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Introduction

Graphical models are e�cient and compact knowledge representation and

reasoning tools. That's why the interest in graphical models grew rapidly

and is still growing to this day.

Possibility theory [10, 22] o�ers an appropriate framework to handle pref-

erences, imprecision and uncertainty which occur in many real-life problems.

In our work, we are interested in possibilistic networks which are compact

representations of possibility distributions. Their popularity is due to its

capacity to model uncertainty, imprecision and incompleteness characterizing

information in simple and intuitive way. They represent the counterpart of

Bayesian networks [17, 20] in the possibilistic framework.

Learning possibilistic networks is a new promising area of research be-

cause constructing them by human experts is tedious and time consuming.

This work proposes a new approach to learn possibilistic networks from possi-

bilistic datasets (containing attributes described by possibility distributions).

In this work, we will focus on the problem of how we can estimate marginal

possibility distributions from datasets and how we can apply it to learn pos-

sibilistic networks structure.

This report is organized as follows: Chapter 1 presents theoretical as-

pects regarding possibility theory and several similarity measures. It details

how we can compare possibility distributions. Chapter 2 presents possibilis-

tic networks and cited methods existing in literature for learning them from

data. Finally, in chapter 3, we will propose a new method to learn possibilis-
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Introduction 3

tic networks from possibilistic datasets. We will detail how we can induce

possibility distributions using the notion of similarity measures.



Chapter 1

Basics of possibility theory and

possibilistic similarity measures

1.1 Introduction

Possibility theory was coined by Zadeh in [22] as an extension of fuzzy sets

theory and Didier Dubois and Henri Prade contributed to its development

[10]. The success of possibility theory is due to its capacity to handle uncer-

tainty and imprecision in simple way and to provide a graded semantics to

natural language statements.

In several situations, we need to compare uncertain and imprecise in-

formation. So, the notion of similarity is very important in almost every

scienti�c �eld. That's why, many works have proposed similarity measures

that can be applied in the possibilistic case.

This chapter provides an overview of possibility theory and details the

notion of similarity. It is organized as follows: In section 1.1, we introduce

basics of possibility theory. In section 1.2, we list some possibilistic similarity

measures and their properties that will be used later in Chapter 3.

4



Basics of possibility theory and possibilistic similarity measures 5

1.2 Basics of possibility theory

Possibility theory is a non-classical theory of uncertainty devoted to handle

imperfect information. This section gives some basic elements of this theory.

We �rst explain the notion of a possibility distribution. Then, we introduce

two dual measures: possibility and necessity. Finally, we de�ne the notion of

conditioning in the possibilistic case: qualitative and quantitative settings.

1.2.1 Possibility distribution

The basic building block in possibility theory is the notion of possibility

distribution. It is a representation of knowledge concerning a state of the

world. It corresponds to a mapping from the universe of discourse Ω =

{ω1, ω2, ..., ωn} to the scale L = [0,1] encoding our knowledge on the real

world states.

π : Ω→ L

ω → πx(ω)

It re�ects the possibility degree that x = ω is true.

• πx(ω) = 0 if x = ω is rejected as impossible.

• πx(ω) = 1 if x = ω is fully possible.

• We are in the case of complete knowledge if:

∃ωi ∈ Ω/π(ωi) = 1 and ∀ω ∈ Ω− {ωi}, π(ω) = 0. (1.1)

• We are in the case of total ignorance if:

∀ω ∈ Ω, π(ω) = 1. (1.2)

• A possibility distribution π is normalized if it contains at least one state

ω ∈ Ω that is fully possible. This property can be de�ned as:

max
ω
π(ω) = 1 (1.3)
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• The degree of inconsistency, denoted by Inc, is de�ned as follows:

Inc(π) = 1−max
ω∈Ω
{π(ω)} (1.4)

The scale L has two interpretations:

• Ordinal interpretation : The possibility distribution is a mapping from

the universe of discourse Ω to an ordinal scale where only the order of

values is important. In fact, The scale encodes an ordering between

di�erent degrees.

• Numerical interpretation : The possibility distribution is a mapping

from the universe of discourse Ω to a numerical scale where values have

sense. We are interested with real numbers represented by degrees of

possibility that can be manipulated by arithmetic operators.

In what follows, we present some basic elements in possibility theory that we

need in chapter 3.

• A possibility distribution π is more speci�c than π' if:

∀ωi ∈ Ω, π(ωi) ≤ π′(ωi) (1.5)

• U-uncertainty is the measure that assess the amount of imprecision in

a given possibility distribution. This measure, denoted by U, is de�ned

as follows:

Let π = {π(1), π(2), ..., π(n)} be an ordered distribution (descending or-

der)

U(π) = [
n∑
i=1

(π(i) − π(i+1)) log2 i] + (1− π(1)) log2 n (1.6)

where πn+1 = 0 by convention.
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1.2.2 Possibility and necessity measures

Possibility and necessity measures named Π and N are tow dual measures

used in the possibilistic case.

Given a possibility distribution π, we can de�ne for any subset A ∈ Ω ,

Π(A) and N(A) as follows:

Π(A) = max
ω∈A

πx(ω) (1.7)

Π assess at what level A is consistent with the knowledge represented by π.

N(A) = 1− Π(Ā) = min
w/∈A

(1− πx(ω)) (1.8)

N assess at what level ¬A is impossible.

1.2.3 Possibilistic conditioning

The possibilistic conditioning is crucial notion that consists in revising our

initial knowledge, represented by a possibility distribution π by the arrival

of a new absolutely certain piece of information.

In the following, we discuss two types of possibilistic conditioning de-

pending on the interpretation of the scale used : ordinal or numerical.

• In an ordinal setting, we assign to best elements of A, the maximal

possibility degree (i.e.1), then we obtain:

π(ω |m A) =


1 if π(ω) = Π(A) and ω ∈ A
π(ω) if π(ω) < Π(A) and ω ∈ A
0 otherwise.

(1.9)

This corresponds to min-based conditioning.
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• In a numerical setting (if the de�nition makes sense in the ranking

scale), we proportionally shift up all elements of A:

π(ω |p A) =

{
π(ω)
Π(A)

if ω ∈ A
0 otherwise.

(1.10)

This corresponds to product-based conditioning.

1.3 Possibilistic similarity measures

The mathematical concept of similarity measures is fundamentally important

in almost every scienti�c �eld. It is used essentially to compare two objects

and it re�ects the degree of closeness between them. This concept is useful

in data mining, information retrieval, pattern recognition, natural and social

science, etc.

In the possibilistic case, few works have developed or adapted similarity

measures. They are used to compare two objects described by possibility

distributions on the same universe of discourse.

In this section, the �rst part will be devoted to enumerate properties

that should satisfy a similarity measure. In the second part, we list several

similarity measures.

1.3.1 Properties of a possibilistic similarity measure

[14, 16] propose several basic natural properties of similarity measure (1.1-

1.6) and also some extended ones (1.7-1.10).

Property 1.1. Non negativity: The similarity between two possibility dis-

tributions must be positive: s(π1, π2) ≥ 0.

Property 1.2. Symmetry: The order of possibility distributions does not

in�uence the similarity value: s(π1, π2) = s(π2, π1).
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Property 1.3. Upper bound and non-degeneracy: The similarity be-

tween identical distributions is equal to 1. So, the upper bound of similarity

is equal to 1 too: s(π1, π2) ≤ 1.

Property 1.4. Lower bound : The similarity between two contradictory

possibility distributions is equal to 0. So, the lower bound of similarity is

equal to 0 too: s(π1, π2) ≥ 0.

Example 1.1. Let us consider the two distributions π1 = {0, 1, 0} and π2 =

{1, 0, 1}: s(π1, π2) = 0.

Property 1.5. Large inclusion : If we have three possibility distributions

and the �rst one is more speci�c than the second which is in turn more

speci�c than the third and they agree for at least one state, the similarity

between �rst and second distributions is greater or equal to the similarity

between the second and the third ones.

Let π1, π2 and π3 be three possibility distributions satisfying Inc(π1, π2) =

Inc(π1, π3) = Inc(π2, π3) = 0 and ∀ωi ∈ Ω π1(ωi) ≤ π2(ωi) and π2(ωi) ≤
π3(ωi) then s(π1, π2) ≥ s(π1, π3).

Property 1.6. Permutation : The permutation of elements order of pos-

sibility distributions does not in�uence the value of similarity. We denote

πp1 and πp2 resulting distributions of permutation of indexes. s(π1, π2) =

s(πp1, πp2).

Example 1.2. Let us consider two possibility distributions π1 = {1, 0.2, 0.3}
and π2 = {0, 1, 0.5}. Let us permute elements, we obtain πp1 = {0.3, 0.2, 1}
and πp2 = {0.5, 1, 0}. s(π1, π2) = (πp1, πp2).

Property 1.7. Strict inclusion : this property is an extension of property(1.5)

but another condition should be added: If the possibility distributions are dif-

ferent, the similarity between the �rst and second distributions is strictly

greater to the similarity between the second and the third ones.

∀π1, π2 and π3 s.t. π1 6= π2 6= π3 , if π1 ≤ π2 ≤ π3 then s(π1, π2) > s(π1, π3).

Property 1.8. Reaching coherence : If we enhance the degree of a state

of two con�icting possibility distributions, we enhance the similarity degree
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between them. Let π1 and π2 be two possibility distributions, ωi ∈ Ω. Let

π′1 and π′2 s.t. ∀j 6= i, π′1(ω) = π1(ω) and π′2(ω) = π2(ω). Let α s.t. α ≤
1−max(π1(ωi), π2(ωi)), if π

′
1(ωi) = π1(ωi) + α and π′2(ωi) = π2(ωi) + α:

• if Inc(π1 ∧ π2) = Inc(π′1 ∧ π′2) then s(π1, π2) = s(π′1, π
′
2)

• if Inc(π1 ∧ π2) > Inc(π′1 ∧ π′2) then s(π1, π2) < s(π′1, π
′
2)

Example 1.3. Let us consider the two distributions π1 = {1, 0.2, 0.3} and

π2 = {0, 1, 0.5}.. We increase the degree of the third element, we obtain

π1 = {1, 0.2, 0.8} and π2 = {0, 1, 1}: s(π1, π
′
1) = s(π2, π

′
2) .

Property 1.9. Mutual convergence : If we have two possibility distribu-

tions which disagree in one state and we replace this degree in one of dis-

tributions with a closer value, the similarity between possibility distributions

increases. Let π1 and π2 be two possibility distributions, ∃ωi/π1(ωi) > π2(ωi).

let π′2 s.t. π′2(ωi) ∈]π2(ωi), π1(ωi)] and ∀j 6= i, π′2(ωj) = π2(ωj) : s(π1, π
′
2) >

s(π1, π2).

Property 1.10. Indi�erence preserving : If we make the same variation

to two distinct states in two possibility distributions, the similarity does not

change. Let π1 and π2 be two possibility distributions. Let π′1 and π′2 s.t.

• ∀j 6= p, π′1(ωj) = π1(ωj) and π′1(ωp) = π1(ωp) + α(resp.− α).

• ∀j 6= q, π′2(ωj) = π2(ωj) and π′2(ωq) = π2(ωq) + α(resp.− α).

s(π1, π
′
1) = s(π2, π

′
2).

Example 1.4. Let us consider the two distributions π1 = {1, 0.2, 0.3} and

π2 = {0, 1, 0.5}.. We increase the degrees of two distinct states, we obtain

π1 = {1, 0.7, 0.3} and π2 = {0, 1, 1}: s(π1, π
′
1) = s(π2, π

′
2) .
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1.3.2 Possibilistic similarity and distance measures

In the case of possibility theory, few works were devoted to similarity and

distance measures despite their importance in several areas. They are useful

to compare two possibility distributions and provide the degree of closeness

or di�erence between them.

In the following, we �rst list principle similarity and distance measures

then we illustrate them by an example.

1.3.2.1 Information closeness

The information closeness measure is one of �rst works devoted to measure

similarity between two possibility distributions. It was introduced in [13].

The underlying idea of information closeness is U-uncertainty concept.

In the following, we denote G(π1,π2) the value of information closeness

between two distributions π1, π2. ∨ refers to the maximum operator and

U(π) is given by equation(1.6).

G(π1, π2) = g(π1, π1 ∨ π2) + g(π2, π1 ∨ π2) (1.11)

where g(π1, π2) = U(π2) − U(π1). Thus, the information closeness can also

be written as:

G(π1, π2) = 2 ∗ U(π1 ∨ π2)− U(π1)− U(π2). (1.12)

The information closeness measure behaves as a distance but it can be

transformed to assess the similarity between two possibility distributions.

This derived similarity measure, denoted by SG, is de�ned as:

SG = 1− G(π1, π2)

Gmax

(1.13)

where Gmax = max
πi∈πN ,πj∈πN

G(πi, πj) and π
N the set of all normalized possibi-

lity distributions on Ω.
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1.3.2.2 Sangûesa et al's distance

In [21], authors proposed Sangûesa et al's distance, denoted by distance, and

de�ned it as the U-uncertainty of distributions di�erence.

distance(π1, π2) = U(|π1(ωi)− π2(ωi)|) ∀(ωi ∈ Ω) (1.14)

The Sangûesa et al's distance can be transformed to assess the similar-

ity between two possibility distributions. This derived similarity measure,

denoted by Sdistance, can be de�ned as:

Sdistance = 1− distance(π1, π2)

distancemax
(1.15)

where distancemax = max
πi∈πN ,πj∈πN

distance(πi, πj) and πN the set of all nor-

malized possibility distributions on Ω.

1.3.2.3 Information divergence

The information divergence, denoted by D, is a way of comparing possibil-

ity distributions and it forms the analog of information divergence in the

probabilistic case.

D(π1|π2) =
n∑
i=1

πd(ωσ(i))[Π1(Aσ(i) − Π1(Aσ(i+1)] (1.16)

where σ refers to permutation of indexes s.t.:

πd(ωσ(i)) ≤ ... ≤ πd(ωσ(n)) and Aσ(i) = {ωσ(i), ..., ωσ(n)} with i = 1..n

and Aσ(n+1) = ∅.

The information divergence measure can be transformed to assess simi-

larity between two possibility distributions. This derived similarity measure,

denoted by Sdistance, can be de�ned as:

SD = 1−D(π1|π2) (1.17)
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1.3.2.4 Minkowski distance and its derivatives

In the possibilistic case, we can use the well known Minkowski distance,

denoted by D, which is a generalised metric that includes others as special

cases of the generalised form :Manhattan , Euclidean and Maximum distance

(or Chebyshev distance or chessboard distance) denoted respectively by DM ,

DE and DC . Then we can de�ne similarity measures derived from them,

denoted respectively by SM , SE and SC .

D = p

√√√√ n∑
i=1

|π1(ωi)− π2(ωi)|p (1.18)

Derivates of Minkowski distance are:

• If p = 1 , we de�ne Manhattan distance.

DM =

n∑
i=1

|π1(ωi)− π2(ωi)|

n
(1.19)

The similarity measure SM is de�ned as follows:

SM = 1−

n∑
i=1

|π1(ωi)− π2(ωi)|

n
(1.20)

• If p = 2 , we de�ne the Euclidean distance.

DE =

√√√√ n∑
i=1

(π1(ωi)− π2(ωi))2

n
(1.21)

The similarity measure SE is de�ned as follows:

SE = 1−

√√√√ n∑
i=1

(π1(ωi)− π2(ωi))2

n
(1.22)
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• If we use the maximum function, we de�ne the Maximum distance.

DC =
n

max
i=1
|π1(ωi)− π2(ωi)| (1.23)

The similarity measure SC is de�ned as follows:

SC = 1− n
max
i=1
|π1(ωi)− π2(ωi)| (1.24)

1.3.2.5 Information a�nity

In [15], authors have shown that measuring similarity between two possibility

distributions depends on two main criteria distance and inconsistency and

they de�ne their measure information a�nty, denoted by A�.

The information a�nity between two possibility distributions π1 and π2

is de�ned as follows:

Aff(π1, π2) = 1− κ ∗ d(π1, π2) + λ ∗ Inc(π1, π2)

κ+ λ
(1.25)

where κ > 0, λ > 0, d(π1, π2) is either Euclidean distance or Manhattan

distance between π1 and π2 given by equations (1.19), (1.21) and Inc(π1, π2)

is the degree of inconsistency between π1 and π2 given by equation (1.6).

In [14], the author has shown that his measure of similarity information

a�nity which is an extension of Euclidean and Manhattan and combines

distance and inconsistency satis�es all properties listed above (1.1) - (1.10).

Example 1.5. Let us consider the following possibility distributions over the

same universe of discourse Ω = {ω1, ω2, ω3, ω4}: π1 = {0.2, 0.9, 0.3, 1} and

π2 = {0.1, 0.5, 1, 0}.

Let us compute the distance between the two distributions using distances

listed above given by equations: (1.12), (1.14), (1.16), (1.19), (1.21) and

(1.23), respectively:

• G(π1, π2) = 2∗U{1, 1, 0.9, 0.2}−U{0.2, 0.9, 0.3, 1}−U{0.1, 0.5, 1, 0} =

2 ∗ 1.6094− 1.1584− 0.5584 = 1.502
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• distance(π1, π2) = U{0.7, 0.4, 0.1} = 0.9754

• D(π1, π2) = 0.1 ∗ (1− 1) + 0.4 ∗ (1− 1) + 0.7 ∗ (1− 1) + 1 ∗ (1− 0) = 1

• DM(π1, π2) = 0.1+0.4+0.7+1
4

= 0.55

• DE(π1, π2) =
√

0.12+0.42+0.72+12

4
= 0.64

• DC(π1, π2) = max(0.1, 0.4, 0.7, 1) = 1

Let us compute the similarity degree between the two distributions using simi-

larity measures listed above given by equations: (1.13), (1.15), (1.17), (1.20),

(1.22), (1.24) and (1.25), respectively:

• SG(π1, π2) = 1− G(π1,π2)
2∗log2(4)−log2(3)

= 0.37

• Sdistance(π1, π2) = 1− distance(π1,π2)
log2(4)

= 0.51

• SD(π1, π2) = 1− SD(π1, π2) = 0

• SM(π1, π2) = 1−DM(π1, π2) = 0.45

• SE(π1, π2) = 1−DE(π1, π2) = 0.35

• SC(π1, π2) = 1−DC(π1, π2) = 0

• Aff(π1, π2) = 1− 1∗0.45+1∗0.5
1+

= 0.47

Note that in the report, in examples in which we use information a�nity,

we use Manhattan distance, κ = 1 and λ = 1.

1.4 Conclusion

In this chapter we have presented basics of possibility theory, a non classical

theory of uncertainty that o�ers an appropriate framework to handle uncer-

tainty qualitatively and quantitatively. Then, we have introduced the notion
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of distance and similarity and we have presented several measures that can

be applied in the possibilistic case and their properties.

One similarity measure satisfy both basic and extended properties which

is information a�nity.

In Chapter 3, the notion of similarity measure will represent a key element

in induction possibility distributions from dataset of sample cases and we will

use information a�nity measure.



Chapter 2

Learning possibilistic networks

2.1 Introduction

Possibilistic graphical models are marriage between possibility theory and

graph theory. They are composed of a graph (undirected graph, tree, directed

acyclic graph...) and possibility distributions. The success of possibilistic

graphical models is due to its capacity to treat imprecision, uncertainty and

complexity.

One of the well known possibilistic graphical models are possibilistic net-

works. Several researches concerning them have focused in drawing inference

in order to derive evidence [1, 2, 3] and despite their popularity, few works

were dedicated to learn them from datasets [3]. However, the learning task -

if the data is available- is a promising area of research because constructing

them by human experts is tedious and time consuming.

This chapter is organized as follows: Section 2.2 introduces brie�y possi-

bilistic networks. Section 2.3 presents learning possibilistic networks struc-

ture. we list several evaluation measures and methods existing in literature.

Section 2.4 investigates the concept of induction a possibility distributions

from a dataset of sample cases.

17
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2.2 Possibilistic networks

Possibilistic networks are well known possibilistic graphical models and pow-

erful tools used to deal with representation and processing of uncertain and

imprecise information. They are denoted by ΠG and can be viewed as the

counterpart of Bayesian networks [17, 20]. Possibilistic networks are com-

posed of two main components : graphical and numerical ones.

In this section, we start by giving a general notation relative to possi-

bilistic networks. Then, we will brie�y present them in the qualitative and

quantitative settings.

2.2.1 Notations

Let V = {V1, V2, ..., Vn} be a set of variables describing such domain and E

is a part of the Cartesian product V × V . The graphical component of a

possibilistic network is represented by a DAG (directed acyclic graph) and

represented by the couple G = (V,E) in which:

• Each node in V represents a variable.

• Each oriented edge or also called arc ViVj represents a dependency

relation between two variables.

• V1 is a parent of V2 if there is an edge from V1 to V2. V2 is called a child

of V1.

• pai denotes the set of parents of a node Vi.

• A path is de�ned as a sequence of nodes in V from one node to an other

using arcs in E.

• A cycle is de�ned as a path which visits each node once and starts

and ends with the same node. Possibilistic networks does not contain

cycles.
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The numerical component is the possibility distribution a�ected to each node

in the context of its parents. It quantify uncertainty represented at each

node by local conditional distribution : Π(Vi|pai). The numerical component

represents the quanti�cation of the links between nodes. We mentioned in

Chapter 1 two interpretations to the conditioning in the possibilistic case.

So, naturally, there are two di�erent ways to de�ne possibilistic networks:

qualitative and quantitative.

Example 2.1. Figure(2.1) and table(2.1) illustrate an example of possibilis-

tic networks.

A 

C B 

Π (A) 

Π (C|A) Π (B| A) 

Figure 2.1: Graphical component of the possibilistic network

a Π(a) a b Π(b|a) a c Π(c|a)

a1 0.4 a1 b1 0.3 a1 c1 1

a2 1 a1 b2 1 a1 c2 1

a2 b1 0.4 a2 c1 0.4

a2 b2 0.7 a2 c2 0.1

Table 2.1: Numerical component of the possibilistic network

2.2.2 Qualitative and quantitative possibilistic networks

Qualitative possibilistic networks, also calledmin-based possibilistic networks

and denoted by ΠGmin, are based on the min-based conditioning expressed
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by equation (1.9).

The joint distribution relative to min-based possibilistic networks, de-

noted by πm, can be computed via the following min-based chain rule:

De�nition 2.1. (min-based chain rule) Given a min-based possibilistic

network ΠGm, the global joint possibility distribution over the variable set

V = {V1, V2, ..., VN} can be expressed as the minimum of the N initial a

priori and conditional possibilities via the following min-based chain rule:

πm(V1, .., VN) = min
i=1..N

Π(Vi | pai(Vi)). (2.1)

Example 2.2. Table(2.2) gives the joint possibility distribution relative to

the possibilistic network given in example(2.1).

a b c πm(a ∧ b ∧ c) a b c πm(a ∧ b ∧ c)
a1 b1 c1 0.3 a2 b1 c1 0.4

a1 b1 c2 0.3 a2 b1 c2 0.1

a1 b2 c1 0.4 a2 b2 c1 0.4

a1 b2 c2 0.4 a2 b2 c2 0.1

Table 2.2: The joint possibility distribution

Quantitative possibilistic networks, also called product-based possibilistic

networks and denoted by ΠG∗, are based on the product-based conditioning

expressed by equation (1.10).

The joint distribution relative to product-based possibilistic networks, de-

noted by πp, can be computed via the following product-based chain rule:

De�nition 2.2. (Product-based chain rule) Given a product-based possi-

bilistic network ΠG∗, the global joint possibility distribution over the variable

set V = {V1, V2, ..., VN} can be expressed as the product of the N initial a

priori and conditional possibilities via the following product-based chain rule:

πp(V1, ..., VN) =
∏
i=1..N

Π(Vi | pai(Vi)), (2.2)
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Example 2.3. Table(2.3) gives the joint possibility distribution relative to

the possibilistic network given in example(2.1).

a b c πp(a ∧ b ∧ c) a b c πp(a ∧ b ∧ c)
a1 b1 c1 0.12 a2 b1 c1 0.16

a1 b1 c2 0.12 a2 b1 c2 0.04

a1 b2 c1 0.4 a2 b2 c1 0.28

a1 b2 c2 0.4 a2 b2 c2 0.07

Table 2.3: The joint possibility distribution

2.3 Learning possibilistic networks

Despite the popularity of possibilistic networks and the number of researches

focusing in propagation algorithms [1, 2, 3], few works have been proposed to

learn them from data[3] and in most cases, they are constructed using expert

opinions.

In this section, we give a brief introduction to approaches of learning

graphical models structure originally proposed for Bayesian networks. Then,

we focus in learning possibilistic networks.

2.3.1 Learning graphical models

Outside construction by experts, there are three basic approaches for learning

graphical models structure from data :

• Constraint based approach: This approach consists in trying to

cover all conditional independences existing in the graph then con-

structing it using these independences. Conditional independence tests

reduce the number of candidate graphs. In fact, if one test fails, many

graphs would be excluded. This approach presents two drawbacks.
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First, the number of conditional independences in a graph is enormous.

Second, it supposes that all conditional independences are necessarily

found.

• Score based approach: The score based approach looks for structure
that maximizes a certain score, or looks for the best structures and com-

bines them. This approach corresponds to construction based on the

strength of dependences between variables existing in the graph using

the strong assumption that two adjacent variables are more dependent

than two non adjacent ones. This is a heuristic, but often highly suc-

cessful approach, because in most cases, it gives good results.

• Hybrid method: This approach combines advantages of the two al-

ready listed methods. It consists in two steps. First, a local search

uses independences test in order to provide a neighborhood containing

all interesting conditional dependences and independences. Second, a

global optimization is performed in order to search in the space of can-

didate graphs by restricting to only conditional dependences already

found.

2.3.2 Learning possibilistic networks

Unlike the probabilistic case where several works have been proposed to learn

Bayesian networks, few works were interested to learn possibilistic networks.

Learning parameters still poses several problems. That's why, in most cases,

they are learned using experts opinions. In the following part, we talk about

learning structure and we present methods proposed by Borgelt[3] which

belong to score based approach and consist in a search method in the space

of possible graphs given a dataset guided by a possibilistic evaluation measure

as illustrated in �gure(2.2).



Learning possibilistic networks 23

 

Two principle components: 

 

Evaluation measure 

Search Algorithm 

 

Learned 

possibilistic 

network 

structure 

Dataset: 

 

Uncertain 

and /or 

imprecise 

data 

 

Learning  possibilistic network 

structure: 

Figure 2.2: Learning possibilistic networks structure

2.3.3 Evaluation measures

Evaluation measures are used to compare candidate graphs, with assessing

the quality of each one of them w.r.t given data set, in order to choose the

best one which �ts well the dataset. Evaluation measures can be classi�ed

in two categories: local measures and global measures.

Local measures are based on calculating the strength of conditional de-

pendences between variables. In fact, we can compute local scores to subnet-

works or simply to one edge (score between two variables). It is permitted

due to the decomposability property of an evaluation measure permitting to

express it as sum of scores at each local node. Unlike local measure, global

measures evaluate the quality of the whole graph given a dataset and can

not be decomposed.

Obviously, the objective of any measure either local or global is �nding

the graph which represents strongest dependences existing between two or

more variables. Several measures have been presented in literature [9, 11]

and showed their e�ciency. We present principle ones that can be applied in

the possibilistic case.

All evaluation measures listed in th following part are derived either from

relational or, often by analogy, from probabilistic evaluation measures. In

the following, let A and B two variables , dom(A) = {a1, a2, ..., an} and
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dom(B) = {b1, b2, ..., bn} their corresponding domains.

2.3.3.1 Speci�city gain

The speci�city gain, named Sgain, can be derived using the α-cut concept

[18] or using U-uncertainty measure. The notion of α-cut view is used in

fuzzy set theory in order to decompose a fuzzy set. In the possibilistic case,

possibility distributions are decomposed forming an α-cut relation allowing

the de�nition of the [Π]α with α ∈ [0, 1]. Thus, all tuples whose possibility

degrees greater than or equal to α take 1 and other tuples take 0.

The underlying idea of speci�city gain is computing Hartley information

gain for each α-cut of the possibility distribution. These values are then

aggregated by integrating over all values of α. For more details, see [5, 7].

The speci�city gain is de�ned as follows:

Sgain(A,B) =

∫ supΠAB

0

log2(
∑

a∈dom(A)

[ΠA]α(a))

+ log2(
∑

b∈dom(B)

[ΠB]α(b))

− log2

∑
a∈dom(A)
b∈dom(B)

[ΠAB]α(a, b)) dα

(2.3)

This formula can also be obtained using the notion of U-uncertainty or also

called non-speci�city, denoted by nsp, as known in the possibility theory [4].

Let Ω be the universe of discourse of Π and ω ∈ Ω. The nsp is de�ned as:

nsp(Π) =

∫ supΠ

0

log2(
∑
ω∈Ω

[Π]α(ω))dα (2.4)

And the speci�city gain is given by:

Sgain(A,B) = nsp(ΠA) + nsp(ΠB)− nsp(ΠAB) (2.5)

Certain normalizations of the speci�city gain have been proposed: the speci-

�city gain ratio named Sgr and two symmetric speci�city gain ratios denoted
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S
(1)
gr and S

(2)
gr :

Sgr(A,B) =
Sgain(A,B)

nsp(ΠB)
=
nsp(ΠA) + nsp(ΠB)− nsp(ΠAB)

nsp(ΠB)
(2.6)

S(1)
gr =

Sgain(A,B)

nsp(ΠAB)
(2.7)

S(2)
gr =

Sgain(A,B)

nsp(ΠA) + nsp(ΠB)
(2.8)

Another variant of the speci�city gain which is known by giving a direct indi-

cation of the strength of dependence of two variables due to the introducing

of conditional relations. This measure is named Scgain and de�ned as:

Scgain =
∑

b∈dom(B)

∫ ΠB(b)

0

[ΠB]α(b)∑
b∈dom(B)

[ΠB]α(b)
log2

∑
a∈dom(A)

[ΠA]α(a)∑
b∈dom(B)

[ΠA|B]α(a|b)dα
(2.9)

2.3.3.2 Possibilistic mutual information

The possibilistic mutual information named dmi(A,B) is based on the cross

entropy , denoted by I
(shanon)
mutual (A,B), introduced by Shanon and expressed

by:

I
(shanon)
mutual (A,B) =

∑
a∈dom(A)
b∈dom(B)

pAB(a, b).log2
pAB(a, b)

pA(a).pB(b)
(2.10)

By forming the analog of the mutual information [5], we obtain:

dmi(A,B) = −
∑

a∈dom(A)
b∈dom(B)

ΠAB(a, b).log2
ΠAB(a, b)

min (ΠA(a),ΠB(b))
(2.11)

Another variant has been proposed in [11] denoted by ΓL:

ΓL(A,B) = −
∑

a∈dom(A)
b∈dom(B)

ΠAB(a, b).log[1 + ΠAB(a, b)−min(ΠA(a)),ΠB(b)]

(2.12)
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2.3.3.3 Possibilistic χ2 measure

This measure is also based on the underlying idea of the mutual information

described above and it is the analog of the probabilistic χ2 measure. The

possibilistic χ2 measure is named dχ2 and de�ned as in [5]:

dχ2 =
∑

a∈dom(A)
b∈dom(B)

(min(ΠA(a),ΠB(b)− ΠAB(a, b))2

min(ΠA(a),ΠB(b))
(2.13)

Another measure which can be cited in this context is the weighted sum of

squared di�erences named ddiff (A,B) and de�ned as follows:

ddiff (A,B) =
∑

a∈dom(A)
b∈dom(B)

(min(ΠA(a),ΠB(b))− ΠAB(a, b))2 (2.14)

2.3.3.4 Weighted sum of possibility degrees

The weighted sum of possibility degrees named Q(G) is a global evalua-

tion measure. Unlike the three evaluation measures described above, it does

not support decomposition. A global measure compares the distribution

described by a graph to the one that is induced by the dataset to learn

from. Obviously, the number of possible tuples (all combinations of vari-

ables) in such domain can be enormous. So, this measure proposes to form a

proper subset containing only tuples t in dataset D and compare the graph

to this subset. The underlying idea of weighted sum of possibility degrees is

summing possibility degrees of possible tuples weighted with their frequency

(w(t)) in the dataset [6].

Q(G) = w
t∈D

(t).ΠG(t) (2.15)

2.3.4 Learning possibilistic networks structure

The objective of a learning method is giving as an output the best graphical

model that �ts well the dataset. In the case of possibilistic networks, it
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consists in searching in the space of the domain and �nding the best DAG.

However, searching and evaluating all candidate graphs tends to be infeasible

in high-dimensional domain in which the number of graphs is huge. In the

following part, we will introduce several search methods used in learning

graphical models and tested in the case of possibilistic networks.

2.3.4.1 MWST Kruskal algorithm

The kruskal algorithm gives as an output a maximum weight spanning tree

(MWST). The search of the structure is based on weights assigned to edges

and calculated with an evaluation measure (local scores). The obtained struc-

ture is a subgraph in the form of an undirected tree. To transform it to a

directed graph, one possible solution is using Depth-�rst search which is an

algorithm for traversing or searching a tree and adding orientation to edges.

The kruskal algorithm starts from a set of trees passing by nodes, denoted

by T, and merges them. It constructs rapidly a tree but it connects all

nodes(variables) even if the weight between nodes is too small. Thus, it can

add unnecessary nodes.

2.3.4.2 Greedy parent search algorithm

The greedy parent search algorithm requires a topological order to reduce

the search space: If the node A is listed before the node B, there isn't an

edge from B to A. It consists in �nding the best set of parents for a node in

order to maximize the score of subnetworks and combine them. It is based

on measuring the strength of dependence between variables and candidate

parent variables.

Evaluation measures compute the local score of the parentless child. The

following step consists in choosing the best parent from all candidate parents.

If its score is greater than the score of parentless child, the parent which has

the highest score is chosen and added to this child. Then, the child and the

parent are combined into a pseudo-variable and the score is recomputed.
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Algorithm 2.1: MWST

Data: In: set of ordered edges(descending) A

Result: B the resulting MWST

begin

foreach Vi do

T (Vi)← {Vi}

B ← ∅
foreach (Vi, Vj) ∈ A do

if T (Vi) 6= T (Vj) then

B ← B ∪ (Vi, Vj)

T ′ ← T (Vi) ∪ T (Vj)

T (Vi)← T ′

T (Vj)← T ′

return B
end

This procedure is stopped when one of termination criteria is met (no

more parent, the maximum number of parents, denoted by u, is reached).

Two drawbacks can be listed to this algorithm. First,the choice of the order

may be a complex task. Second, it can converge to a local optimum with

selecting a wrong set of parent variables.

2.3.4.3 Simulated annealing

The simulated annealing algorithm is a guided random search method be-

cause it evaluates a random solution using a global evaluation measure (E(s)).

The idea underlying the simulated annealing algorithm is ameliorating a ran-

domly generated candidate solution (S0). It is an iterative procedure which is

composed of two main components: generating a solution (S) from candidate

ones and evaluating it.

The objective of the evaluating step is testing whether the generated so-

lution (Snew) is better than the last generated one. If it is better, it is chosen

and we replace the last solution with the new one. If it is worse, the solu-
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Algorithm 2.2: Greedy parent search

Data: In: local score g, u In: Data

begin

for i ∈ {1, . . . , n} do
pai ← ∅
gold ← g(i, pai)

Ok ← true

repeat

find Vj ∈ Pred(Vi) \ pai maximizing g(i, pai ∪ Vj)

if gnew > gold then

gold ← gnew
pai ← pai ∪ Vj

else

ok ← False

until Ok and ‖pai‖ < u ;

end

tion is accepted with certain probability. The simulated annealing algorithm

takes as input: emax(expected maximum value of evaluation measure) , T:

temperature, Kmax: maximum number of iterations. Note that in our case

only the weighted sum of possibility degrees is a global measure.

2.4 Database-induced possibility distributions

Learning possibilistic networks from data requires a method to extract pos-

sibility distributions from datasets of sample cases. In fact, it forms a very

important step in the learning task because without calculating marginal

distributions, it is impossible to learn possibilistic networks structure. Few

works was dedicated to this area of research. In [8], authors proposed a

method based on calculating the maximum projection from imprecise dataset

(dataset that contains set valued information).

We �rst introduce some basic notions that will be used in order to detail

this method.
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Algorithm 2.3: Simulated annealing

Data: In: T, Kmax, emax, Data , E

Result: Sbest
begin

S ← S0

e← E(s)

Sbest← S

Ebest← e

K ← 0

while (K < Kmax and e > emax) do

Snew ← neighboor(s)

Enew ← E(Snew)

if enew < e or p(e, enew, T ) > random() then

S ← Snew

e← enew

K ← K + 1

return Sbest
end

De�nition 2.3. Let U = {A1, A2, ..., An} be the set of attributes and

dom(Ai) their corresponding domains. The precise tuple tU is a mapping

over U that assigns to every attribute Ai one value:

tpreciseU : U →
⋃
A∈U

dom(A)

Example 2.4. Let A, B and C be three attributes and dom(A) = {a1, a2},
dom(B) = {b1, b2} and dom(C) = {c1, c2} their corresponding domains. A

possible precise tuple is t = (A 7−→ {a1}, B 7−→ {b2}, C 7−→ {c2}).

De�nition 2.4. Let U = {A1, A2, ..., An} be the set of attributes and

dom(Ai) their corresponding domains. The imprecise tuple tU is a mapping

over U that may assigns to at least one attribute Ai more than one value:

timpreciseU : U →
⋃
A∈U

2dom(A)

Example 2.5. Let A, B and C be three attributes and their corresponding

domains dom(A) = {a1, a2, a3, a4}, dom(B) = {b1, b2, b3} and dom(C) =
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{c1, c2}. A possible imprecise tuple is t = (A 7−→ {a1, a3}, B 7−→ {b1, b2},
C 7−→ {c2}).

De�nition 2.5. A database DU over U is a pair (RU , wRU
) where RU is the

relation over U containing all possible tuples in D and wRU
is a mapping from

the tuple (precise and imprecise) in RU to N which indicates the number of

occurrence of the tuple t.

Before extracting marginal distributions, a preprocessing phase `closure

under tuple intersection' must be performed. It consists in adding every tuple

that corresponds to an intersection of others existing in the original dataset.

The weight of this resulting tuple is the sum of weights of the two tuples that

intersect. The new added tuple is as least as speci�c as (contained in) the

two others that intersect.

Example 2.6. let U = {A,B} be a set of attributes over U with their cor-

responding domains dom(A) = {a1, a2, a3} and dom(B) = {b1, b2, b3}.
Let us consider an example of dataset over U:

t1 = ({a1, a2, a3}, {b3}) : 1

t2 = ({a1, a2}, {b2, b3}) : 1

t3 = ({a3, a4}, {b1}) :1

The two �rst tuples intersect in t4 = ({a1, a2}, {b3}). So, we must add t4
with a weight = 2 (sum of weights of t1) and t2. t4 is said at least as speci�c

as t1 and t2.

Now to estimate marginal possibility distributions, we should compute

maximum projection. We take for each precise tuple tX of the subspace,

de�ned by a set X of attributes, the maximum of weights of tuples tU in the

database whose projection to X is equal to tX . Then, we divide by the sum

of all weights in the original dataset.

∀tX : ΠX(tX) = max
A∈U−X

Π
(D)
U (tU) =

max
A∈U−X

wR(tU)∑
s∈R

wR(s)
(2.16)

Note that this method was be applied in real world dataset with missing

values.
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Example 2.7. Let us consider the dataset illustrated by table(2.4). Note that

* indicates a missing value(i.e. all values of the attribute are possible):

tuples frequency

a1 b2 c3 3

a3 b1 c2 4

a1 b2 c1 1

a2 b1 c2 2

a3 b1 c3 1

∗ ∗ c3 1

a2 ∗ c2 1

Table 2.4: An example of imprecise dataset

After preprocessing this dataset, we obtain the dataset illustrated by table(2.5):

Finally, we compute possibility distributions:

tuples frequency

a1 b2 c3 4

a3 b1 c2 4

a1 b2 c1 1

a2 b1 c2 3

a3 b1 c3 2

∗ ∗ c3 1

a2 ∗ c2 1

Table 2.5: The preprocessed dataset

Π(a1) = 0.3,

Π(a2) = 0.23,

Π(a3) = 0.3,

Π(b1) = 0.3,

Π(b2) = 0.3,

Π(c1) = 0.07,
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Π(c2) = 0.3,

Π(c3) = 0.3.

Now we can apply for example the greedy parent search algorithm(2.2)

with the possibilistic mutual information, expressed by equation(2.11), as lo-

cal evaluation measure for the database illustrated by table(2.4). The topo-

logical order used by the algorithm is: A,B,C. We then obtain the possibilistic

network structure shown in �gure(2.3).

A 

C B 

Figure 2.3: The resulted possibilistic network structure

The method described above for computing maximum projection is ap-

plicable only to datasets that contain set valued information because it is

based on the context model interpretation [12] and was be tested with a real

database containing missing value which can be not considered as true set

valued information. Moreover, it treats only the imprecision concept designed

by possibility theory. None of the tested dataset contains uncertain and im-

precise information which is the key element of information representation

in possibility theory.

Moreover, the preprocessing phase performed in the method presents

some drawbacks. It valorizes imprecise information more than precise ones.

In fact, if the tuple is imprecise, it will be a�ected to all tuples containing

in it while the precise tuple is taken in account once. Furthermore, if the

dataset contain only imprecise tuples (imprecision caused by missing values),

computing closure under tuple intersection will be very expensive because be-

cause almost all possible precise and imprecise tuples will be added.
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2.5 Conclusion

In this chapter, we have focused in learning possibilistic networks from dataset

of sample cases. First, we have introduced them in quantitative and qualita-

tive settings. Then, we have presented several methods that were proposed

in literature to learn possibilistic networks structure. We listed many eval-

uation measures and search method algorithms that can be applied. In the

last part of the chapter, we have explain a method used to extract marginal

distributions from imprecise dataset of sample cases.



Chapter 3

New learning possibilistic

networks structure algorithm

3.1 Introduction

In real life problems, we are drowning in data with high and low quality which

is de�nitely related to the ways that the datasets are used. In our vision, we

should always favor certain and precise data contrary to Borgelt's method

in which more the information is imprecise more it is well represented. Our

aim is knowledge extraction based mainly on data with high quality but

without neglecting imperfect data because high quality information provide

high quality knowledge.

Moreover, possibility theory has the ability to design two frequent sorts of

imperfection: uncertainty and imprecision but Borgelt was interested only to

imprecision. We have thought to propose a method that deals with these two

concepts in order to bene�t from the simplicity of the way we use to express

opinions in possibilistic framework. Our objective is learning possibilistic

networks from possibilistic datasets but the �rst di�culty we face is how

we can induce possibility distributions from uncertain and imprecise data

taking into account the importance of information quality, uncertainty and

35
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imprecision.

This chapter is organized as follows: In section 3.2, we present several

de�nitions we use in the chapter. Section 3.3 is devoted to representation of

dataset preprocessing phase. In section 3.4, we present maximum projection

method used to extract marginal possibility distributions. Then, in section

3.5, we compare our approach with existing method. Section 3.6 details

learning possibilistic networks structure from possibilistic dataset and sec-

tion 3.7 presents a method to evaluate it. Finally, in section 3.8, we present

the implementation scheme. Section 3.9 is devoted to possible form of possi-

bilistic datasets that can not be well treated with our approach to which we

propose a possible solution.

3.2 De�nitions

Before detailing our approach, we start by de�ning some notions that will be

used in the remaining.

De�nition 3.1. Let U = {A1, A2, ..., An} be the set of attributes and

ai the domains of attributes. The certain tuple tcertainU is the union over U of

the mapping that assigns to one value of every attribute Ai 1 and 0 to other

values i.e. Ai satisfy the case of complete knowledge:

tcertainU : U →
⋃
Ai∈U
ai∈Ai

π(ai)

Example 3.1. Let A, B and C be three attributes and dom(A) = {a1, a2, a3},
dom(B) = {b1, b2} and dom(C) = {c1, c2, c3} their corresponding domains.

A possible certain tuple is:

t = {π(a1), π(a2), π(a3), π(b1), π(b2), π(c1), π(c2), π(c3)}
= {0, 0, 1, 0, 1, 0, 1, 0}.

De�nition 3.2. Let U = {A1, A2, ..., An} be the set of attributes and

ai the domains of attributes. The uncertain tuple tuncertainU is the union over
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U of the mapping that assigns to each value of every attribute Ai a number

∈ [0, 1]:

tuncertainU : U →
⋃
Ai∈U
ai∈Ai

π(ai)

Example 3.2. Let A, B and C be three attributes and dom(A) = {a1, a2, a3},
dom(B) = {b1, b2} and dom(C) = {c1, c2, c3} their corresponding domains.

A possible uncertain tuple is:

t = {π(a1), π(a2), π(a3), π(b1), π(b2), π(c1), π(c2), π(c3)}
= {0.2, 0.8, 1, 0.5, 1, 0, 1, 0.9}.

De�nition 3.3. A possibilistic training set is a collection of certain and

uncertain tuples. A certain (resp. uncertain) training set is a part of the

training set which contains only certain (resp. uncertain) tuples.

Example 3.3. Table(3.1) presents an example of a possibilistic training set.

For instance, the �ve last tuples are uncertain and the others are certain.

3.3 Dataset preprocessing phase

The �rst phase of our approach is preprocessing the training set. It consists

as illustrated in �gure(3.1) of two steps:

1. Extraction of distinct certain tuples from training set and computing

their frequencies. Note that, we remove all fully uncertain tuples (con-

taining in all attributes total ignorance e.g tuple = {11111111})

2. Computing the maximum similarity between each uncertain tuple and

certain ones using the information a�nity as measure of similarity given

by equation(1.25) in order to a�ect it to the nearest certain tuple. Note

that we discard similarities lower than certain threshold and we have

chosen the information a�nity because this measure satis�es both basic

and extended properties.
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A B C

a1 a2 a3 b1 b2 c1 c2 c3

1 0 0 0 1 0 0 1

1 0 0 0 1 0 0 1

1 0 0 0 1 0 0 1

0 0 1 1 0 0 1 0

0 0 1 1 0 0 1 0

0 0 1 1 0 0 1 0

0 0 1 1 0 0 1 0

1 0 0 0 1 1 0 0

0 1 0 1 0 0 1 0

0 1 0 1 0 0 1 0

0 0 1 1 0 0 0 1

0.1 0 1 0.7 1 0.5 1 0.3

0 1 0 1 0.8 1 0.6 0.2

1 0 0.5 1 0.2 1 0 0

1 1 1 1 1 0 0 1

0 1 0 1 1 0 1 0

Table 3.1: An example of uncertain training set

Step1: Extraction of certain tuples: Given a training set, the certain

and uncertain training sets are obtained using algorithm(3.1):

Example 3.4. Let us reconsider the training set of example(3.3). After

applying this step of our approach, we obtain values illustrated in tables(3.2)

and (3.3):

Step2: Computing similarity: Given certain and uncertain training

sets, we compute the maximum of similarity between each uncertain and all

certain tuples as shown by algorithm(3.2):

Example 3.5. Let us consider the uncertain and certain training set of

example(3.4), we compute the similarity between tuples using information
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Figure 3.1: Preprocessing phase

a�nity. The obtained values are illustrated by table(3.4). Uncertain tuples

are presented by their numbers(1..5) as in table(3.3).

When we compute the similarity between tuples to a�ect uncertain tuples

to the nearest certain one, we can be in one of these situations:

• The number of the nearest tuple = 1: This is illustrated in example(3.5)

by tuples 1, 2 , 3 and 5. We add to the frequency of the nearest certain

tuple the value of the similarity between it and the considered uncertain

tuple.

• The number of the nearest tuple > 1: This is illustrated in example

(3.5) by tuple 4 (case of equal similarities). To handle this case, we

propose two solutions:
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Algorithm 3.1: Extraction of certain and uncertain training sets

Data: In: training set, U set of attributes

Result: certain, uncertain

begin

certain = ∅
uncertain = ∅
for j = 1..n do

if tj is fully uncertain then

Remove(tj)

else

if tj is certain then

add(tj , certain)

else

add(tj , uncertain)

return certain, uncertain

end

1. Dispatching method.

2. Max frequency method.

3.3.1 Dispatching method

If for a given uncertain tuple, we obtain n nearest certain ones. The idea is

to dispatch the maximum similarity between all nearest tuples as shown by

algorithm(3.3):

Example 3.6. Let us reconsider examples(3.4) and (3.5) and we use results

illustrated by tables(3.2),(3.3) and 3.4). After applying Dispatching method,

we obtain frequencies illustrated in table(3.5).
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Certain tuples frequency

a1b2c3 3

a3b1c2 4

a1b2c1 1

a2b1c2 2

a3b1c3 1

Table 3.2: Certain tuples and their frequencies

Uncertain tuples

A B C

N a1 a2 a3 b1 b2 c1 c2 c3

1 0.1 0 1 0.7 1 0.5 1 0.3

2 0 1 0 1 0.8 1 0.6 0.2

3 1 0 0.5 1 0.2 1 0 0

4 1 1 1 1 1 0 0 1

5 0 1 0 1 1 0 1 0

Table 3.3: Uncertain tuples

3.3.2 Maximum frequency method

If for a given uncertain tuple, we obtain n nearest certain ones. The idea is

to search in nearest tuples the one which has the highest frequency in the

dataset and we a�ect the uncertain tuple as shown by algorithm(3.4). The

intuition behind this method is , more the tuple occurs more it is possible.

Example 3.7. Let us reconsider examples(3.4) and (3.5) and we use results

illustrated by tables(3.2),(3.3) and 3.4). After applying Maximum frequency

method, we obtain frequencies illustrated in table(3.5).



42 New learning possibilistic networks structure algorithm

Algorithm 3.2: Computing similarity

Data: In: certain, uncertain

Result: max− sim
begin

foreach tu ∈ uncertain do

foreach tc ∈ certain do

max− sim = maximum(Aff(tu, tc))

return max− sim

end

Uncertain tuples Certain tuples

a1b2c3 a3b1c2 a1b2c1 a2b1c2 a3b1c3

1 0.7 0.86 0.72 0.73 0.77

2 0.55 0.72 0.75 0.85 0.67

3 0.79 0.76 0.85 0.7 0.76

4 0.81 0.68 0.68 0.68 0.81

5 0.75 0.81 0.68 0.93 0.68

Table 3.4: Similarities between certain and uncertain tuples

3.4 Maximum projection

To extract distributions from the preprocessed training set (containing only

certain tuples and their frequencies), we should determine the max of ele-

mentary degrees of possibility over all values of all other attributes after a

projection to the considered subspace. This is done by taking the max for

each precise tuple tX of the subspace de�ned by the set X of attributes the

frequencies of all tuples tU in the training set in which tX forms a part of

them.

∀tX : ΠX(tX) = max
A∈U−X

ΠU(tU) =
max
A∈U−X

frequency(tU)∑
s∈D

frequency(s)
(3.1)

After inducing initial possibility distributions, we can normalize them by

dividing obtained ones for each attribute by the maximum of possibility
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Algorithm 3.3: Dispatching method

Data: In: certain, uncertain, max-sim

Result: certain
begin

foreach tu ∈ uncertain do

add(tu, NearestTuple(tu, certain),
max−sim

|NearestTuples|)

return certain
end

Certain tuples frequency + similarity

a1b2c3 3 + 0.405

a3b1c2 4 + 0.86

a1b2c1 1 + 0.85

a2b1c2 2 + 0.85 + 0.93

a3b1c3 1 + 0.405

Table 3.5: A�ecting uncertain tuples using Dispatching method

distributions Πmax. They are denoted by (Πn) and de�ned as follows:

Πn =
ΠX(tX)

Πmax

(3.2)

To summarize, we obtain normalized possibility distributions using algorithm(3.5):

Example 3.8. Let us reconsider results of example(3.6) illustrated by table(3.5).

we obtain values illustrated by table(3.7):

Now, we can extract possibility distributions:

Initial distributions:

Π(a1) = 0.22,

Π(a2) = 0.24,

Π(a3) = 0.31,

Π(b1) = 0.31,

Π(b2) = 0.22,
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Algorithm 3.4: Maximum frequency method

Data: In: certain, uncertain, max-sim

Result: certain
begin

foreach tu ∈ uncertain do

if |nearest− tuple| = 1 then

add(tu, nearest− tuple(tu, certain),max− sim)

else

add(tu,maxFreq[NearestTuple(tu, certain),max− sim])

return certain
end

Certain tuples frequency + similarity

a1b2c3 3 + 0.81

a3b1c2 4 + 0.86

a1b2c1 1 + 0.85

a2b1c2 2 + 0.85 + 0.93

a3b1c3 1

Table 3.6: A�ecting uncertain tuples using Maximum frequency method

Π(c1) = 0.12,

Π(c2) = 0.31,

Π(c3) = 0.22.

Normalized distributions:

Πn(a1) = 0.7,

Πn(a2) = 0.77,

Πn(a3) = 1,

Πn(b1) = 1,

Πn(b2) = 0.7,

Πn(c1) = 0.38,

Πn(c2) = 1,

Πn(c3) = 0.7.

Example 3.9. Let us now reconsider results of example(3.7) illustrated by
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Algorithm 3.5: Computing normalized possibility distributions

Data: In: certain, U:set of attributes

Result: marginal − distributions

begin

foreach A ∈ U do

foreach ai ∈ A do

marg − distr(ai) = max− projection(certain, ai)

normalize(marg − distr)

return marginal − distributions

end

Certain tuples maximum projection

a1b2c3 0.22

a3b1c2 0.31

a1b2c1 0.12

a2b1c2 0.24

a3b1c3 0.09

Table 3.7: Computing maximum projection (case Dispatching method)

table(3.6). We obtain values illustrated by table(3.7):

Now, we can extract possibility distributions:

Initial distributions:

Π(a1) = 0.24,

Π(a2) = 0.24,

Π(a3) = 0.31,

Π(b1) = 0.31,

Π(b2) = 0.24,

Π(c1) = 0.12,

Π(c2) = 0.31,

Π(c3) = 0.24.

Normalized distributions:

Πn(a1) = 0.77,
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Certain tuples max projection

a1b2c3 0.24

a3b1c2 0.31

a1b2c1 0.12

a2b1c2 0.24

a3b1c3 0.06

Table 3.8: Computing maximum projection (case maximum frequency

method)

Πn(a2) = 0.77,

Πn(a3) = 1,

Πn(b1) = 1,

Πn(b2) = 0.77,

Πn(c1) = 0.38,

Πn(c2) = 1,

Πn(c3) = 0.77.

3.5 Borgelt's method vs our approach

Borgelt's method is detailed in the last chapter in section(2.4). This method

deals with imprecise dataset which can be a particular case of datasets we ma-

nipulate. That's why in this section, we apply our approach to this particular

case. In fact, we apply our approach to the dataset illustrated by table(2.4)

which illustrates Borgelt's method. Then we will explain the di�erence be-

tween the two methods and present advantages of using our approach.

Example 3.10. Let us reconsider the dataset in example(2.7). First, we

preprocess the dataset. We obtain values illustrated by tables(3.9) and (3.10):

Then we compute similarities between certain and uncertain tuples. We

obtain values illustrated by table(3.11).

If we apply dispatching method, we obtain values illustrated by table(3.12):
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Certain tuples frequency

a1b2c3 3

a3b1c2 4

a1b2c1 1

a2b1c2 2

a3b1c3 1

Table 3.9: Uncertain tuples and their frequencies

Uncertain tuples

A B C

N a1 a2 a3 b1 b2 c1 c2 c3

1 1 1 1 1 1 0 0 1

2 0 1 0 1 1 0 1 0

Table 3.10: Uncertain tuples

Now, we compute marginal distributions:

Initial distributions :

Π(a1) = 0.26,

Π(a2) = 0.22,

Π(a3) = 0.31,

Π(b1) = 0.31,

Π(b2) = 0.26

Π(c1) = 0.07,

Π(c2) = 0.31,

Π(c3) = 0.26.

Normalized distributions:

Πn(a1) = 0.83,

Πn(a2) = 0.7,

Πn(a3) = 1,

Πn(b1) = 1,
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Uncertain tuples Certain tuples

N a1b2c3 a3b1c2 a1b2c1 a2b1c2 a3b1c3

1 0.81 0.68 0.68 0.68 0.81

2 0.75 0.81 0.68 0.93 0.68

Table 3.11: Similarities between certain and uncertain tuples

Certain tuples frequency + similarity maximum projection

a1b2c3 3 + 0.405 0.26

a3b1c2 4 0.31

a1b2c1 1 0.07

a2b1c2 2 + 0.93 0.22

a3b1c3 1 + 0.405 0.11

Table 3.12: A�ecting uncertain tuples using Dispatching method and com-

puting maximum projection

Πn(b2) = 0.83,

Πn(c1) = 0.22,

Πn(c2) = 1,

Πn(c3) = 0.83.

If we apply max frequency method, we obtain values illustrated by table(3.13):

Now, we compute marginal distributions:

Initial distributions:

Π(a1) = 0.29,

Π(a2) = 0.22,

Π(a3) = 0.31,

Π(b1) = 0.31,

Π(b2) = 0.29,

Π(c1) = 0.07,

Π(c2) = 0.31,

Π(c3) = 0.29.
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Certain tuples frequency + similarity maximum projection

a1b2c3 3 + 0.81 0.29

a3b1c2 4 0.31

a1b2c1 1 0.07

a2b1c2 2 + 0.93 0.22

a3b1c3 1 0.07

Table 3.13: A�ecting uncertain tuples using Maximum frequency method

and computing maximum projection

Normalized distributions:

Πn(a1) = 0.93,

Πn(a2) = 0.7,

Πn(a3) = 1,

Πn(b1) = 1,

Πn(b2) = 0.93

Πn(c1) = 0.22,

Πn(c2) = 1,

Πn(c3) = 0.93

Contrary to Borgelt's method, our approach valorizes more the certain

and precise information because it provides high quality information. In our

vision there are three characteristics of high quality information: degree of

occurrence, precision and certainty.

In any real-life problem, the quality of data is related to ways that datasets

are used. That's why we have thought to extract data with high quality and

try to bring the data with low quality closer to former ones.

Moreover, our approach can bene�t from the simplicity of expressing

in possibility theory and treat the two concepts designed by this theory:

uncertainty and imprecision.

Our approach can be extended to treat also possibilistic datasets express-

ing preferences if we use a possibilistic similarity measure used in qualitative
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setting because sometimes we encounter several di�culties when expressing

exact numerical values and we prefer providing preferences.

3.6 Learning possibilistic networks from possi-

bilistic dataset

After extracting possibility distributions from possibilistic dataset, we can

apply one of methods of learning possibilistic networks structure discussed

in section(2.3) in the last chapter.

In what follows, we rewrite the greedy parent search algorithm(3.6) but

the input in this case is possibility distributions induced using our approach.

Note that we will use also evaluation measures listed in the last chapter.

Algorithm 3.6: Greedy parent search

Data: In: local score g, In: Data

begin

for i ∈ {1, . . . , n} do
pai ← ∅
gold ← g(i, pai)

Ok ← true

repeat

find Vj ∈ Pred(Vi) \ pai maximizing g(i, pai ∪ Vj)

if gnew > gold then

gold ← gnew
pai ← pai ∪ Vj

else

ok ← False

until Ok and ‖pai‖ < u ;

end

Example 3.11. Let us consider the possibilistic dataset illustrated by table(3.1)

and we apply for example the greedy parent search algorithm with the possi-

bilistic mutual information, expressed by equation(2.11), as local evaluation
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measure. The topological order used by the algorithm is: A,B,C. We then

obtain the possibilistic network structure shown in �gure(3.2).

A 

C B 

Figure 3.2: The resulted possibilistic network structure

Our approach allows us to learn possibilistic networks structure from

possibilistic datasets. Inducing possibilistic distributions has not been well

treated before. That's why this area of research has attracted our attention

and learning possibilistic networks despite his importance in the reduction

of e�ort and time consumed by experts to express possibility distributions,

few works were interested to propose new approaches to perform it.

3.7 Evaluation of learning possibilistic networks

structure algorithm

In previous parts, we have discussed several algorithms that have been pro-

posed to learn possibilistic networks structure. In this section, we present

a method used to evaluate of learning algorithms. It consists in for a given

possibilistic network, we generate a dataset from it. Then, we compare the

quality of the initial possibilistic network and the learned one as show in

�gure(3.3) using a global evaluation measure.
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Figure 3.3: Evaluation of learning possibilistic network structure algorithm

3.8 Experimentation

In this section, we present the implementation scheme of our approach. In-

deed, we propose a new toolbox named "`Learning Possibilistic Networks"'

(LPNT). implemented with Matlab based on the platform BNT. The im-

plementation consists in three parts as shown by �gure(3.4). The �rst is

generating a possibilistic dataset. The second one consists in preprocess-

ing the obtained dataset in order to induce possibility distributions. Then

we apply greedy parent search algorithm. The last part is devoted to the

evaluation of our approach.

3.9 Limitation

It should be noted that despite promising results provided by our approach

and the new idea behind it, one particular case can not be e�ciently treated

which is the extreme case of possibilistic datasets without certain tuples.

To handle this dataset properly, we add another step in preprocessing

phase. We can create �ctive certain training set from most certain tuples

(containing in the majority of attributes precise and certain data). In fact,
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Uncertain training set

A B C

N a1 a2 a3 b1 b2 c1 c2 c3

1 0.1 0 1 0.7 1 0.5 1 0.3

2 0 1 0 1 0.8 1 0.6 0.2

3 1 0 0.5 1 0.2 1 0 0

4 1 1 1 1 1 0 0 1

5 0 1 0 1 1 0 1 0

6 1 0 0 1 0 1 1 1

7 0 0 1 0.7 1 1 0 0

8 0.2 0.3 1 1 0 0 1 0

Table 3.14: An example of training set containing only uncertain tuples

we try to create combination of variables very similar to those contained in

the dataset and we assign to their frequency 0.

To do so, we take possible combinations of variables in which for each

value of their attributes, the degree of possibility is greater than or equal to

0.5.

Example 3.12. Let us consider the training illustrated by table(3.14) set

without any certain tuple: Tuples 5,6,7 and 8 contain in two of three at-

tributes one possible value. So, they can form a �ctive certain training set.

We can create now (�ctive) certain tuples, we extract from the tuple:

• 5: a2b1c2 and a2b2c2

• 6: a1b1c1, a1b1c2 and a1b1c3

• 7: a3b1c1 and a3b2c1

• 8: a3b1c2

Once, we apply our approach normally and without any modi�cation.
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3.10 Conclusion

In this chapter, we have proposed a new approach for learning possibilistic

networks from possibilistic datasets. The aim of this approach is how can we

extract possibility distributions.

This approach o�ers the possibility to express our opinions in natural way

using the simplicity of information presentation in the possibilistic frame-

work.

We have proposed two methods named maximum frequency and dispatch-

ing. The two methods require a preprocessing phase. Then, we estimate

marginal distributions using a maximum.

Clearly, the two methods can be extended to the qualitative setting of

possibility theory. By doing so, our approach will treat all kind of data in

the possibilistic framework.
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Conclusion

In this report, we have proposed a new approach for learning possibilistic

networks structure from possibilistic datasets containing attributes described

by possibility distributions.

When dealing with possibilistic datasets, the �rst step we face is how

we can estimate marginal possibility distributions. We have proposed an

approach which consists in uncertain observations clustering using similarity

measures and to handle the case of equal similarities, we have proposed two

approaches:

• Dispatching method: It consists in dispatching similarity value to near-

est precise and certain observations.

• Maximum frequency method: It consists in a�ecting the uncertain ob-

servation to the most frequent observation among nearest ones.

Once, we can apply one of learning possibilistic networks structure meth-

ods using possibility distributions induced with our approach.

As future works, we can �rst distinguish direct improvements of our pro-

posals. In fact, we aim to adapt proposed methods to deal with possibilis-

tic datasets but in the qualitative setting. Another line of research will be

extending possibilistic similarity measures in order to compare possibility

distributions in the qualitative setting.

Moreover, it will be useful to enrich this area of research with new eval-

uation measures that can applied in the possibility theory in its qualitative

56
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setting. Our idea is to propose new methods to learn parameters of possi-

bilistic networks which is the numerical part of them.

Finally, it will be useful to create a toolbox which gathers all methods

of learning possibilistic networks structure and parameters with a convivial

user-interface.
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