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Abstract. Possibilistic decision theory is a natural one to consider when
information about uncertainty cannot be quantified in probabilistic way.
Different qualitative criteria based on possibility theory have been pro-
posed, the definition of which requires a finite ordinal, non compensatory,
scale for evaluating both utility and plausibility. In presence of heteroge-
neous information, i.e. when the knowledge about the state of the world
is modeled by a possibility distribution while the utility degrees are nu-
merical and compensatory, one should rather evaluate each decision on
the basis of its Necessity-based Choquet value. In the present paper, we
study the use of this criterion in the context of sequential decision trees.
We show that it does not satisfy the monotonicity property on which
rely the dynamic programming algorithms classically associated to deci-
sion trees. Then, we propose a Branch and Bound algorithm based on an
optimistic evaluation of the Choquet value of possibilistic decision trees.

1 Introduction

Decision under uncertainty is one of the main fields of research in decision theory,
due to its numerous applications (e.g. medicine, robot control, strategic decision,
games...). In such problems, the consequence of a decision depends on uncertain
events. In decision under risk, it is assumed that a precise probability is known
for each event. A decision can thus be characterized by a lottery over possible
consequences. In multistage decision making, one studies problems where one has
to make a sequence of decisions conditionally to observable states. The problem
is to choose a strategy assigning a decision (i.e. a lottery) to each state.

A popular criterion to compare lotteries and therefore strategies is the ex-
pected utility (EU) model axiomatized by von Neumann and Morgenstern [9].
This model relies on a probabilistic representation of uncertainty, while the pref-
erences of the decision maker are supposed to be captured by a utility function
assigning a numerical value to each outcome. The evaluation of a lottery is then
performed via the computation of its expected utility (the greater, the better).
Since strategies can be viewed as compound lotteries, they can also be compared
on the basis of their expected utility. When the decision problem is sequential,
the number of possible strategies grows exponentially. Hopefully, the EU model



satisfies a monotonicity property that guarantees completeness of a polytime
algorithm of dynamic programming.

When information about uncertainty cannot be quantified in a simple, prob-
abilistic, way the topic of possibilistic decision theory is often a natural one to
consider [2] [4] [6]. Giving up the probabilistic quantification of uncertainty has
led to give up the EU criterion as well. In [4], two qualitative criteria based on
possibility theory, are proposed and axiomatized whose definitions only require a
finite ordinal, non compensatory scale for evaluating both utility and plausibility.
This yielded the development of sophisticated qualitative models for sequential
decision making, e.g. possibilistic markov decision processes [13] [12], possibilistic
ordinal decision trees [5] and possibilistic ordinal influence diagrams [5].

In presence of heterogeneous information, i.e. when the knowledge about the
state of the world is possibilistic while the utility degrees are numerical and
compensatory, the previous models do not apply anymore. Following [14] and
[7], Choquet integrals [1] appear as a right way to extend expected utility to non
Bayesian models. Like the EU model, this model is a numerical, compensatory,
way of aggregating uncertain utilities. But it does not necessarily resort on a
Bayesian modeling of uncertain knowledge. Indeed, this approach allows the use
of any monotonic set function®, and thus of a necessity measure (integrals based
on a possibility measure are generally given up since too adventurous). Un-
fortunately, the use of Necessity-based Choquet integrals in sequential decision
making is not straightforward: Choquet integral does not satisfy the principle of
monotony in the general case. As a consequence, the optimality of the solution
provided by dynamic programming is not granted. Hence a question arises: do
the Necessity-based Choquet integral satisfy the monotony principle and if not,
which algorithm should we use to compute an optimal strategy?

In the present paper, we show that the Necessity-based Choquet Integrals
do not satisfy the monotonicity property and propose a Branch and Bound al-
gorithm based on an optimistic evaluation of the Choquet value of possibilistic
decision trees. This paper is organized as follows: the background notions are re-
called in Section 2. Possibilistic decision trees are developed in Section 3. Section
4 is devoted to the algorithmic issues.

2 Background on possibility theory and possibilistic
decision making under uncertainty

The basic building block in possibility theory is the notion of possibility distri-
bution [3]. Let x be a variable whose value is ill-known and denote (2 the domain
of z. The agent’s knowledge about the value of  can be encoded by a possibility
distribution 7 : 2 — [0,1] ; 7(w) = 1 means that value w is totally possible
for variable z and 7(w) = 0 means that = w is impossible. From 7, one can
compute the possibility IT(A) and necessity N(A) of an event "z € A”:

II(A) = supveam(v) (1)

3 This kind of set function is often called capacity or fuzzy measure.



N(A) =1-1I(A) =1 - supygam(v) (2)
Measure IT(A) evaluates at which level A is consistent with the knowledge rep-
resented by 7 while N(A) corresponds to the extent to which —A is impossible
and thus evaluates at which level A is certainly implied by the knowledge.
Given n non interactive (independent) possibilistic variables x1,...,x, respec-
tively restricted by m1,...,m,, the joint possibility distribution 7 on (21,...,2,, is
a combination of mq,...,7m,:

(W1 ey wpn) = T (W1) @ .o @ T (wh). (3)

The particularity of the possibilistic scale is that it can be interpreted in twofold:
when the possibilistic scale is interpreted in an ordinal manner, i.e. when the pos-
sibility degree reflect only an ordering between the possible values, the minimum
operator is used to combine different distributions (® = min). In a numerical
interpretation, possibility distributions are related to upper bounds of imprecise
probability distributions - ® then corresponds to product operator (® = ).

Following [4][2]’s possibilistic approach of decision making under uncertainty
a decision can be seen as a possibility distribution over a finite set of states. In
a single stage decision making problem, a utility function maps each state to a
utility value in a set U = {uq, ..., u,} C R (we assume without loss of generality
that uy <--- < uy,). This function models the attractiveness of each state for the
decision maker. An act can then be represented by a possibility distribution on
U, also called a (simple) possibilistic lottery, and denoted by (A1/u1, ..., Ap/up):
A; is the possibility that the decision leads to a state of utility wu;.

In the following, £ denotes the set of simple lotteries (i.e. the set of possibility
distributions over U). We shall also distinguish the set £, C L of constant
lotteries over £. Namely, £. = {7 s.t. Ju;, w(u;) = 1 and Vu; # u;, m(u;) = 0}.
A possibilistic lottery L € L is said to overcome a lottery L' € L iff:

A possibilistic compound lottery (A1 /L', ..., Ay /L™) is a possibility distribution
over L. The possibility m; ; of getting a utility degree v; € U from one of its
sub-lotteries L’ depends on the possibility A; of getting L* and on the possibility
)\é of getting u; from L ie. m; = A\ ® )\; More generally, the possibility of
getting u; from a compound lottery (A\1/L', ..., \,,,/L™) is simply the maz, over
all L, of m; ;. Thus, [4][2] have proposed to reduce (A\1/L%, ..., \,,/L™) into a
simple lottery defined by:

A1 ®Ll DO, QL™ = (ma;vj:Lm)\{ X )\j/ul, . ,’I”I’LCLLL']‘:LW)\ZI ®)\J/un) (5)

where ® = min (resp. ® = x) if the possibilistic scale is interpreted in an ordinal
(resp. numerical) way. A\; ® L' & ... ® A\, ® L™ is considered as equivalent to
(A1/LY, ..., Am/L™) and is called the reduction of the compound lottery.

Under the assumption that the utility scale and the possibility scale are
commensurate and purely ordinal, [4] have proposed the following qualitative



pessimistic and optimistic utility degrees for evaluating any simple lottery L =
(A1/u1, ...y A /uy) (possibly issued from the reduction of a compound lottery):

Upes(L) = maxi=1,, min(u;, N(L > u;)) and Uspt (L) = mazi=1,» min(u;, IT(L > u;))
(6)
where II(L > w;) = mazj=inAj and N(L > w;)) = 1 - II(L < w;) = 1 —
maz;—1,;—1A; are the possibility and necessity degree that L reaches at least
the utility value u,;. The Upes degree estimates to what extend it is certain (i.e.
necessary according to measure N) that L reaches a good utility. Its optimistic
counterpart, Uy, estimates to what extend it is possible that L reaches a good
utility. Both are instances of the Sugeno integral [15] expressed as follows:

S, (L) = maxi=1,, min(u,;, (L > u;)) (7)

where p is any capacity function, i.e. any set function s.t. pu(f) = 0, u(2) =
1,AC B = u(A) < u(B). Upes is recovered when p is a necessity measure.

Under the same assumption of commensurability, but assuming that the util-
ity degrees have a richer, cardinal interpretation, one shall synthesize the utility
of L by a Choquet integral:

Ch#(L) = Ei:nyl(ui — ’U,l',l) . ,u(L Z ’U,l) (8)

If 41 is a probability measure then Ch, (L) is simply the expected utility of L.
In the present paper, we are interested by studying Choquet decision criterion
in the possibilistic framework - this lead to let the capacity p be a necessity
measure N (integrals based on a possibility measure are generally given up
since too adventurous). In this case, Equation (8) is expressed by Chy(L) =
El-:nﬁl(ul- — uifl) . N(L Z UZ)

3 Possibilisitic decision trees

Decision trees [11] are graphical representations of sequential decision problems
under the assumption of full observability (i.e. once a decision has been executed,
its outcome is known and observed). A decision tree (see e.g. Figure 1) is a tree
GT = (N, €). The set of nodes N contains three kinds of nodes:

— D ={Doy,...,Dp} is the set of decision nodes (represented by rectangles).
The labeling of the nodes is supposed to be in accordance with the temporal
order i.e. if D; is a descendant of Dj, then i > j. The root node of the tree
is necessarily a decision node, denoted by Dy.

— LN ={LNy,..., LNy} is the set of leaves, also called utility leaves: VLN; €
LN, u(LN;) is the utility of being eventually in node LN;.

— C={C,...,Cy,} is the set of chance nodes represented by circles. Chance
nodes represent the possible actions.

For any X; € N, Succ(X;) C N denotes the set of its children. Moreover, for
any D; € D, Succ(D;) C C: Succ(D;) is the set of actions that can be decided



when D; is observed. For any C; € C, Suce(C;) € LN U D: Suce(C;) is indeed
the set of outcomes of action C; - either a leave node is observed, or a decision
node is observed (and then a new action should be executed).

In classical, probabilistic, decision trees the uncertainty pertaining to the
more or less possible outcomes of each C; is represented by a probability distri-
bution on Succ(C;). Here, we obviously use a possibilistic labeling, i.e. for any
C; € C, the uncertainty pertaining to the more or less possible outcomes of each
C; is represented by a possibility degree m;(X),VX € Succ(C;).

Solving the decision tree amounts at building a strategy that selects an action
(i.e. a chance node) for each reachable decision node. Formally, we define a
strategy as a function 0 from D to C U {L}. §(D;) is the action to be executed
when a decision node D; is observed. §(D;) = L means that no action has been
selected for D; (because either D; cannot be reached or the strategy is partially
defined). Admissible strategies must be:

— sound: VYD;,§(D;) € Suce(D;) U{L}
— complete: (i) 6(Dg) # L and (ii) VD; s.t. 0(D;) # L,VX,; € Succ(6(D;)),
either §(X;) # L or X; € LN

Let A be the set sound and complete strategies that can be built from the
decision tree. Any strategy in A can be viewed as a connected subtree of the
decision tree whose arcs are of the form (D;, d(D;)).

In the present paper, we interpret utility degrees in a numerical, compen-
satory, way and we are interested in strategies in A that maximize the Necessity-
based Choquet criterion. The Choquet value of a (sound and complete) strategy
can be determined thanks to the notion of lottery reduction. Recall indeed that
leave nodes In in LN are labeled with utility degrees, or equivalently constant
lotteries in L.. Then a chance node can be seen as either a lottery in £, or as a
compound lottery. The principle of the evaluation of a strategy is to reduce it in
order to get an equivalent simple lottery, the Choquet value of which can then be
computed. Formally, the composition of lotteries will be applied from the leaves
of the strategy to its root, according to the following recursive definition:

< l/u(Xl) > Zf X; € LN
Mazxx,csuce(x,)™i(X;) @ L(X;,6) if X;€C

Depending on the interpretation of the possibility degrees labeling the arcs
of the tree, we can distinguish between ordinal, min-based possibilistic decision
trees (for which ® = min) and numerical, product-based possibilistic decision
trees (for which ® = x). Equation 9 is simply the adaptation to strategies of
lottery reduction (Equation 5). We can then compute L(6) = L(Dog,d) : L(5)(u;)
is simply the possibility of getting utility w; when § is applied from Dy. The
Choquet value of § can then be computed:

Chy(6) = Chy(L(Do, 0)) (10)



Fig. 1. Example of possibilistic decision tree with C = {C1,C>,C3,C4,C5,Cs}, D =
{D(), Dl, Dz} and ﬁ./\/' =U= {0, 1, 2, 3, 4, 5}

4 Finding the Choquet optimal strategy in possibilistic
decision trees

Given a possibilistic decision tree encoding a set of admissible strategies A =
{61...9,}, we are looking for a strategy 0* such that V§ € A, Chy(6*) >
Chy (8). Unfortunately, finding optimal strategies via an exhaustive enumeration
of A is a highly computational task. For instance, in a decision tree with n binary
decision nodes, the number of potential strategies is in O(2V").

For standard probabilistic decision trees, where the goal is to maximize ex-
pected utility [11], an optimal strategy can be computed in polytime (with re-
spect to the size of the tree) thanks to an algorithm of dynamic programming
which builds the best strategy backwards, optimizing the decisions from leaves
of the tree its root. Regarding possibilistic decision trees, Garcia and Sabbadin
[5] have shown that such a method can also be used to get a strategy maximiz-
ing Upes. The reason is that like EU, Up, satisfies the following key property of
montonicity:

Definition 1. Let V be a decision criterion. V is said to be monotonic iff what-
ever L, L' and L, whatever the normalized distribution (a,f3):

V(L) >2V(L) = V(aeL&@eLl))>2V((aaLl)e (@ L") (11)

This property states that the combination of L (resp. L) with a third one, L”,
does not change the order induced by V between L and L’ - this allows dynamic
programming to decide in favor of L before considering the compound decision.
Unfortunately monotonicity is not satisfied any criterion. Some Choquet in-
tegrals, e.g. the one encoding the Rank Dependent Utility model, may fail to
fulfill this condition (see e.g. [8]). We show in the following counter examples
that this can also be the case when using Necessity-based Choquet integrals:



Counter example 1 (Numerical setting) Let L =< 0.1/1,1/2,0/3 >, L’ =<
0.9/1,0/2,1/3> and L” =< 1/1,0.1/2,0/3 >; let L1 = (a ® L) ® (3® L") and
Ly=(a®L)® (L"), witha=1 and §=0.9.

Using equation (5) with ® = % we have: L1 =< 0.9/1,1/2,0/3 >

and Ly =< 0.9/1,0.09/2,1/3 >

It is easy to show that Chy(L) = 1.9 and Chy(L') = 1.2, then L >~ L'. But
Chy(L1) = 1.1 < Chy(L2) = 1.2: this contradicts the monotonicity property.

Counter example 2 (Ordinal setting) Let L =< 0.2/0,0.5/0.51,1/1 >,

L' =< 0.1/0,0.6/0.5,1/1 > and L” =< 0.01/0,1/1>; ; let L1 = (a ® L) ® (B ®
L") and Ly = (a®@ L) ® (B® L"), with « =0.55 and = 1.

Using equation (5) with ® = min we have: L1 =< 0.2/0,0.5/0.51,1/1 > and
Ly =< 0.1/0,0.55/0.5,1/1 >.

Computing Chn(L) = 0.653 and Chy (L) = 0.650 we get L = L'. But Chy(L1) =
0.653 < Chy(Lz2) = 0.675: this contradicts the monotonicity property.

As a consequence, the application of dynamic programming to the case of
the Necessity-based Choquet integral may lead to a suboptimal strategy. As an
alternative, we have chosen to proceed by implicit enumeration via a Branch and
Bound algorithm, following [8] for the case of another (non possibilistic) Choquet
integral, namely the one encoding the Rank Dependent Utility criterion. The
fact that implicit enumeration performs better for RDU than the resolute choice
approach proposed in [10] encourages us to adapt it to our case.

The Branch and Bound algorithm (outlined by Algorithm 1.1) takes as ar-
gument a partial strategy d and an upper bound of the best Choquet value it
can reach. It returns the value Ch" of the best strategy found so far, §°P%).
As initial value for ¢ we will choose the empty strategy (§(D;) = L,VD;). For
§°Pt. we can choose the one provided by the dynamic programming algorithm.
Indeed, even not necessarily providing an optimal strategy, this algorithm may
provide a good one, at least from a consequentialist point of view.

At each step, the current partial strategy, §, is developed by the choice of an
action for some unassigned decision node. When several decision nodes need to
be developed, the one with the minimal rank (i.e. the former one according to
the temporal order) is developed first. The recursive procedure stops when either
the current strategy is complete (then §°P* and Ch%ﬁ may be updated) or proves
to be worst than 6°P! in any case. To this extend, we call a function that com-
putes a lottery Lottery(d) that overcomes all those associated with the complete
strategies compatible with § and use Chy (Lottery(d)) as an upper bound of the
Choquet value of the best strategy compatible with § - the evaluation is sound,
because whatever L, L', if L overcomes L', then Chy(L) > Chy(L'). When-
ever Chy (Lottery(d)) < Ch¥", the algorithms backtracks, yielding the choice
of another action for the last decision nodes considered. Moreover when ¢ is
complete, Lottery(d) returns L(Dy,d); the upper bound is equal to the Choquet
value when computed for a complete strategy.

Function Lottery (see algorithm 1.2) inputs a partial strategy. It proceeds
from backwards, assigning a simple lottery < 1/u(NL;) > to each terminal



Algorithm 1.1: BB
Data: A (possibly partial) strategy d, the evaluation its Choquet value, Chd

Result: Ch‘]’\ft % also memorizes the best strategy found so far, 6°P
begin
if 6 = 0 then Dpeng = {D1} else
Ch 0(D;) = L and
| Doena =ADe €D st 9 (D) # L and D; € Suce(6(Dy)) }
if Dpena =0 (% 6 is a complete strategy) then
if Chy > Ch¥" then
5Pt — §
| return Ch%

else
Drext < arg minp,en, ., 1
foreach C; € Succ(Dpest) do
6((Dneat) — Ci)
Ewval « Chn(Lottery(Do,d))
if Eval > Ch$?* then
| Ch¥' — max(Ch", 5, Eval)

t
return Ch3¥

end

Algorithm 1.2: Lottery

Data: a node X, a (possibly partial) strategy §
Result: LX % L% [us] is the possibility degree to have the utility u;
begin
for i€ {1,.,n} do L*[u;] < 0
if X € LN then L¥[u(X)] 1
if X € C then
foreach Y € Succ(X) do
LY «— Lottery(Y,d)
for i€ {1,..,n} do L*[u;] — max(L*[u;],7x (V) ® LY [ui])
% ® = min in the ordinal setting ; ® = x in the numerical setting

if X € D then
if §(X) # L then L™ = lottery(6(X),9) else
if |Suce(X)| = 1 then

| LX = Lottery(§(Suce(X)),d)

else
foreach Y € Succ(X) N N; do
LY — Lottery(Y,0)
L for i €{1,..,n} do G%[u;] —1— ma:cuj<uiLY[uj]

% Compute the upper envelop of the cumulative functions)
for i€ {1,..,n} do G°ui] — maxycguce(x)nn; Gy [Ui]

% Compute Rev(G°)

L¥un] <1

for i€ {n—1,.,1} do L¥[u;] + 1 — G[us41]

return L%
end



node LN; . At each chance node C;, we perform a composition of the lotteries
in Suce(C;) according to Equation (9). At each decision node D;, node LN; .
At each chance node C;, we perform a composition of the lotteries in Suce(C;)
according to Equation (9). At each decision node D; we ascend a lottery that
overcomes all those in Succ(D;). To this end, let us use the following notations
and definitions:

— Given a simple lottery L € £, G} is the possibilistic decumulative function
of L: Vu € U,G% (u) = N(L > u)

— Givenaset G = {G¢ ,..., G%k} of decumulative functions, the upper envelop
of G is the decumulative function Gg defined by:
Vu € U,Gg(u) = margs cgGY. (u)

— Given a decumulative function G° on U, Rev(G°) is the lottery defined by:

1 if i=n
Rev(G)(ui) = { 1— G(uis1) ’Lff ief{l,...,n—1}

Now it is easy to showthat the possibilistic decumulative function associated to
a lottery Rev(G°) is equal to G°. As a consequence:

Proposition 1. * Given a set {Li1,...,Ly} C L of simple lotteries over U,
G =1{Gy,,...,GY,} the set of their decumulative function, we have: Rev(G§)
overcomes any lottery L; € {L1,...,Li}.

Hence, the Choquet value of Lottery(Dy,d) is an upper bound of the Cho-
quet value of the best complete strategy compatible with §, which proofs the
correctness of our algorithm.

FEzxample 1. The major steps executed by the BB algorithm on the min-based possi-
bilistic decision tree of Figure 1 can be summarized as follows (we suppose that §°7*
has been initialized with ((Do, C2)), the Choquet value of which is 1)

— § =0 and Ch%)t = 1. BB calls Ch (Lottery(Dq, (Dg, C1)))
P2 = (0/0,0.2/1,0.2/2,1/4,1/5), LP3 = (0/0,0/1,1/2,1/4,1/5).
So, Lottery(Dg, (Do, C1)) = (0/0,0.2/1,0.5/2,0.5/3,1/4,1/5)
and Eval = Chp (Lottery(Dq, (Dg,C1))) = 2.8 > 1.
t
— §=(Dg,C1) and Ch{P" = 1. BB calls Chy (Lottery(Dg, (Do, C1), (D2, C3))))-
Lottery(Dg, ((Dg, C1), (Da, C3))) = (0/0,1/1,0.5/2,0.5/3,0.5/4,0.5/5)
and Eval = Chp (Lottery(Dg, ((Dg, Cq1), (D2,C3)))) =1 =1.
5§ = (Do, C1) and Ch,%" = 1. BB calls Ch (Lottery(Dq, ((Dg, C1), (D2, C4))))
Lottery(Dgq, ((Dg, C1), (Dg, Cy))) = (0.2/0,0/1,0.5/2,0.5/3,1/4,0.5/5)
and Eval = Chpy(Lottery(Dq, ((Dg, C1), (D2,Cy4)))) = 2.6 > 1.
— 8 =((Dg,C1), (D3, Cy)) and Ch¥P" = 1. BB calls Ch (Lottery(Dg, (Dg, C1), (D2, C4), (D3, C5)))),
Lottery(Dg, ((Dg, C1), (D32, Cq), (D3, C5))) = (0.2/0,0.5/1,0/2,0/3,1/4,0/5)
and Eval = Chp (Lottery(Dg, (Do, C1), (Dg, Cy4), (D3, C5)))) = 2.3 > 1.
~ 5 =((Dg,C1), (D2, Ca), (D3, Cp)) and ChGP" = 1.
There is no more pending decision node. §°P* — ((Dg, C1), (D3, Cy), (D3, C5)), C’h]"\ft — 2.3
— § = ((Dg,C1), (Dg, Cyq)) and Ch%)t = 2.3. BB calls Chy (Lottery(Dg, (Dg, C1), (D3, C4), (D3, Ce)))),
Lottery(Dg, ((Dg, C1), (Da, Cy), (D3, Cg))) = (0.2/0,0/1,0.5/2,0/3,1/4,0.5/5)
and Eval = Chp (Lottery(Dg, (Do, C1), (Da, Cy4), (D3, Cg)))) = 2.6 > 2.3.
— & = ((Dg,C1), (D32, Cy4), (D3, C5)) and Ch?\?t = 2.3.
There is no more pending decision node. §°P* — ((Dg, C1), (D3, Cy4), (D3, Cg)), Chj’\}" — 2.6

— etc.

The algorithm eventually terminates with 6°** = ((Do,C1), (D2, C4), (D3, Cs)) and
Ch¥" = 2.6.

4 Obviously, GRev(gey(ur) = 1 = G°(u1). Note that Vi = 2,n, Rev(G°)(u;) >
Rev(G°)(ui-1). Hence Gheygey(us) = 1 — mazj=1i-1Rev(G)(u;) = 1 —
Rev(G°)(ui-1). Since Rev(G)ui—1 = 1 — G(u;), we get Grey(ge)(ui) = G(u;).
Thus Ggeygey = G



5 Conclusion

In this paper, we have proposed to use the Necessity-based Choquet Integral to
optimize decision in heterogeneous possibilistic decision trees, where the utility
levels of consequences are numerical in essence. We have shown that dynamic
programming cannot be applied to find optimal strategies since the monotonicity
property on which this algorithm relies is not satisfied by this criterion. As an
alternative solution, we have developed a Branch and Bound algorithm based
on an optimistic evaluation of the Choquet value (namely by taking the upper
envelop of the decumulative functions of the concurrent possible actions). The
implementation of this approach is under progress.

The further development of this work deals with the optimization of Necessity-
based Choquet integrals and Sugeno Integrals in heterogeneous possibilistic in-
fluence diagrams, considering, again, both the numerical and the purely ordinal
interpretation of possibility degrees.
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