for the candidate items. i4 belongs to the communities C2 and C3, so

the item belongs to C2 or C3 and is not yet rated by user u2 is selected as candidate item.

The list of candidate items is {i2, i5}. The next step consists in computing the predicted

preference value of user u2 on i2 and i5 as follows:

Pu2,i2 =
s(i2,i4)ru2,i4
|s(i2,i4)| = (−1)∗5

1
= −5,

Pu2,i5 =
s(i5,i4)ru2,i4
|s(i5,i4)| = (1)∗5

1
= 5.

Note that the similarity value are computed in the previous Example 1.2.

Section 3.3 – Conclusion 41

Finally, the recommendation list for u2 will contain the item i5 having the highest predicted

preference.

D2CF architecture deals with dynamic networks and takes advantage of the dynamic

community detection process to enhance the recommendation task. Moreover, it provides

a diverse recommended list because it looks at the generic pattern of users’ interests taking

into account their evolution over time.

3.3 Conclusion

In this chapter, we have presented the three main steps of our proposed architecture. The

first step consists in building a dynamic network of items where the evolution of users’ in-

terests are modeled over time. In the next step, a dynamic community detection algorithm

is applied on the dynamic network in order to identify communities of items which will be

used as part as recommendation process in the final step.

Next Chapter provides an experimental study in order to evaluate our architecture com-

paring with two different recommendation approaches, using a real-world data set.

Chapter 4
Experimental study

4.1 Introduction

In this chapter we present the experimentation results relative to our Dynamic commu-

nity based collaborative filtering approach comparing with two methods of collaborative

filtering. The implementation of our architecture is based on Mahout Library tools, which

provide an open source java package for recommendation task. This chapter is composed

of two Sections. Section 4.2 details the experimental protocol used in the implementation

process of our architecture, and Section 4.3 presents the experimental results evaluating

the effectiveness of the recommendation based on our proposed architecture.

4.2 Experimental protocol

This section describes our experimental data, then it presents the evaluation metrics that

will be used to evaluate this experiment. Finally it presents the procedure that we have

followed to implement the D2CF architecture.

4.2.1 Dataset

To evaluate the effectiveness of D2CF approach, we propose to use one of the most popular

recommendation datasets which are available through movieLens 1 website. MovieLens is

1http://movieLens.umn.edu

42

Section 4.2 – Experimental protocol 43

a web-based research recommender system that debuted in Fall 1997. Each week hundreds

of users visit MovieLens to rate and receive recommendations for movies. The used dataset

contains in total 100.000 ratings collected by 943 users on 1682 movies, from 19-09-1997

to 22-04-1998. The score of rating is ranged from 1 to 5. Each user has rated at least 20

movies. The ratings information are timestamped which is crucial in our study.

The MovieLens data are represented as a sequence of temporal events in the following

way:

user U1 rates movie I1 with 5 at T1,

user U2 rates movie I1 with 3 at T1,

user U2 rates movie I5 with 5 at T2, etc.

To experimentally determine the impact of the training set size on the performance

of the whole recommender system in term of time and quality, we propose to test three

scenarios:

• Set 1 : For each user, we randomly select 90% of his ratings as instances in the

training set and the remaining ones (i.e. 10%) will be used in the testing set.

• Set 2 : For each user, we randomly select 40% of his ratings as instances in the

training set and 10% will be kept as for the testing set.

• Set 3 : For each user, we randomly select 20% of his ratings as instances in the

training set and 10% will be used in the testing set.

The data selection should take into account the temporal order of instances, so that,

instances of the testing set should be chosen after those of the training set. The pre-

dicted preference computations are obtained from the training set and the evaluation of

the efficiency of recommended items is performed by the testing set.

4.2.2 Evaluation metrics

Recommender systems research has used several types of measures for evaluating the qual-

ity of the provided recommendation. The Evaluation metrics can be categorized into into

three classes (Herlocker, Konstan, Terveen, & Riedl, 2004): predictive accuracy metrics,

classification accuracy metrics, and rank accuracy metrics and we present the most impor-

tant representatives of each class.

1. Predictive accuracy metrics: they quantify how much the recommender system’s

predicted ratings are close to the true user ratings. Most commonly used metrics are

Section 4.2 – Experimental protocol 44

Mean Absolute Error (Goldberg, Roeder, Gupta, & Perkins, 2001), Normalized

Mean Absolute Error (Goldberg et al., 2001) and Root mean squared error (Bennett

& Lanning, 2007).

2. Classification accuracy metrics: in order to evaluate the quality of the recom-

mendation list, these metrics measure how many times a recommender system makes

correct or incorrect decisions about whether an item is good. Table 4.1 shows the

possible categorization of items where N is the number of items in the database.

Table 4.1: Items’ categorization

Suggested Non-

Suggested

Total

Relevant Nr,s Nr,n Nr

Irrelevant Ni,s Ni,n Ni

Total Ns Nn N

We can conclude that recommended items can be either successful recommendations

(relevant) or unsuccessful recommendation (non relevant) and the relevant items

can be either suggested in the recommendation list or not. Precision and recall

(Basu, Hirsh, & Cohen, 1998) are the most popular metrics for evaluating information

retrieval systems.

Precision: this measure is used to evaluate the validity of a given recommendation

list and it is defined as the ratio of relevant items selected by the active user relative

to the number of items recommended to him.

P =
Nr,s

Ns

(4.1)

Recall: it computes the portion of favored items that were suggested for active user

relative to the total number of the objects actually collected by him.

R =
Nr,s

Nr

(4.2)

3. Rank accuracy metrics : Rank accuracy metrics measure the ability of a recom-

mendation algorithm to produce a recommended ordering of items that matches how

the user would have ordered the same items. A rank accuracy or ranking prediction

metric measures the ability of a recommender to estimate the correct order of items

concerning the user’s preference. The common used metric is Kendall’s τ (Goldberg

et al., 2001).

Section 4.2 – Experimental protocol 45

We will use Precision and Recall as our choice of evaluation metrics to report prediction

experiments because they are most commonly used in information retrieval and easiest to

interpret directly. In fact, if an algorithm has a measured precision of 70%, then the user

can expect that, on average, 7 out of every 10 documents returned to the user will be

relevant.

4.2.3 Implementation

Our goal is to recommend top k movies for target user. To this end, we need to implement

the three main steps of D2CF (Pre-processing step, Dynamic community detection step

and Recommendation step).

1. Pre-processing step: Our idea is to extract movies interactions in such way that we

know what a movie has been assessed with another one with the same score from the

part of the same producer taking into consideration timing. In fact, if an interaction

between two movies occurred more than N times over a period of P days, an edge

is established between them. We define the values of P and N such a way that we

conserve more links between nodes. After performing several tests on the movieLens

data, we set P and N respectively to 200 and 30 for Set 1, 200 and 20 for Set 2

and 200 and 5 for Set 3. This choice seems to be reasonable since the interactions

between movies decrease with the number of training instances (ratings). An edge is

established between i1 and i2 if:

• i1 and i2 have interacted at least 30 times over a period of 200 days in Set 1.

• i1 and i2 have interacted at least 20 times over a period of 200 days in Set 2.

• i1 and i2 have interacted at least 5 times over a period of 200 days in Set 3.

An edge is removed between i1 and i2 if:

• There have occurred less than 30 interactions between i1 and i2 over a period

of 200 days after the edge creation date in Set 1.

• There have occurred less than 20 interactions between i1 and i2 over a period

of 200 days after the edge creation date in Set 2.

• There have occurred less than 5 interactions between i1 and i2 over a period of

200 days after the edge creation date in Set 3.

Movies that are not very visible in the users’ ratings data are considered as outliers.

The outliers are the nodes that are disconnected of the core of the network due to

Section 4.2 – Experimental protocol 46

their low interactions with other movies (i.e. there are less than N users who give

the same rating for both of them).

2. Dynamic community detection step: In this stage, we are able to apply any state

of art dynamic community detection algorithm. In this experiment we choose to

use iLCD algorithm to extract communities from the temporal network built above.

Since the quality of resulting communities depends on the threshold value (i.e. with

a low threshold, communities can be large and have little connection between them,

however with a higher threshold will be smaller and more denser), we choose after

several tests to set threshold to 0.5 to obtain overlapping, small and dense commu-

nities as shown in Figure 3. Besides, we set the minimum size of communities to

3.

3. Recommendation step: Using detected communities, we are now able to generate the

top k recommendation list of movies to the active user. This step requires both

the user’s ID to look for his target item and the community structure as input

parameters to select the candidate items that may interest the active user. Then, the

predicted preference of each candidate item is computed using Pearson correlation-

based similarity measure. The items which have the top k preference predictions are

recommended to the active user.

In order to evaluate both of the effectiveness and efficiency of our proposed D2CF

approach we compare the performance of this one with the following methods:

• The Static Community-based Collaborative Filtering (denoted S2CF for short), which

is a static version of our proposed architecture. We kept the same parameters used

for the dynamic network without taking into account the temporal dimension (i.e.

an edge is established if a pair of nodes interact N times). This is possible since, as

mentioned before, the iLCD algorithm allows both static and dynamic community

detection.

• The traditional item-based Collaborative Filtering (detailed in Section 1.2.3) with

Pearson correlation-based similarity measure.

4.2.4 Experimental platform

All our experiments were implemented using java language and compiled in Eclipse frame-

work. We ran all our experiments on a windows7 based PC with intel Core i3 processor

having a speed of 2.40 GHz and 4GB of Ram.

Section 4.3 – Experimental results 47

Figure 4.1: A capture screen showing the evolution of communities extracted via iLCD on

the MovieLens data

4.3 Experimental results

We perform experiments on each case (Set 1, Set 2 and Set 3) by randomly choosing 10

different users, computing the precision, the recall and the response time of the generated

recommendations using D2CF, S2CF and item-based CF, and then taking the average of

the results. The obtained results are summarized in Tables 4.2, 4.3 and 4.4.

We can notice that our D2CF method outperforms traditional recommendation meth-

ods: item-based collaborative filtering and Collaborative filtering based on static commu-

nity detection. In fact in Set 3, our approach is able even with sparse data to provide users

with a rich and varied recommendation list based on the communities of movies.

Section 4.3 – Experimental results 48

The recall and precision values for both item-based and static community- based col-

laborative filtering decrease as we increase the training set size but our approach combining

recommendation and dynamic community detection still provides better recommendation

quality as shown in Figure 4.2.

0

10

20

30

40

50

60

70

set_1 set_2 set_3

Item-basd CF

S2CF

D2CF

Figure 4.2: Impact of the dataset size on the recommendation quality

We can also see that D2CF gives its best results when the training set size is more

important (Set 1) contrarily to item-based CF where the performance goes down as we

add more data. In fact, in Set 1, D2CF proposes for one user an average of 6 good items

out of every 10 recommended items while S2CD offers an average of two good items out of

every 10 recommended items and finally item-based collaborative filtering gives an average

of 0.15 good items at best as shown in Figure 4.3. However, in Set 3, D2CF proposes for

one user an average of 2.2 good items out of every 10 recommended items. S2CF propose

an average of 1.97 good recommendations per user and finally item-based offers and average

of 1.8 good recommendation out of 10 recommended items.

Section 4.3 – Experimental results 49

0

1

2

3

4

5

6

7

Set_3 Set_2 Set_1

D2CF

S2CF

Item-based CF

T
h

e
 a

v
e

ra
g

e
o

f
g

o
o

d
 r

e
c
o

m
m

e
n

d
a

ti
o

n
s

p
e

r
u

se
r

Figure 4.3: Performance of D2CF, S2CF and item-based: how many items (y-axis) have

been selected on average as good recommendations out of a total of 10 recommended items

for both D2CF, S2CF and item-based CF in Set 1, Set 2 and Set 3 (x-axis).

This observation is explained by the fact that the dynamic network learned by more

users’ data performs well the prediction of users’ preferences for unseen items. However,

for item-based CF we believe this happens as the item-based model suffers from data

overfitting when data set is more large.

Note that the static version of our approach (i.e. S2CF) is more efficient than the

traditional item-based collaborative filtering for both precision and recall criteria. In fact,

the collaborative filtering based on the members of communities (i.e. S2CF and D2CF)

works slightly better than collaborative filtering based on most similar items (i.e. item-

based collaborative filtering) but it presents the worst value of response time in the case

of large training set (Set 1) and this is can be justified by the fact that static communities

are more large and dense.

D2CF provides the optimal value of response time in large set case (Set 1), this result

Section 4.4 – Conclusion 50

shows that the proposed D2CF is capable to scale to large data sets.

D2CF approach presents a significant improvement on recommendation on both small

and large sets. We can say that this approach addresses both scalability and sparsity

problems and it is able to handle the real-world networks by providing a dynamic recom-

mendation based on dynamic communities.

Table 4.2: Precision and Recall values for Set 1

Approach Precision Recall Response

time

D2CF 0.603 0.687 25.332 Sec

S2CF 0.2 0.26 38.75Sec

Item-based CF 0.015 0.02 35.75Sec

Table 4.3: Precision and Recall values for Set 2

Approach Precision Recall response time

D2CF 0.3 0.49 19.023 Sec

S2CF 0.21 0.195 23.413Sec

Item-based CF 0.084 0.091 27.75Sec

Table 4.4: Precision and Recall values for Set 3

Approach Precision Recall Response

time

D2CF 0.223 0.34 9.81 Sec

S2CF 0.197 0.221 10.75Sec

Item-based CF 0.18 0.2 12.75Sec

4.4 Conclusion

The experimental study provided in this chapter, shows that our proposed D2CF approach

gives motivating results comparing with both item-based collaborative filtering and col-

laborative filtering based on static communities. Moreover, D2CF approach deals with

real-world network where user’s preferences and interests keep changing over time.

Conclusion

Since the amount of information in the world is increasing more quickly than our ability

to process it, recommender systems have emerged as an efficient tool to provide us with

the items that are most valuable to us. Recommender systems have been attacking the

interest of researchers during the last decade.

With the aim to enhance the accuracy and the performance of the existing recommen-

dations, many attempts have proposed to incorporate the recommendation with the com-

munity detection techniques called community-based recommendation. The community

structure brought significant advances to our representing and understanding of real-world

systems. In fact, the community structure may help the recommender system to personal-

ize recommendation provided to users by focusing on its communities instead of the whole

network. Besides, understanding the underlying structure of these communities may have

a major impact on users’ behaviors and pave the way to mapping emergent semantics in

recommender systems.

Representing the dynamic aspect of users’ interests is crucial in recommendation sys-

tems but it seems harder to ensure with the current community-based recommendation

methods, because all of them rely either on static communities, or on communities ex-

tracted from time to time. These latters cannot represent the real aspect of dynamic

network behaviors.

In this work, we have proposed a Dynamic Community-based Collaborative Filtering

approach that combines recommendation and dynamic community detection to improve

recommendation in dynamic networks. We have investigated using co-ratings relationship

in order to model the dynamic aspect of users’ interests over time into a dynamic graph

of items. Then, a dynamic community detection algorithm is used to discover dynamic

communities. We have defined communities as groups of items which are learned from

the users’ ratings behaviors. The items pertaining to the same community share certain

51

Conclusion 52

similar properties. The information given by these formed groups is exploited to restrict the

recommendation prediction task. We have shown that using communities in the context

of recommender systems helps in performing the traditional collaborative filtering. Our

proposed architecture is able to deal with any dynamic community detection algorithm and

to overcome the problem of dynamic users data which seems even harder to handle with the

existing community-based recommendation techniques and which are crucial prerequisite

for effective recommendation in real world network.

The experimental results show that our proposed D2CF outperforms both Item-based

collaborative filtering and collaborative filtering based on static communities. As a future

work, we will explore the similarity computation process of users pertaining to the same

community in the recommendation context. Another future work would be to study the

sensitivity of D2CF on the data overfitting.

References

Abrouk, L., Gross-Amblard, D., & Cullot, N. (2010). Community detection in the collab-

orative web. International Journal of Managing Information Technology (IJMIT),

2010 , 1-9.

Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as classification: using

social and content-based information in recommendation. In Proceedings of the 15th

national conference on artificial intelligence (aaai’98) (p. 714-720). Madison, Wis,

USA.

Belkin, N., & Croft, W. (1992). Information filtering and information retrieval: two sides

of the same coin? Commun. ACM , 35 (12), 29-38.

Bennett, J., & Lanning, S. (2007). The netflix prize. In Proceedings of kdd cup and

workshop (p. 3-6).

Blei, D., Ng, A., & Jordan, M. (2003, March). Latent dirichlet allocation. J. Mach. Learn.

Res., 3 , 993-1022.

Blondel, V., Guillaume, J., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of com-

munities in large networks- louvain method. Journal of Statical Mechanics: Theory

and Experiment , P1000.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., & Wagner,

D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data

Enginnering , 20 (2), 172188.

Cazabet, R. (2013). Dynamic community detection on temporal networks (Unpublished

doctoral dissertation). Université Toulouse 3 Paul Sabatier.

Cazabet, R., & Amblard, F. (2011, August). Simulate to detect: a multi-agent system for

community detection. The 2011 ACM International Conference on Web Intelligence

and Intelligent Agent Technology(WI-IAT), 2 , 402-408.

Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In Proceedings

of the 12th acm sigkdd international conference on knowledge discovery and data

53

References 54

mining (p. 554-560). ACM.

Chen, J., & Yan, B. (2010). Detecting functional modules in the yeast protein-protein

interaction network. Bioinformatics , 22 (18), 2283-2290.

Deitrick, W., Valyou, B., Jones, W., Timian, J., & Hu, W. (2013). Enhancing sentiment

analysis on twitter using community detection. International Journal of Managing

Information Technology (IJMIT), 5 , 192-197.

Fatemi, M., & Tokarchuk, L. (2013, Sept). A community based social recommender system

for individuals groups. Proceedings of the 2013 International Conference on Social

Computing (SocialCom’13), 351-356.

Gfeller, D., Chappelier, J., & Rios, P. D. L. (2005). Finding instabilities in the community

structure of complex networks. Physical review , 72 (5), 056135.

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: a constant time

collaborative filtering algorithm. Information Retrieval , 4 (2), 133-151.

Gregory, S. (2010). Finding overlapping communities in networks by label propagation.

New Journal of Physics , 12 (10), 103018.

Hönsch, M. (2011). Detecting user communities based on latent and dynamic interest on a

news portals. In the 7th student research conference in informatics and information

technologies iit.src (Vol. 3, p. 47-50). ACM.

Herlocker, J., Konstan, J., Terveen, L., & Riedl, J. (2004). Evaluating collaborative filtering

recommender systems. In Acm transactions on information systems (Vol. 22, p. 5-

53).

Hopcroft, J., Khan, O., Kulis, B., & Selman, B. (2004). Tracking evolving communities in

large linked networks. Proceedings of the national academy of sciences of the United

States of America, 1 , 5249-5253.

Kamahara, J., Asakawa, T., Shimojo, S., & Miyahada, H. (2005, January). A commynity-

based recommendation system to reveal unexpected interests. Multimedia Modelling

Conference, 433-438.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender

systems. Computer , 42 (8), 30-37.

Langseth, H., & Nielsen, T. (2009). A latent model for collaborative filtering. Technical

Report 09-003, Department of Computer Science, Aalborg University, Denmark .

Mucha, P., Richardson, T., Macon, K., Porter, M., & Onnela, J. (2010). Community

structure in time-dependent, mutiscale, and multiplex networks. Science, 328 (5980),

876-878.

Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in

networks. Phisical review E , 69 (2), 026113.

Nguyen, N., Dinh, T., S.Tokala, & M.T.Thai. (2011, Sept). Overlapping communities in

dynamic networks: Their detection and mobile applications. Proceedings of the 17th

annual international conference on Mobile computing and networking (MobiCom’11),

References 55

85-96.

Palla, G., Barabasi, A., & Vicsek, T. (2007, April). Quantifying social group evolution. In

Nature, 446 , 664-667.

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping com-

munity structure of comples networks in nature and society. Nature, 435 (7043),

814-818.

Porcel, C., Moreno, J., & Herrer-Viedma, E. (2009). A multi-disciplinar recommender

system to advice research resources in university digital libraries. Expert Systems

with applications , 36 (10), 12520-12528.

Qiang, H., & Yan, G. (2012, October). A method of personalized recommendation based on

multi-label propagation for overlapping community detection. Proceedings of the 3rd

International Conference on System Science, Engineering Design and Manufacturing

Informatization, 1 , 360-364.

Qin, S., Menezes, R., & Silaghi, M. (2010). A recommender system for youtube based on

its network of reviewers. The IEEE International Conference on Social Computing .

Raghavan, U., Albert, R., & S.Kumara. (2007). Near linear time algorithm to detect

community structures in large-scale networks. Physical Review E , 76 (3), 036106.

Resnick, P., Iacovou, N., Suchak, M., Bergtrom, P., & Riedl, J. (1994). Grouplens: An

open architecture for collaborative filtering of netnews. In Proc. of the acm conference

on computer supported cooperative work (p. 175-186).

Sahebi, S., & Cohen, W. (2011). Community-based recommendations: a solution to the

cold start problem. In RSWEB’11 .

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation

algorithms for e-commerce. In Proceedings of the acm e-commerce. minneapolis,

minn, usa. (p. 158-167).

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th international conference on

world wide web, www’01 (p. 285-295).

Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2002). Recommender systems for

large-scale e-commerce: Scalable neighborhood formation using clustering.

Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. In

Proceedings of the 1st acm conference on electronic commerce (p. 158-166). New York,

NY, USA. Retrieved from http://doi.acm.org/10.1145/336992.337035 doi:

10.1145/336992.337035

Soboroff, I., & Nicholas, C. (1999, August). Combining content and collaborative in text

filtering. In Proc. int’1 joint conf. artificial intelligence workshop: Machine learning

for information filtering.

Song, X., Lin, C., Tseng, B., & Sun, M. (2006). Modeling evolutionary behaviors for

community-based dynamic recommendation. In Proceedings of the 2006 siam inter-

References 56

national conference on data mining.

Tang, L., Wang, X., & Liu, H. (2009). Uncovering groups via heterogeneous interaction

analysis. In Icdm.

Ungar, L., & Foster, D. (1998). Clustering methods for collaborative filtering. In Proceed-

ings. workshop on recommendation systems. aaai press.

Wen, Y., Liu, Y., Zhang, Z., Xiong, F., & Cao, W. (2014). Compare two community-

based personalized information recommendation algorithms. Physica A 398 , 2014 ,

199-209.

Xie, J., Chen, M., & Szymanski, B. (2013). Labelrankt: Incremental community detection

in dynamic networks via label propagation. arXiv preprint arXiv : 1305.2006v2 .

Yehuda, K. (2009). Collaborative filtering with temporal dynamics. In Proceedings of

the 15th acm sigkdd international conference on knowledge discovery and datamining

(p. 447-456). ACM.

Zhang, Y., & Koren, J. (2007). Efficient bayesian hierarchical user modeling for recommen-

dation system. In Proceedings of the 30th annual intern. acm sigir conf. on research

and developement in information retrieval (p. 47-54). ACM.

Zhao, G., Lee, M. L., Hsu, W., Chen, W., & Hu, H. (2013, October). Community-based

user recommendation in uni-directional social networks. Proceedings of the 22th ACM

international conference on Conference on information knowledge management , 189-

198.

Abstract

With the increase of time-stamped data, the task of recommender systems becomes not

only to fulfill users interests but also to model the dynamic behavior of their tastes. In this

work, we propose a novel architecture, called Dynamic Community-based Collaborative

filtering (D2CF), that combines both recommendation and dynamic community detection

techniques in order to exploit the temporal aspect of the community structure in real-world

networks and enhance the existing community-based recommendation. The efficiency of

the proposed D2CF is studied via a comparative study with a recommendation system

based on static community detection and item-based collaborative filtering. Experimental

results show a considerable improvement of D2CF recommendation accuracy, whilst it ad-

dresses both of scalability and sparsity problems.

Keywords: Recommendation systems, Collaborative filtering, Dynamic Community De-

tection, Time varying graphs

Résumé

Avec l’augmentation des données horodatées, la tâche des systèmes de recommandation

devient non seulement de satisfaire les intérêts des utilisateurs mais aussi de modéliser le

comportement dynamique de leurs goûts. Dans ce travail de recherche, nous proposons une

nouvelle architecture appelée ”filtrage collaboratif basé sur des communautés dynamiques”

(D2CF). Cette architecture combine la recommandation et les techniques de détection de

communautés dynamiques en vue d’exploiter l’aspect temporel de la structure communau-

taire dans les réseaux du monde réel et d’améliorer les méthodes existantes de la recomman-

dation basées sur les communautés. L’efficacité de l’architecture est évaluée par une étude

comparative avec la recommandation basée sur les communautés statiques et un filtrage

collaboratif basé sur les objets. Les résultats de l’expérience montrent une amélioration

considérable au niveau de l’exactitude et la performance de la recommandation générée par

D2CF. Outre, cette architecture est capable de traiter à la fois les problémes de l’évolutivité

et la parcimonie des données.

Mots clés: Systèmes de recommandation, Filtrage collaboratif, Détection de commu-

nautés dynamiques, graphes qui varient dans le temps

