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Introduction

Data analysis is a process that involves describing, summarizing and comparing data.
It has traditionally been a branch of statistics. However, it has now also spread to
the fields of computer science, for example machine learning, artificial intelligence,
data management, and data mining.

An important technique frequently used in data analysis is clustering. The aim
of clustering is to group a set of objects into classes of similar objects. It can be used
on any datasets consisting of items for which we have a measure of similarity.

Clustering techniques are among the well known machine learning techniques, and
the K-modes method [31] is considered as one of the most popular of them. These
techniques are used in many domains such as medicine, banking, finance, marketing,
security, etc. They work under an unsupervised mode when the class label of each
object in the training set is not known a priori.

In addition to these unsupervised classification techniques, there exist those work-
ing under a supervised mode when the classes of instances are known in advance
helping to construct a model that will be used for classifying new objects. Among
them, we mention decision trees, k-nearest neighbor, neural networks, etc.

The capability to deal with datasets containing uncertain attributes is undoubt-
edly important due to the fact of this kind of datasets is common in real life data
mining applications. However, this problem makes most of the standard methods in-
appropriate for clustering such training objects. In order to overcome this drawback,
the idea is to combine clustering methods with theories managing uncertainty, these
theories are probabilities theory, fuzzy set theory, possibilitic theory and the belief
function theory.

This latter theory as interpreted in the transferable belief model (TBM) [57]
presents an effective tool to deal with this uncertainty. It permits to handle partial
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or even total ignorance concerning classification parameters, and offers interesting
means to combine several pieces of evidence. In fact, there are belief classification
techniques which have been developed such as belief decision trees (BDT) [21] and
belief k-nearest neighbor [13], and which have provided interesting results.

The objective of this work is to develop a new clustering method in an uncertain
context that uses the K-modes paradigm and based on the belief function theory,
the proposed approach is called the belief K-modes method (BKM). The main con-
tributions of this work are to provide one approach to deal with on one hand the
construction of clusters where the values of the attributes of training objects may be
uncertain, and in the other hand the classification of new instances charaterized also
by uncertain values based on the obtained clusters.

This report is organized in four chapters belonging to two main parts:

Part I: Theoretical aspects presents the necessary theoretical aspects regarding
the belief function theory and the K-modes method which are detailed respectively
in chapter 1 and chapter 2.

Part II: Belief K-modes Method details our proposed method namely Belief K-
modes method. Chapter 3, details the different parameters that we have developed
relatively to the building procedure of the clusters within an uncertain context. Fur-
thermore, the classification step of both certain and uncertain instances using the
obtained clusters will be exposed. Chapter 4 deals with implementation and simu-
lations which have been performed in order to analyze and evaluate results given by
the proposed belief clustering method.

Finally, a conclusion summarizes all the work presented in this report and pro-
poses further works to improve our method.

An appendix is provided at the end of this report to complete this master thesis.
It presents the description of data sets used in simulations.



Part I

Theoretical aspects
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Chapter 1

Belief function Theory

1.1 Introduction

The mathematical theory of Evidence [45], also known as Dempster-Shafer theory
and theory of belief functions (BF’s) is considered as a useful theory for representing
and managing uncertain knowledge. This theory is introduced as a model to represent
quantified beliefs.

The belief function theory is widely applied to artificial intelligence. More recent
variants of Dempster-Shafer theory include the Transferable Belief Model (TBM)
[50, 54, 55], the lower probability model [63], and the theory of Hints [36].

In this report, we deal with the interpretation of the belief function theory as ex-
plained by the TBM on which our work is based. Belief function theory as interpreted
in TBM [50, 54, 55] provides a mathematical tool to treat subjective, and personal
judgments on the different parameters of any classification problems and can be easily
extended to deal with objective probabilities. It expresses partial beliefs in a much
more flexible way than probability functions do. It also permits to handle partial or
even total ignorance concerning classification parameters. This theory offers interest-
ing tools to combine several pieces of evidence [47, 49, 52], like the conjunction and
the disjunction rules of combination. Furthermore, decision making is solved through
the pignistic transformation.

In this chapter, we introduce the basic concepts of this theory. Next, some special
belief functions are described. Then, several concepts of the belief function theory are
detailed like the combination, and the discounting, Finally, we present the decision
process within this theory. All these concepts are illustrated by examples.
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1.2 Basic concepts

1.2.1 Frame of discernment

Let Θ be a finite non empty set of elementary events to a given problem, called the
frame of discernment. It also referred to as the universe of discourse or the
domain of reference. This set contains hypotheses about some problem domain.
All the subsets of Θ belong to the power of Θ, denoted by 2Θ and defined as follows:

2Θ = {A : A ⊆ Θ} (1.1)

Each element of 2Θ is called a proposition or an event.

The elements of Θ are called the elementary propositions.

In Shafer’s model [45], the frame of discernment is defined to be the set of mutu-
ally exclusive and exhaustive hypotheses which means that the solution to a given
problem is unique and is necessarily included in this frame of discernment.

However, in the TBM, Smets contests the exhaustivity of the frame of discernment
considering that it is difficult to know a priori all the possible hypotheses for some
problems and introduces the open-and closed-world assumptions [50, 54, 55].

Under the open-world assumption the frame is not necessarily exhaustive ad-
mitting thus the existence of an unkown proposition (not defined in the frame of
discernment) that might be a solution to the considered problem, whereas under the
closed-world assumption the frame of discernment is exhaustive.

Example 1.1 Let’s treat a classification problem of firmś departments. Suppose that
the frame of discernment is defined as follows:
Θ = {Finance, Marketing, Accounts}

The corresponding power set of Θ is:

2Θ = {∅, {F inance}, {Marketing}, {Accounts},{F inance,Marketing},
{F inance, Accounts}, {Marketing,Accounts}, {Finance, Marketing, Accounts}}
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1.2.2 Basic belief assignment

The impact of a piece of evidence on the different subsets of the frame of discernment
Θ is represented by the so-called basic belief assignment (bba), called initially [45]
basic probability assignment. The bba is defined as follows:

m : 2Θ 7→ [0, 1]
∑

A⊆Θ

m(A) = 1 (1.2)

Each quantity m(A), named basic belief mass (bbm), is considered to be the
part of belief that supports the event A, and that, due to the lack of information,
does not support any strict subset of A.

Shafer has initially imposed the condition m(∅) = 0. This condition reflects the
fact that no belief ought to be allocated to the emptyset. Such bba is called a nor-
malized basic belief assignment.

This condition is relaxed in the TBM, the allocation of a positive mass to the
empty set (m(∅) > 0) is interpreted as a consequence of the open-world assump-
tion. A bba that verifies this condition is said to be subnormal or unformalized.
A mass of belief is assigned to each possible subset of classes.

Example 1.2 Let’s continue with Example 1.1. Suppose an expert expresses a piece
of evidence concerning the department nature. The bba related to this expert’s evi-
dence is defined as:
m({F inance}) = 0.6;
m({Accounts, Marketing}) = 0.3;
m(Θ) = 0.1.
For example, 0.6 represents the part of expert’s belief exactly supporting the proposi-
tion that the needed department is Finance department.

1.2.3 Focal elements, body of evidence, core

The subsets A of the frame of discernment Θ such that m(A) is strictly positive, are
called the focal elements of the bba m.

The pair (F,m) is called a body of evidence where F is the set of all the focal
elements relative to the bba m.
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The union of all the focal elements of m are named the core and are defined as
follows:

ϕ =
⋃

A:m(A)>0

A (1.3)

Example 1.3 Let’s continue with our example (Example 1.2). The subsets {F inance},
{Accounts, Marketing},Θ are the focal elements of the bba m.

So,(F,m) is called the body of evidence such that:
F = {{F inance}, {Accounts, Marketing}, Θ}

The core is defined as follows:
ϕ = {F inance} ∪ {Accounts, Marketing} ∪Θ = Θ

1.2.4 Belief function

A belief function, denoted bel, corresponding to a specific bba m, assigns to every
subset A of Θ the sum of masses of belief committed to every subset of A by m [45].
The belief function bel is defined as follows:

bel : 2Θ 7→ [0, 1]

bel(A) =
∑

φ 6=B⊆Θ

m(B) (1.4)

The belief function bel represents the total belief that one commits to A without
being also commited to A. The bbm m(∅) is not included in bel(A) as ∅ is both a
subset of A and A.

Properties:

• Sub-additivity:
bel(A) + bel(A) ≤ 1 (1.5)

Contrary to the probability theory the belief function theory increasing beliefs
on a proposition A does not necessary require the decrease of beliefs on A.

• Monotonicity:
A ⊆ B =⇒ bel(b) ≥ bel(A) (1.6)

Θ will get the highest value of bel, whereas ∅ will get the lowest value.
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• ForA, B ⊆ Θ, A ∩B = ∅,

bel(A∪B) ≥ bel(A) + bel(B) (1.7)

• m(A) may be expressed by the values of bel as follows [60]:

m(A) =
∑

B⊆A

(−1)|A|−|B|bel(B), ∀A⊆ Θ, A 6= ∅ (1.8)

• the bba m(∅) is computed as follows :

m(∅) = 1− bel(Θ) (1.9)

Example 1.4 The belief function bel corresponding to the same example (Example
1.2) is defined as follows:
bel(∅) = 0;
bel({F inance}) = 0.6;
bel({Marketing}) = bel({Accounts} = 0;
bel({F inance, Marketing}) = 0.6;
bel({F inance, Accounts}) = 0.6;
bel({Marketing, Accounts}) = 0.3;
bel(Θ) = 0.1 + 0.3 + 0.6 = 1
For example, 0.6 is the total belief committed to the proposition {Finance,Marketing}.
It is the sum of the bbm’s assigned to this set and also to its subsets.

1.2.5 Plausibility function

The plausibility function pl associated with a mass function m quantifies the max-
imum amount of belief that could be given to a subset A of the frame of discernment.
It is equal to the sum of the bbm’s relative to subsets B compatible with A. The
plausibility function pl is defined as follows [3]:

pl : 2Θ 7→ [0, 1]

pl(A) =
∑

A∩B 6=φ

m(B) (1.10)

There is a simple relationship between the belief function bel and the plausibility
function pl associated with a mass function m : for A ⊆ Θ

pl(A) = bel(Θ)− bel(A) (1.11)

and
bel(A) = pl(Θ)− bel(A) (1.12)

where A denotes the complement of A.
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Properties:

• Over additivity:
pl(A) + pl(A) ≥ 1 (1.13)

• Monotonicity:
A ⊂ B =⇒ pl(B) ≥ pl(A) (1.14)

• ForA, B ⊆ Θ, A ∩B = ∅,

pl(A ∪B) ≤ pl(A) + pl(B) (1.15)

• ForA ⊆ Θ,
bel(A) ≤ pl(A) (1.16)

Example 1.5 The plausibility function pl corresponding to the bbm (see Example
1.2) is defined as follows:
pl(∅) = 0;
pl({F inance}) = 0.6 + 0.1 = 0.7;
pl({Marketing} = 0.3 + 0.1 = 0.4;
pl({Accounts}) = 0.3 + 0.1 = 0.4;
pl({Marketing, Accounts}) = 0.3 + 0.1 = 0.4;
pl({F inance, Marketing}) = 0.3 + 0.1 + 0.6 = 1;
pl({F inance, Accounts}) = 0.3 + 0.1 + 0.6 = 1;
pl({Θ}) = 0.3 + 0.1 + 0.6 = 1
For example, 0.7 represents the maximum degree of belief that could be given to the
proposition {F inance}.

1.2.6 Commonality function

Another function related to a basic belief function m is the commonality function
q. The meaning of the commonality function is not obvious.
However, it may represent the total mass that is free to move to every element of A
[3]. It is defined as follows:

q : 2Θ 7→ [0, 1]

q(A) =
∑

A⊆B

m(B) (1.17)
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Properties:

• The commonality value relative to the empty set is defined as follows:

q(∅) = 1 (1.18)

• the commonality value relative to the whole frame of discernment is defined as
follows:

q(Θ) = m(Θ) (1.19)

Example 1.6 The commonality function q corresponding to the same bbm, as in the
previous examples, is defined as follows:
q({∅}) = 1;
q({F inance}) = 0.6 + 0.1 = 0.7;
q({Marketing}) = 0.3 + 0.1 = 0.4;
q({Accounts}) = 0.3 + 0.1 = 0.4;
q({F inance, Marketing}) = q({F inance, Accounts}) = 0.1;
q({Marketing, Accounts}) = 0.3 + 0.1 = 0.4;
q({Θ}) = 0.1

1.2.7 Belief intervals

The information contained in bel concerning a given subset A may be conveniently
expressed by the interval [bel(A),pl(A)] called belief interval.

Example 1.7 Let’s consider the setting of examples 1.4 and 1.5.
We have bel({Finance})=0.6 and pl({Finance})=0.7.
Thus, the belief interval corresponding to the proposition {Finance} is given by the
interval [0.6, 0.7].

1.3 Special belief functions

1.3.1 Vacuous belief function

A belief function is said to be vacuous if Θ is its unique focal element [45]:

m(Θ) = 1 and m(A) = 0 for all A ⊆ Θ, A 6= Θ (1.20)

In other words :

bel(Θ) = 1 and bel(A) = 0 for all A ⊆ Θ, A 6= Θ (1.21)
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Such bba where Θ is the unique focal element, quantifies the state of total ignorance
since there is no support given to any strict subset of Θ.

Example 1.8 Suppose that an expert cannot detect the nature of department. We
have a state of total ignorance where the corresponding bba m0 is a vacuous bba defined
by:
m0(Θ) = 1 and m0(A) = 0 for A 6= Θ.

1.3.2 Categorical belief function

It is a normalized belief function such that its bba is defined as follows [41]:

m(A) = 1 for some A ⊂ Θ and m(B) = 0, for B ⊆ Θ, B 6= A (1.22)

The unique focal element A is different from the frame of discernment Θ.

Example 1.9 We obtain a piece of evidence specifying that the department cannot be
Finance department. So, the corresponding bbm presents a categorical belief function
characterized by:
m({Marketing,Accounts})=1

1.3.3 Bayesian belief function

A Bayesian belief function is a belief function where the focal elements are all
singletons, is defined as follows [45]:

bel(∅) = 0 (1.23)

bel(Θ) = 1 (1.24)

bel(A ∪B) = bel(A) + bel(B) whenever A, B ⊂ Θ and A ∩B = ∅ (1.25)

Properties:

• bel becomes a probability distribution

• As in the probability theory :

bel(A) + bel(A) = 1 for A ⊂ Θ (1.26)

• bel = pl
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Example 1.10 The same frame of discernment is considered. The evidence is ex-
pressed by:
mb({F inance}) = 0.5;
mb({Marketing}) = 0.3;
mb({Accounts}) = 0.2;
mb({Θ}) = 0
The bba mb is a bayesian belief function since all its focal elements are singletons.

1.3.4 Consonant belief function

A consonant belief function is a belief function whose focal elements are nested,
such that A1 ⊂ A2 ⊂ ... ⊂ An [45]. In that case,

bel(A ∩B) = min[bel(A), bel(B)] ∀ A, B ⊆ Θ (1.27)

or equivalently
pl(A ∪B) = max[pl(A), pl(B)] ∀ A, B ⊆ Θ (1.28)

Such belief and plausibility functions are called respectively necessity and possibil-
ity measures [19].

Example 1.11 Let’s continue with the same frame of discernment Θ(seeExample1.1) :

m({Accounts}) = 0.2;
m({Accounts, Marketing}) = 0.6;
m({Θ}) = 0.2
The focal elements of this bba m are nested. So, it is a consonant belief function.

1.3.5 Certain belief function

A certain belief function is a categorical belief function such that it has only one
focal element and which should be a singleton. Its corresponding bba is defined as
follows:

m(A) = 1 and m(B) = 0 for all B 6= A and B ⊆ Θ (1.29)

where A is a singleton event of Θ. This function represents a state of total certainty
as it assigns all the belief to a unique elementary event.

Example 1.12 Let’s consider the expert’s confirmation Sc that the department is a
Marketing department.
The bba mc corresponding is a certain bba defined as:
mc({Marketing}) = 1.
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1.3.6 Simple support function

A belief function is said to be a simple support function (SSF) if it has at most
one focal element different from the frame of discernment Θ. This focal element is
called the focus of the SSF.

A SSF is defined as follows:

m(X) =











ω if X = Θ
1− ω if X = A for some A ⊆ Θ
0 otherwise.

(1.30)

where A is the focus and ω ∈ [0, 1]

Example 1.13 Considering the same example (Example 1.1) and a bba which is
defined as follows:
m({F inance, Marketing}) = 0.7;
m({Θ}) = 0.3
m is called a simple support function where the focus is the proposition
{F inance, Marketing}.

1.4 Combination rules

One of the most important operations in the Dempster-Shafer theory is the aggrega-
tion of several sources of evidence. The belief function theory, as understood in the
TBM framework, offers interesting rules for aggregating the basic belief assignments
defined over the same frame of discernment and induced from distinct pieces of evi-
dence [51] and provided by two (or more) source of information [47, 49, 52].

We can combine them in at least two ways: conjunctively or disjunctively using
respectively the conjunctive or disjunctive rules of combination.

The choice of one of these rules of combination for aggregating pieces of evidence
may be guided by meta-belief concerning the reliability of the sources. In fact, if
we know that both sources of information are fully reliable, then we combine them
conjunctively. However, if we know that at least one of the two sources is reliable,
then we combine them disjunctively [52].
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1.4.1 Combination of two information sources

Let m1 and m2 be two bba’s defined on the same frame of discernment Θ. These two
bba’s are collected by two ’distinct’ pieces of evidence and induced from two experts
(information sources).

The Conjunctive rule of combination

(m1 ∩©m2)(A) =
∑

B,C⊆Θ;B∩C=A

m1(B)m2(C) (1.31)

Properties:

The following properties characterize the conjunctive rule of combination:

• Compositionality:
(m1 ∩©m2)(A) is function of A, m1 and m2

• Commutativity:
m1 ∩©m2 = m2 ∩©m1 (1.32)

• Associativity:
(m1 ∩©m2) ∩©m3 = m1 ∩©(m2 ∩©m3) (1.33)

• Non-idempotency
m ∩©m 6= m (1.34)

• Neutral element
The neutral element within the conjunctive rule of combination is the vacuous
basic belief assignment representing the total ignorance.

m ∩©m0 = m (1.35)

where m0 is a vacuous bba.

Example 1.14 In this example, we will consider two distinct experts’ evidences S1

and S2 concerning the department nature, represented by respectively the two bba’s
m1 and m2 as follows:
m1({F inance}) = 0.4;
m1({Accounts}) = 0.1;
m1({F inance, Marketing}) = 0.3;
m1({Θ}) = 0.2;
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m2({Marketing}) = 0.5;
m2({F inance, Marketing}) = 0.4;
m2({Θ}) = 0.1;

Once the conjunctive rule of combination is applied, the final results are:
(m1 ∩©m2)({∅}) = 0.2 + 0.05 + 0.04 = 0.29;
(m1 ∩©m2)({F inance}) = 0.16 + 0.04 = 0.2;
(m1 ∩©m2)({Accounts}) = 0.01;
(m1 ∩©m2)({Marketing}) = 0.1 + 0.15 = 0.25;
(m1 ∩©m2)({F inance, Marketing}) = 0.08 + 0.12 + 0.02 = 0.22;
(m1 ∩©m2)({Θ}) = 0.03

The Disjunctive rule of combination

The disjunctive rule of combination is the dual of the conjunctive one, it builds the
bba representing the impact of two pieces of evidence when we only know that at
least one of them is to be accepted, but we do not know which one. This rule is
defined as follows [52] :

(m1 ∪©m2)(A) =
∑

B,C⊆Θ;B∪C=A

m1(B)m2(C) (1.36)

Properties:

The disjunctive rule of combination is commutative and associative.

In this case, we assume that at least one of the two experts (S1 and S2) is accepted,
but we do not know which one and in consequence we will apply the disjunctive rule
of combination.

Example 1.15 Let us consider the same bba’s represented in Example 1.14.
Once the disjunctive rule of combination is applied, we get:
(m1 ∪©m2)({F inance, Marketing}) = 0.2 + 0.1 + 0.16 + 0.08 = 0.54;
(m1 ∪©m2)({Accounts, Marketing}) = 0.05;
(m1 ∪©m2)({Θ}) = 0.15 + 0.12 + 0.04 + 0.02 + 0.03 + 0.04 + 0.01 = 0.41;

1.4.2 Combination of several information sources

It is easily assured by applying repeatedly the chosen rule (conjunctive or disjunctive
rule), since these rules of combination are both commutative and associative.
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1.5 Discounting

Experts are not fully reliable, the method of discounting [45] seems imperative to
update experts’ beliefs by tacking into account their reliability.

Let (1−α) be the degree of trust assigned to the expert, it quantifies the strength
of reliability given to this expert.

The expert’s opinions become :

mα(A) = (1− α)m(A) for A ⊂ Θ (1.37)

mα(Θ) = α + (1− α)m(Θ) (1.38)

where α is named the discounting factor.

Properties:

• α = 0 means that the expert is totally reliable.

• α = 1 means that the expert is not reliable at all. Then, his opinions have to
be totally ignored.

Example 1.16 The degree of reliability given to the expert is equal to 0.7. If we
consider this bba defined as follows:
m({F inance}) = 0.6
m({Accounts, Marketing}) = 0.3
m(Θ) = 0.1

So, we obtain after discounting this bba:
mα({F inance}) = 0.6× 0.7 = 0.42;
mα({Accounts, Marketing}) = 0.3× 0.7 = 0.21;
mα(Θ) = 0.3 + (1− 0.3)× 0.1 = 0.07

1.6 Decision Process

1.6.1 Introduction

It is necessary for making a decision, to select the most likely hypothesis. Some
solutions are developed to ensure the decision making within the belief function the-
ory. The one of the most used is the pignistic probability proposed within the TBM
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[54, 55, 57].

We mention other methods like the maximum of credibility which consists in
choosing the hypothesis having the highest value of the belief function bel, that is the
most credible hypothesis and the maximum of plausibility, contrary to the maximum
credibility criterion, this method consists in supporting the hypothesis having the
highest value of the plausibility function pl [3].

1.6.2 Pignistic transformation

The TBM is based on a two level mental models:

• The credal level where beliefs are entertained and represented by belief func-
tions.

• The pignistic level where beliefs are used to make decisions and represented by
probability functions called the pignistic probabilities.

When a decision must be made, beliefs held at the credal level induce a probability
measure at the pignistic measure denoted BetP [57].
The link between these two functions is achieved by the pignistic transformation.

BetP (A) =
∑

B⊆Θ

|A ∩B|

|B|

m(B)

(1−m(φ))
, for all A ∈ Θ (1.39)

Example 1.17 The following bba m are considered at the credal level:
m({F inance, Marketing}) = 0.1;
m({F inance}) = 0.6;
m({Θ}) = 0.3

To compute a pignistic probability BetP corresponding to these bba m, is necessary to
make a decision.
We get:
BetP ({F inance}) = 0.75;
BetP ({Marketing}) = 0.15;
BetP ({Accounts}) = 0.1
We note that is more probable that the department is a Finance department.

1.7 Conclusion

The basic concepts of the belief function theory as understood in the transferable
belief model are presented in this chapter.



Chapter 1: Belief function Theory 18

These different notions are illustrated by many examples.

This presentation shows that the belief function theory provides a convenient tool
to handle uncertainty in classification problems, especially within clustering tech-
niques. The following chapter will deal with these methodes more precisely the K-
modes one.



Chapter 2

K-modes Method as Clustering
Method

2.1 Introduction

Clustering techniques are considered as efficient tools for partitioning data sets in or-
der to get homogeneous clusters of objects. These techniques [34] are among the well
known machine learning techniques, and are used in many domains such as medicine,
banking, finance, marketing, security, etc. They work under an unsupervised mode
when the class label of each object in the training set is not known a priori. The
K-modes method [31] is considered as one of the most popular of them. Its algorithm
was proposed to extend the K-means one [39] to tackle the problem of clustering large
categorical data sets in data mining.

In this chapter, we firstly study the cluster analysis. We expose several clustering
techniques, organized into the following categories: partitioning methods, hierarchi-
cal methods, density-based methods, grid-based methods, and model-based methods.
We are interested especially in the basics of the K-modes method as partitioning clus-
tering method. We focus on its standard version where its principle will be described,
then we will present the algorithm, and an example will be detailed to illustrate this
method. Two extensions of this method will be described in order to cope with one
K-modes method drawback.

The last part of this chapter deals with another kind of this approach under un-
certain environment which is briefly exposed combining this method with one theory
managing this kind of environment such as fuzzy theory. Finally, we deal with belief
clustering.

19
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2.2 Cluster Analysis

2.2.1 Introduction

The process of grouping a set of objects into classes of similar objects is called clus-
tering. A cluster is a collection of data objects that are similar to one another within
the same cluster and are dissimilar to the objects in other clusters. A cluster of data
objects can be treated collectively as one group and so may be considered as a form
of data compression. Although classification is an effective means for distinguishing
groups or classes of objects. It is often more desirable to proceed in the reverse direc-
tion: First partition the set of data into groups based on data similarity (e.g., using
clustering), and then assign labels to the relatively small number of groups. Addi-
tional advantage of such a clustering-based process is that it is adaptable to changes
and helps single out useful features that distinguish different groups.

Clustering is also called data segmentation in some applications because cluster-
ing partitions large data sets into groups according to their similarity. As a data
mining function, cluster analysis can be used as a stand-alone tool to gain insight
into the distribution of data, to observe the characteristics of each cluster, and to
focus on a particular set of clusters for further analysis. Alternatively, it may serve as
a pre-processing step for other algorithms, such as characterization, attribute subset
selection, and classification, which would then operate on the detected clusters and
the selected attributes or features.

Data clustering is under vigorous development. Contributing areas of research in-
clude data mining, statistics, machine learning, spatial database technology, biology,
and marketing. Owing to the huge amounts of data collected in databases, cluster
analysis has recently become a highly active topic in data mining research.

In machine learning, clustering is an example of unsupervised learning. Unlike
classification, clustering and unsupervised learning do not rely on predefined classes
and class-labeled training examples. For this reason, clustering is a form of learning
by observation, rather than learning by examples. In data mining, efforts have fo-
cused on finding methods for efficient and effective cluster analysis in large databases.
Active themes of research focus on the scalability of clustering methods, the effective-
ness of methods for clustering complex shapes and types of data, high-dimensional
clustering techniques, and methods for clustering mixed numerical and categorical
data in large databases and method for clustering uncertain data sets.
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2.2.2 A Categorization of Clustering Methods

A large number of clustering algorithms exist in the literature. It is difficult to pro-
vide a crisp categorization of clustering methods since these categories may overlap
so that a method may have features from several categories. In general, the major
clustering methods can be classified into the following categories.

Partitioning methods:

Given a database of n objects and K, the number of clusters to form, a partition-
ing algorithm organizes the objects into K partitions (K ≤ n), where each partition
represents a cluster.

The clusters are formed to optimize an objective partitioning criterion, often called
a similarity function, such as distance, so that objects within a cluster are similar
whereas objects of different clusters are dissimilar in terms of the database attributes.

The most well-known and commonly used partitioning methods are K-means
method [39] where each cluster is represented by the mean value of the objects in
the cluster and its extension K-modes method [31] to handle categorical data, K-
medoids [35], where each cluster is represented by one of the objects located near the
center of the cluster and their variations.

Hierarchical methods:

A hierarchical clustering method works by grouping data into a tree of clusters.
Hierarchical clustering methods can be further classified into agglomerative and divi-
sive hierarchical clustering, depending on whether the hierarchical decomposition is
formed in a bottom-up or top-down fashion.

Agglomerative hierarchical clustering : this bottom-up strategy starts by placing
each object in its own cluster and then merges these atomic clusters into larger and
larger clusters, until all of the objects are in a single cluster or until certain termina-
tion conditions are satisfied.

Divisive hierarchical clustering : this top-down strategy does the reverse of ag-
glomerative hierarchical clustering by starting with all objects in one cluster. It
subdivides the cluster into smaller and smaller pieces, until each object forms a clus-
ter on its own or until it satisfied certain termination conditions, such as a desired
number of clusters is obtained or the distance between the two closest clusters is
above a certain threshold distance.
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The methods are introduced in this category are : BIRCH [65], CURE [27]...

Density-based methods:

The general idea is to continue growing the given cluster as long as the density
(number of objects or data) in the neighborhood exceeds some threshold; that is,
for each data point within a given cluster, the neighborhood of a given radius has
to contain at least a minimum number of points. Such as DBSCAN [23], OPTICS
[2],etc.

Grid-based methods:

Grid-based methods divide the object space into a finite number of cells that form
a grid structure on which all of the operations for clustering are performed. Some
typical examples of the grid-based approaches include STRING [62], WAVECLUS-
TER [48], CLIQUE [1]...

Model-based methods:

These methods attempt to optimize the fit between the given data and some math-
ematical model. Model-based methods follow two major approaches : a satatistical
approach or a neural network approach.

The choice of clustering algorithm depends both on the type of data available and on
the particular purpose of the application. If cluster analysis is used as a descriptive
or exploratory tool, it is possible to try several algorithms on the same data to see
what the data may disclose.

2.3 K-modes method as Partitioning method

2.3.1 Introduction

As is well known, K-means method [39] has been a very popular technique for parti-
tioning large data sets with numerical attributes. However, data mining applications
frequently involve many data sets that also consist of categorical attributes. One
approach [44] was proposed to using the K-means algorithm to cluster categorical
data. This approach consists in converting multiple category attributes into binary
attributes (using 0 and 1 to represent either a category absent or present) and treat
the binary attributes as numeric in the K-means algorithm. If it is used in data
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mining, this approach needs to handle a large number of binary attributes because
categorical attributes in data sets often have hundreds or thousands of categories.
This will increase both computational and space costs of the K-means algorithm.
Another drawback is that the cluster means, given by real values between 0 and 1,
not really reflect the characteristics of the clusters.

Indeed, in applying K-means method to categorical data, two main problems
are encountered, namely, the construction of clusters’ centers and the definition of
dissimilarity between objects and clusters’ centers. So, the K-modes method [31]
was proposed to tackle the problem of clustering large categorical data sets in data
mining. This method uses the K-means paradigm to cluster data having categorical
values.

2.3.2 The K-modes method parameters

The K-modes method extends the K-means [39] one by using a simple matching dis-
similarity measure for categorical objects, modes instead of means for clusters, and a
frequency-based method to update modes in the clustering process to minimize the
clustering cost function.

The mentioned modifications to the K-means algorithm are discussed as follows:

Cluster’s mode

Given a cluster {X1, ...Xp} of p categorical objects, with Xi = (xi,1, .., xi,s), 1 ≤ i ≤ p,
its mode Q = (q1, .., qs) is defined by assigning qj, 1 ≤ j ≤ s, where s is the number
of attributes, the category most frequently encountered in {x1,j, ..., xp,j}.

However, the mode of cluster is not generally unique. This makes the algorithm
unstable depending on mode selection during the clustering process.

The dissimilarity measure

We assume that the set of objects to be clustered is stored in dataset D defined by a
set of attributes A1, A2, ..., As with domains D1, D2, ..., Ds, respectively. Each object
in D is represented by a tuple t ∈ D1 ∗D2 × ...×Ds.

The distance between two categorical objects X1, X2 ∈ D, with X1 = (x1,1, ..., x1,s)
and X2 = (x2,1, ..., x2,s) consisting of categorical values only, can be defined as follows:
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d(X1, X2) =
s

∑

j=1

δ(x1,j, x2,j), (2.1)

where:

δ(x1,j, x2,j) =

{

0 ifx1,j = x2,j

1 ifx1,j 6= x2,j
(2.2)

δ(x1,j, x2,j) is considered as the simple matching respectively to one attribute Aj.
For these two objects, if all attributes have the same values, this distance measure d
will be equal to zero. However, when these two objects are totally distinct, it means
that all attributes’ values are different, so this measure will be equal to the number
of attributes s. In other word, 0 ≤ d ≤ s.
It is easy to verify that the function d defines a metric space on the set of categorical
objects.

When the above is used as the dissimilarity measure for categorical objects, the
optimization problem for partitioning a set of n objects described by m categorical
attributes into k clusters becomes:

Minimize P (W, Q) =
k

∑

l=1

n
∑

i=1

s
∑

j=1

wi,lδ(xi,j, ql,j) (2.3)

subject to:
k

∑

l=1

wi,l = 1, 1 ≤ i ≤ n, 1 ≤ l ≤ k, and wi,l ∈ {0, 1}

where W is an n× k partition matrix, wi,l is the degree of membership of the object
Xi in the cluster Cl (using 1 and 0 to represent either the object Xi is an element of
the cluster Cl or not), and Q = {Q1, Q2, ..., Qk}.
This function is an indicator of the distance of the n data points from their respective
clusters’ modes.

2.3.3 The K-modes Algorithm

K-modes method is one of the simplest unsupervised learning algorithms that solve
the well known clustering problem. The procedure follows a simple and easy way to
classify a given data set through a certain number of clusters (assume K clusters)
fixed a priori.

The main idea is to define K modes, one for each cluster. These modes should be
placed in a cunning way because of different location causes different results.
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So, the better choice is to place them as much as possible far away from each other.
The next step is to take each point belonging to a given data set and associate it to
the nearest mode using the simple matching dissimilarity measure. When no point
is pending, the first step is completed and an early groupage is done. At this point
we need to recalculate K new modes of the clusters resulting from the previous step
based on frequency-based method.
After we have these K new modes, a new binding has to be done between the same
data set points and the nearest new mode. A loop has been generated. As a result
of this loop we may notice that the K modes change their location step by step until
no more changes are done. In other words modes do not move any more.

Although it can be proved that the procedure will always terminate, the K-modes
algorithm does not necessarily find the most optimal configuration, corresponding to
the global objective function minimum. The algorithm is also significantly sensitive
to the initial randomly selected cluster modes. The K-modes algorithm can be run
multiple times to reduce this effect.

This algorithm has as an input a predefined number of clusters, that is the K
from its name. K-modes algorithm is a simple, iterative procedure, in which a crucial
concept is the one of mode.
Mode is an artificial point in the space of records which represents all objects of the
particular cluster. The coordinates of this point are the most frquently of attribute
values of all examples that belong to the cluster.

The algorithm is composed of the following steps:

1. Select K initial modes, one for each cluster.

2. Allocate an object to the cluster whose mode is the nearest to it according to
the simple matching dissimilarity measure. Update the mode of the cluster after
each allocation.

3. Once all objects have been allocated to clusters, retest the dissimilarity of ob-
jects against the current modes. If an object is found such that its nearest mode
belongs to another cluster rather than its current one, reallocate the object to
that cluster and update the modes of both clusters.

4. Repeat 3 until no object has changed clusters after a full cycle test of the whole
data set.

Example 2.1 Let’s treat a classification problem of firm’s staff. Suppose that we
have a training set T, defined by Table 2.1.
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Table 2.1: Training set T relative to the standard K-modes method
Objects Qualification Income Department

X1 A High Finance
X2 B Low Finance
X3 C Average Marketing
X4 C Average Accounts
X5 B Low Marketing
X6 A High Finance
X7 B Low Accounts

Suppose that K = 3, 3-partition of T is initialized randomly as follows: C1 = {X1},
C2 = {X2}, and C3 = {X3}.

The three cluster modes , one for each cluster are defined by:
Q1=(A,High,Finance).
Q2=(B,Low,Finance).
Q3=(C,Average,Marketing).

For each object Xi, i ∈ {4, ..., 7}, compute the dissimilarities: d(Xi, Ql), l = 1,...,3,
using Equation 2.1 and Equation 2.2.

• For example for the object X4 the three dissimilarity measures are computed as
follows:
d(X4, Q1) =

∑3
j=1 δ(x4,j, q1,j)

= 1 + 1 + 1 = 3.
d(X4, Q2) =

∑3
j=1 δ(x4,j, q2,j)

= 1 + 1 + 1 = 3.
d(X4, Q3) =

∑3
j=1 δ(x4,j, q3,j)

= 0 + 0 + 1 = 1.
So, X4 is assigned to C3, as d(X4, Q3) is minimal.
It is the same for the other objects.

• X5 is assigned to C2 or to C3, as d(X5, Q2) and d(X5, Q3) are minimal.

• X6 is assigned to C1, as d(X6, Q1) is minimal.

• X7 is assigned to C2, as d(X7, Q2) is minimal.

We obtain these clusters:
C1 = {X1, X6}
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C2 = {X2, X5, X7}
C3 = {X3, X4}

with updated modes:
Q1=(A,High,Finance).
Q2=(B,Low,Finance) or Q2=(B,Low,Marketing) or Q2=(B,Low,Accounts)
Q3=(C,Average,Marketing) or Q3=(C,Average,Accounts).

The mode of the second cluster Q2 is not unique. We take randomly into account
the third possible value of Q2. It is the same for the third mode cluster, the first pos-
sible value of Q3 is randomly chosen. Then, the process continue until we will obtain
the stable partition.

After retesting the dissimilarity of objects against the current modes, all objects
are found that are in the nearst cluster. So, the obtained partition is the final one as
it is stable.

Once, the clusters are built, one instance to classify is as follows (Finance, High,
C) is affected to first cluster C1 since d(X, Q1) is minimal.

Advantages:

• Simple and understandable.

• The K-modes algorithm converges in a finite number of iterations.

Drawbacks:

This standard version of the K-modes method has some weaknesses:

• The way to initialize the modes was not specified. One popular way to start
is to randomly choose K of the samples. So, the produced results depend on
the initial values for the modes. The standard solution is to try a number of
different starting points.

• The results depend on the value of K. Unfortunately there is no general theo-
retical solution to find the optimal number of clusters for any given data set.
A simple approach is to compare the results of multiple runs with different K
classes and choose the best one according to a given criterion such that the
clustering cost function.

• The mode of cluster is not generally unique. This makes the algorithm unstable
depending on mode selection during the clustering process.
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2.3.4 Extensions of the K-modes method

Two alternative extensions of the K-modes algorithm [33, 40] aim at eliminating
the mentioned non-uniqueness drawback in the K-modes method by introducing new
notions of cluster modes.
In the next section, we expose the K-representatives method and the other extension
handling with the above K-modes method limitation.

K-Representatives Method

In applying K-means method to categorical data, two main problems are encountered,
namely, how to compute clusters’ modes and the measure of dissimilarity between ob-
jects and clusters’ modes.

The K-Representatives algorithm [40] extends K-modes algorithm by using these
following concepts.

• Cluster’s mode or representative:

Given a cluster C = {X1, ..., Xp} of p categorical objects, with:
Xi = (xi,1, ..., xi,s), 1 ≤ i ≤ p, denote by Dj the set formed from categorical
values x1,j, ..., xp,j, 1 ≤ j ≤ s.
Then, the representative of C is defined by Q = (q1, ..., qs), with

qj = {(cj, fcj
)|cj ∈ Dj} (2.4)

Where fcj
is the relative frequency of category cj within C,i.e, fcj

= ncj/p,
where ncj is the number of objects in C having category cj at attribute Aj.

• Dissimilarity measure:

The dissimilarity between a categorical object and the representative of a cluster
is defined based on simple matching as follows:

d(X, Q) =
s

∑

j=1

∑

cj∈Dj

fcj
.δ(xj, cj) =

s
∑

j=1

∑

cj∈Dj,cj 6=xj

fcj
=

s
∑

j=1

(1− fxj
) (2.5)

where fxj
is the relative frequency of category xj within C.

For this extension, even if the category xj of one object corresponding to the attribute
Aj has not the highest frequency, this frequency is taken into account in the repre-
sentation of the mode of the cluster to which this object belongs. So, we will consider
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this frequency and the matching between the object and the mode respectively to
this attribute Aj will be (1− fxj

) instead of zero comparing to the standard K-modes
method.

Example 2.2 Let’s continue with our example (Example 2.1). Suppose that the
same first partition is considered which is initialized randomly as follows for K =
3: C1 = {X1}, C2 = {X2}, and C3 = {X3}.

The three cluster modes or K representatives, one for each cluster are defined by:
Q1=({(A, 1), (B, 0), (C, 0)};{(High, 1), (Low, 0), (Average, 0)};{(F inance, 1),
(Marketing, 0), (Accounts, 0)}).
Q2=({(A, 0), (B, 1), (C, 0)};{(High, 0), (Low, 1), (Average, 0)};{(F inance, 1),
(Marketing, 0), (Accounts, 0)}).
Q3=({(A, 0), (B, 0), (C, 1)};{(High, 0), (Low, 0), (Average, 1)};{(F inance, 0),
(Marketing, 1), (Accounts, 0)}).

For each object Xi, i ∈ 4, ..., 7, compute the dissimilarities: d(Xi, Ql), l = 1,...,3
using Equation 2.5.

• For example for the object X4 the three dissimilarity measures are computed as
follows:
d(X4, Q1) =

∑3
j=1(1− fx4,j

)
= 1 + 1 + 1 = 3.

d(X4, Q2) =
∑3

j=1(1− fx4,j
)

= 1 + 1 + 1 = 3.
d(X4, Q3) =

∑3
j=1(1− fx4,j

)
= 0 + 0 + 1 = 1.

So, X4 is assigned to C3, as d(X4, Q3) is minimal.

Continuing the same process for the other objects.

• X5 is assigned to C2, as d(X5, Q2) is minimal.

• X6 is assigned to C1, as d(X6, Q1) is minimal.

• X7 is assigned to C2, as d(X7, Q2) is minimal.

We obtain:
C1 = {X1, X6}
C2 = {X2, X5, X7}
C3 = {X3, X4}



Chapter 2: K-modes method as Clustering Method 30

with updated representatives:
Q1=({(A, 1), (B, 0), (C, 0)};{(High, 1),(Low, 0),(Average, 0)};{(F inance, 1),
(Marketing, 0),(Accounts, 0)}).
Q2=({(A, 0), (B, 1), (C, 0)};{(High, 0),(Low, 1),
(Average, 0)};{(F inance, 1/3),(Marketing, 1/3),(Accounts, 1/3)}).
Q3=({(A, 0), (B, 0), (C, 1)};{(High, 0),(Low, 0),
(Average, 1)};{(F inance, 0),(Marketing, 1/2),(Accounts, 1/2)}).

Recalculate the dissimilarity measures for each object.

Objects have not changed clusters : The partition is stable.

Recently, another extension of K-modes method was introduced [33] which considers
the relative frequencies of attribute values in each cluster mode.

• Cluster’s mode:

The mode of C is defined by Q = (q1, ..., qs), with qj = (cj , fcj
)|cj ∈ Dj , where

fcj
is the relative frequency of the highest frequency category of attribute Aj

within C.

• Dissimilarity measure:

If we consider that dj is the dissimilarity measure respectively to only one
attribute Aj.

dj(X, Q) =

{

1 − f(Aj = qj) if xj = qj

1 if xj 6= qj
(2.6)

where f is the relative frequency of xj in C .
So, the dissimilarity measure between one object X and one cluster’s mode Q
will be defined as follows:

d(X, Q) =
s

∑

j=1

dj(X, Q) (2.7)

Here, we have just added the frequency, corresponding to each attribute’s value of the
object,which will be taken into account in the representation of the clusters’ modes.
Once, this frequency is mentioned and when the object and the mode have the same
attribute’s value, instead of the zero value, this measure dj will be equal to one minus
this frequency’s value.
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2.3.5 K-modes method under uncertainty

Standard versions of the K-modes method and its extensions give good results in a
context in which everything is known with certainty. However, the reality is con-
nected to uncertainty and imprecision by nature. Such uncertainty may badly affect
the classification performance. However, a good classifier must be able to predict the
object’s class value even when information concerning the object is imperfect.

So, the K-modes is inadequate and badly adapted to ensure its role of classifica-
tion in an environment characterized by a lot of uncertainty and imprecision. That
is why searches are oriented to improvement and extension of this method, in order
to adapt it to this kind of environment.

The idea is to combine theories managing uncertainty and imprecision with the
K-modes method, these theories are probability theory, fuzzy set theory, belief func-
tion theory and possibilistic theory.

Hence, this adaptation of K-modes method to an uncertain environment has led
to a new approach, and the fuzzy K-modes method [32] was developed. In this
approach, one object does not belong exclusively to a well defined cluster. In fact, it
may belong to several clusters with different membership degrees. This extension is
briefly presented in what follows.

Fuzzy K-modes method

Fuzzy K-modes method deals with cognitive uncertainty. It can take into account
imprecision and fuzziness in object class memberships using fuzzy sets and member-
ship degrees.

Fuzzy K-modes approach is a method of clustering which allows one piece of data
to belong to two or more clusters. It uses fuzzy partitioning such that a data point
can belong to all groups with different membership grades between 0 and 1.
It is based on minimization of the following objective function (its model is the con-
strained optimization problem):

Minimize P (W, Q) =
k

∑

l=1

n
∑

i=1

wα
i,ld(Xi, Ql) (2.8)

Subject to:
0 ≤ wi,l ≤ 1, 1 ≤ i ≤ n, 1 ≤ l ≤ k (2.9)
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k
∑

l=1

wi,l = 1, 1 ≤ i ≤ n (2.10)

and

0 <
n

∑

i=1

wi,l < n, 1 ≤ l ≤ k (2.11)

Where k(≤ n) is a known number of clusters, α, any real number greater than 1,
is weighting exponent, wi,l is the degree of membership of Xi in the cluster Cl, Xi

is the ith of s-dimensional measured data (s is the number of attributes), Ql is the
s-dimension mode of the cluster Cl, and d is the simple matching distance expressing
the similarity between any measured data and the mode. Fuzzy partitioning is carried
out through an iterative optimization of the objective function shown above, with the
update of membership wi,l by:

wi,l =















1 if Xi = Ql (1)
0 if Xi = Qh, h 6= l (2)
wi,l = 1

∑K

h=1
[

d(Xi,Ql
d(Xi,Qh

]
1

α−1
, if Xi 6= Ql and Xi 6= Qh, 1 ≤ h ≤ k (3)

(2.12)

(1): It means that the object Xi has the same attributes’ values than the mode Ql.
(2): When the attributes’ values of the object Xi are the same than another mode
Qh 6= Ql.
(3): The object Xi is different (the attributes’ values) from all clusters’ modes.

The cluster’s mode Ql is computed as follows:

Ql =

∑n
i=1 wα

i,lXi
∑n

i=1 wα
i,l

(2.13)

The algorithm is composed of the following steps:

1. Choose an initial point Q(1). Determine W (1) (using Equation 2.12) such that
P (W, Q(1)) is minimized. Set t = 1.

2. Determine Q(t+1) (see Equation 2.13) such that P (W (t), Q(t+1)) is minimized. If
P (W (t), Q(t+1)) = P (W (t), Q(t)) < e then STOP; otherwise return to step 3.

3. Determine W (t+1) such that P (W (t+1), Q(t+1)) is minimized. If P (W (t+1), Q(t+1))
= P (W (t), Q(t+1)) < e then STOP; otherwise set t = t + 1 and go to step 2.

The fuzzy K-modes algorithm produces a fuzzy partition matrix W. We obtain the
cluster membership from W as follows. The record Xi was assigned to the lth cluster
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if wi,l = max1≤h≤k{wi,h}. If the maximum was not unique, then Xi was assigned to
the cluster of first achieving the maximum.

Remarks:

As presented in the first chapter of this work, the belief function theory as inter-
preted in the Transferable Belief Model (TBM) [50, 54, 56, 57] provides a mathemat-
ical tool to treat subjective, and personal judgments on the different parameters of
any classification problems and can be easily extended to deal with objective prob-
abilities. It expresses partial beliefs in a much more flexible way than probability
functions do. Besides, it permits to handle partial or even total ignorance concerning
classification parameters.

This theory offers interesting tools to combine several pieces of evidence [47, 49,
52], like the conjunction and the disjunction rules of combination, and decision mak-
ing is solved through the pignistic transformation [60].

Inspite of its several advantages [59, 60], the belief function theory had not yet
been applied to the K-modes method.

Hence, the belief function theory provides a convenient tool to handle uncertainty
in any clustering methods.

2.4 EVCLUS as Belief Clustering Method

We have presented in the previous section one extension of K-modes method within
uncertainty context, using fuzzy theory in order to adapt it to this kind of environ-
ment.

Belief function theory as a theory managing uncertainty was applied to clustering
problem and that is the purpose of these works [16, 17, 18].

A novel approach was presented to clustering proximity data, based on the theory
of belief functions. This approach is called evidential clustering (EVCLUS) [16]. The
allocation of objects to clusters is performed using the concept of basic belief assign-
ment (bba), whereby a mass of belief is assigned to each possible subset of clusters.
Having assigned a bba to each object, it is possible to compute, for each two objects
the plausibility that they belong to the same cluster.
It was shown that the possibility to assign masses not only to single clusters but also



Chapter 2: K-modes method as Clustering Method 34

to subsets of clusters or to the empty set makes the proposed partitioning model more
general than the classical hard or fuzzy ones.

Another proposed approach [18] extended the first one from real valued to interval-
valued dissimilarity data. It is proposed to relate the upper and lower dissimilarities
to two quantities: the plausibility that the objects belong or not to the same cluster.
The idea is as follows: if an observed interval-valued dissimilarities matrix is given,
we have to find a credal partition. It means that this method attempts to find one
configuration of points that match as well as possible the input dissimilarities. To
this end, a stress function is introduced and it is at minimize.

Note that, these works deal with only the uncertainty related to the clusters’
membership of the objects and not to the attributes values which characterize them.

2.5 Conclusion

In this chapter, we have presented the basic concepts of the K-modes method. The
different parameters of this method are discussed and then, we have given an example
to explain the K-modes procedure from a given data set.

K-modes method is considered as one of the most known clustering techniques es-
pecially in artificial intelligence applications where attributes have categorical values.

However, this method has some drawbacks. So, two extensions [33, 40] of this
method were developed to deal especially with the problem of non-uniqueness of the
modes within a certain context.

The K-modes method was developed to extend the K-means one to handle cate-
gorical data sets. When, we are in presence of mixed numerical and categorical data,
the K-prototypes method [29] which integrates the K-means and the K-modes pro-
cesses, is recommended to use in order to cluster this type of data.

Through this presentation,we conclude that, despite the advantages provided by
K-modes method and the improvements given as fuzzy K-modes, many researches are
still needed in order to deal with the uncertainty especially the cognitive one, that
many occur in the different parameters related to any classification problem.

The belief function theory as understood in the Transferable Belief model (TBM)
seems to be one of the appropriate formalism to cope with this kind of uncertainty. In



Chapter 2: K-modes method as Clustering Method 35

spite of its several advantages, the belief function theory had not yet been applied to
the K-modes method to handle uncertainty problem. However, it was already applied
to clustering problem as a theory managing uncertainty with classification problem
in [16, 17, 18].

Thus, our objective will be the adaptation of this theory to the K-modes method
and to develop what we call a belief K-modes method that will be presented in a
following part of this work.



Part II

Belief K-modes Method
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Chapter 3

Belief K-modes Method

3.1 Introduction

K-modes approach is considered as an efficient clustering method for classification
problem. That’s why, it is widely applied to a variety of problems in artificial intelli-
gence. Despite its accuracy when precise and certain data are available, the standard
K-modes algorithm shows serious limitations when dealing with uncertainty. Such
uncertainty may affect the parameters of any classification problem and can appear
either in the construction or in the classification phase as discussed in chapter 2.

In this standard method, we have dealt with training sets characterized by cer-
tain training objects while their attributes’ values are supposed to be known with
certainty. However, uncertainty may appear in attributes of instances belonging to
the training set that will be used to ensure the construction of clusters. Faced to
uncertain parameters, the standard method seems to be unable to provide significant
classification results.

To overcome this limitation, we propose as solution to develop what we call a belief
K-modes method, a new clustering technique based on the K-modes method within
the belief function theory in order to deal with uncertainty that may pervade any
classification problems. This theory for uncertainty representation, as understood in
the Transferable Belief Model (TBM), provides a convenient framework for managing
and manipulating uncertain knowledge, especially the cognitive one.

This chapter is consecrated to the presentation of this new approach under un-
certainty. We first give some motivations to develop this method for handling this
kind of uncertainty. Then, we define the new structure of the training set within the

37
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belief function framework and the different parameters leading to the construction
of clusters namely the computation of the cluster modes and the dissimilarity mea-
sure to use in such a case. Once the clusters are obtained, the next step which is
the classification of new instances that may be uncertain will be detailed. Finally,
the algorithm of the belief K-modes method (BKM) with an illustrative example are
reported.

3.2 Definition and motivations

Our belief K-modes method which is based on an extension of the K-modes algorithm
while taking into account the uncertainty of some parameters related to the classifica-
tion problem using the belief function theory for building clusters. A belief K-modes
method is a K-modes method in an uncertain environment. The uncertainty will be
represented and handled by the means of the belief function theory.

Contrary to the standard and non-standard K-modes methods (fuzzy K-modes
method) and also the belief clustering method (EVCLUS) where object attribute
values in the training sets are known with certainty, in the belief K-modes method,
these values may be affected with uncertainty. In the first part, we deal with un-
certain training sets, and in the second part, we make our approach able to classify
instances that may have some or even all attributes with uncertain values. So, such
uncertainty can appear either in the building of the clusters or the classification phase
when we have a new object to classify.

Dealing with uncertainty is represented through belief functions in attribute values
leads to two main problems:

1. The strategy to apply for computation of the cluster modes in each step of the
algorithm. In other words, how to compute attributes’ values of the cluster
modes.

2. The dissimilarity measure, that means, which distance measure will be used
where objects may be characterized by uncertain attributes’ values and this
uncertainty is represented by the belief function theory.

Hence, the two parameters useful for the BKM method have to be defined, in such
a context within uncertainty, such as the strategy to compute the cluster modes and
the distance measure.
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The main hypotheses of our work can be summarized as follows:
First, we have to define the structure of the training set under this uncertain frame-
work. Second, we must determine a new distance measure within uncertain environ-
ment and the strategy to calculate the cluster modes that should be defined.

It consists in the construction of clusters from a training set of objects using
successive refinements. This set is the basis of the construction of these clusters and
consequently to the classification of new instances. Thus, our approach deals with
uncertainty in both building and classification procedures.
Note that all over this report, we only deal with categorical attributes.

3.3 Objectives

The objective of this work is to develop a new concept that we will call belief K-modes
method. In addition to the objectives of the standard K-modes method, the belief
K-modes one aims at ensuring two major objectives:

• Building K clusters from a given set of training instances characterized by un-
certainty on their attributes’ values.

• Ensuring the classification of new instances that may be described by uncertain
or even unknown attributes’ values.

This new approach is based on both the K-modes method and the belief function
theory in order to cope with uncertainty problem.

3.4 Notations

We will use the following notations, in this work:

• T: a given data set of objects.

• Xi: an object or instance, i = 1, ..., n.

• A = {A1, ..., As}: a set of s attributes.

• Θj: the frame of discernment involving all the possible values of the attribute
Aj related to the classification problem, j=1,...,s.

• Dj : the power set of the attribute Aj ∈ A.

• xi,j: the value of the attribute Aj for the object Xi.
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• mΘj{Xi}: expresses the beliefs on the values of the attribute Aj corresponding
to the object Xi.

• mi(cj): denoted the bba given to cj ⊆ Θj relative to the object Xi.

• ml(cj): denoted the bba given to cj ⊆ Θj relative to the mode Ql of the cluster
Cl.

3.5 Structure of training set

3.5.1 Definition

Generally, objects that belong to the training set are known with accuracy and the
value of each one of its attributes is certain.

The structure of the training set may be different from the traditional one, due
to the uncertainty introduced here related to training instances’ attributes. So, this
structure will change. Instead of assigning for each attribute of an object a unique
value, it will be labeled by a bba or mass function expressing a belief on the actual
attribute value of objects.
Unlike the standard training set, we assume it may contain data where there is some
uncertainty in the knowledge of the attribute values. In other words, each attribute
of the training instances may be uncertain or even unknown.

We propose to represent the uncertainty on the attributes values of the training
instances by a basic belief assignment (bba) defined on the set of possible values
considered in the classification problem. This bba, generally given by an expert (or
several experts), represents the opinions-beliefs of this expert about the actual values
of the attributes for each object in the training set.

Among the advantages of working under the belief function framework, we notice
that the two extreme cases, total ignorance and total knowledge which are easily ex-
pressed [45].

Example 3.1 This is an example, to illustrate our new structure of the training
set T within the belief function framework (see Table 3.1). We assume there are
seven objects Xi(i ∈ {1, ..., 7}). Assume we want to classify these objects by taking
into account their attributes. The training set instances are characterized by three
categorical attributes defined as follows:
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Table 3.1: Structure of training set relative to BKM
Objects Qualification Income Department
X1 A High mΘ3{X1}
X2 B Low mΘ3{X2}
X3 C Average mΘ3{X3}
X4 C Average mΘ3{X4}
X5 B Low mΘ3{X5}
X6 A High mΘ3{X6}
X7 B Low mΘ3{X7}

• Qualification with possible values {A, B, C}.

• Income with possible values {High, Low, Medium}.

• Department with possible values {F inance, Accounts, Marketing}.

For each attribute Aj for an object Xi belonging to the training set T, we assign
a bba mΘj{Xi} expressing beliefs on its assigned attributes’ values. These functions
are defined respectively on the same frame of discernment Θj{j = 1, 2, 3}
Θ1 = {A, B, C}
Θ2 = {High, Low, Average}
Θ3 = {F inance, Accounts, Marketing}

If we consider that only the department attribute is known with uncertainty and
the two other attributes (qualification and income) are known with certain and unique
value. The structure of the data set T is be defined in Table 3.1.

For example, if we have for the object X2: mΘ3{X2}(Marketing) = 0.8 and
mΘ3{X2}(Θ3) = 0.2. It means that 0.8 of beliefs are exactly committed to the Mar-
keting department, whereas 0.2 is assigned to the disjunction of attribute values (de-
partment nature), i.e., 0.2 is assigned to the whole frame of discernment (ignorance).

3.5.2 Special cases

Within the belief function framework, two extreme cases such as the total ignorance
and the total knowledge regarding training instances attributes’ values can be
easily expressed.

1. When the attributes’ values of the object Xi are perfectly known and are unique,
it will be represented by a certain basic belief assignment (see Section 1.3.5)
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having the only focal element this attribute value. This case is referred to as
total knowledge and corresponds to the classical ’certain’ context.

2. When the expert is not able to give any information about the instances espe-
cially about attribute values. Thus, the bba will be a vacuous basic belief
assignment (see Section 1.3.1). This case is referred to as total ignorance.

3.6 BKM parameters

3.6.1 Introduction

As with standard K-modes method, building clusters within BKM needs the definition
of its fundamental parameters, namely, cluster modes and the dissimilarity measure.
These parameters must take into account the uncertainty encountered in the training
set and that pervades the attribute values of training objects.

3.6.2 How to compute the cluster modes

Due to the uncertainty and contrary to the traditional training set where it includes
only certain instances, the structure of our training set will be represented via bba’s
respectively to each attribute relative to each object, this training set offers a more
generalized framework than the traditional one.

Two extreme cases should be noted, when one attribute is known with certainty,
it will be represented by a certain belief function (see Equation 1.29), whereas when
it is missing we will use the vacuous belief function (see Equation 1.20).

Within this structure of training set, our belief K-modes method cannot use the
strategy used by the standard method which is the frequency-based method to update
modes of clusters.

One of the fundamental parameters in the K-modes method (and consequently
in a belief K-modes method) is the strategy to calculate the cluster modes. This
measure is applied in order to compute at each step the attribute values of the cluster
modes.

If we consider that objects belonging to one cluster are sources of information
which provide distinct pieces of evidence, we can combine them in at least two ways
as conjunctively or disjunctively using respectively the conjunctive or disjunctive rules
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of combination.

An intuitive definition of the strategy to calculate the cluster modes within the
belief function theory context will be the conjunctive rule of combination generally
used as an aggregate operator in the belief function framework combining between
two or several bba’s.

This operator is particularly suitable when distinct sources provide pieces of ev-
idence respectively to the same object. However, in our case, the induced pieces of
evidence are related to different objects’ attributes. So, the conjunctive (even dis-
junctive) rule is not appropriate.

Thus, our problem is as follows: what is the appropriate function to use in or-
der to obtain a single representation value of different bba’s pertaining to all objects
belonging to one cluster. To perform this task, some functions can be used such as
median, mean, ...

Within this uncertain environment especially belief function framework, we should
first define how the attributes’ values of each cluster’s mode will be represented and
what is the appropriate function used to express our belief corresponding to the at-
tributes’ values. We have take into account all distinct bba’s of different objects
belonging to one cluster.

Thus to solve our problem, the idea is to apply the mean operator to this uncer-
tain context due to its efficiency and its simplicity.

Note that using the mean operator offers many advantages since it satisfies these
properties namely the associativity, the commutativity and the idempotency. The
latter property is the most important one in our case (it is not satisfied by the con-
junctive rule of combination). When we have two or more objects belonging to one
cluster which provide the same bbm’s corresponding to any uncertain attribute, their
cluster’s mode should be characterized by these same bbm’s (provided by its objects).
In fact by applying this operator (the mean operator), we will keep the same bbm’s
provided by the objects and these values will characterize the attribute’s value of
their cluster’s mode.

So, the mean operator permits combining bba’s respectively to each attribute pro-
vided by all objects belonging one cluster.
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Since, this operator will be applied in a belief framework, we call it the belief
mean.

In standard version of the K-modes method, the mode of cluster is not generally
unique, it means that more than one mode’s value can be chosen. This drawback is
known as the non-uniqueness problem. Note that using the averaging rule (the
belief mean) will solve this problem.

Given a cluster Cl = {X1, ..., Xp} of objects, with Xi = (xi,1, ..., xi,s), 1 ≤ i ≤ p,
1 ≤ l ≤ k. Then, the mode of Cl is defined by : Ql = (ql,1, ..., ql,s), with:

ql,j = {(cj, ml(cj))|cj ∈ Dj}, 1 ≤ j ≤ s (3.1)

where ml(cj) is the relative bba of attribute value cj within Cl.

ml(cj) =

∑p
i=1 mi(cj)

|Cl|
(3.2)

with Cl = {X1, X2, ..., Xp} and |C| is the number of objects in Cl. ml(cj) expresses
the belief about the value of the attribute Aj corresponding to the cluster mode Ql.

Example 3.2 If we consider the same frame of discernment as in previous examples,
and the bba’s corresponding to the two objects X1 and X2 which form one cluster are
respectively as follows:
mΘ{X1}({F inance}) = 1
mΘ{X2}({F inance, Marketing}) = 0.5, mΘ{X2}({Accounts}) = 0.5
The averaging rule is applied and the results are:
m({F inance}) = 0.5
m({Accounts}) = 0.25
m({F inance, Marketing}) = 0.25
It represents the bba’s values of the cluster mode which is composed by these two
objects X1 and X2.

3.6.3 Dissimilarity measure

We have to define one dissimilarity measure which verifies the following basic prop-
erties for any distance measures. So, we have studied many distance measures under
the belief function framework which will be detailed in following sections. Firstly, let
us introduce some basic concepts for distances:
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Definition 3.1 A metric distance defined on the set ξ is a function:
d : ξ * ξ → <

(A,B) 7→ d(A,B),
that satisfies the following requirements for any A and B of ξ:

1. Non-negativity : d(A,B) ≥ 0. d is non negative number.

2. Non-degeneracy : d(A,A) = 0. The distance of an object to itself is 0.

3. Symmetry : d(A,B)=d(B,A). The distance is a symmetric function.

Note that other properties may be mentioned but are not interesting in our case.
Many clustering algorithms operate on a dissimilarity matrix which stores a collection
of proximities that are available for all pairs of n objects belonging to a data set to be
clustered. This dissimilarity matrix is often represented by n-by-n d(X1, X2) table.
Where d(X1, X2) is the measured difference or dissimilarity between two objects X1

and X2 verifying all properties defined before. The most used measure distance
namely Euclidean distance is discussed throughout this section.

Euclidean distance

In this section, we will discuss how object dissimilarity can be computed for objects
described by numerical variables. These dissimilarity data can later be used to com-
pute clusters of objects.
The most popular distance measure is Euclidean distance which is defined as:

d(X1, X2) =
√

(x11 − x21)2 + (x12 − x22)2 + ... + (x1s − x2s)2 (3.3)

where X1 = (x11, x12, ..., x1s) and X2 = (x21, x22, ..., x2s) are two s-dimensional data
objects.
This distance should satisfy the mathematic requirements of a distance function pre-
sented by Definition 3.1.
Within belief function framework, we define the belief euclidean distance as follows:

d(X1, X2) =

√

√

√

√

√

s
∑

j=1

∑

cj∈2Θj

(m1(cj)− (m2(cj))2 (3.4)

where X1 = ~m1 and X2 = ~m2 are two s-dimensional data objects.
~m1=(m1(A1), m1(A2), ..., m1(As)) and ~m2=(m2(A1), m2(A2), ..., m2(As)).
And mi = {mi(cj)|cj ∈ 2Θj , 1 ≤ j ≤ s}, i = {1, 2}.
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This measure provides one mean to compute the dissimilarity for objects described
by bba’s respectively to their attributes’ values (s is the number of attributes). How-
ever, this adapted measure is not appropriate in our case, since, it gives a biased
result where all the subsets of Θ have the same bbm’s without taking into account
similarity among them as proved by the following counter example.

Counter-example 3.1 For example, the subset {Finance} is ”closer” to
{Finance,Accounts} than is {Marketing}. In particular, if we consider three bodies of
evidence, such as that the body of evidence is defined by Equation(1.3):

(ϕ,X)={[(Finance),0.8], [Θ,0.2]}.
(ϕ,Q1)={[(Finance,Accounts),0.8], [Θ,0.2]}.
(ϕ,Q2)={[(Marketing),0.8], [Θ,0.2]}.

If we consider the Euclidean distance, then we have d(X,Q1)=d(X,Q2)=1.13, even
if we expect d(X,Q1) < d(X,Q2).

In fact, the dissimilarity measure should take into account the bbm’s for each attribute
for all training set objects, and compute the distance between any object and each
cluster mode (represented by bba’s). The used measure must be defined that describes
the similarity (or likeness) between the subsets of Θ. The requirements for this
distance d are then:

• d must define a metric distance.

• d must take into account the similarity among the subsets of Θ.

• d must satisfy d(m, n1) < d(m, n2), if n1 is closer to m than n2 is.

Several works are concentrated on the definition of a distance between two basic belief
assignments (bba’s) within belief function theory framework. So, a very important
number of measures were developed which can be classified into two kinds which are
detailed as follows.

Distance measures based on pignistic transformation

The first category of distance measures within belief function context are those based
on the pignistic transformation.
For these distances [5, 22, 61, 64], one unavoidable step is the pignistic transformation
of the bba’s (transformation from the power set to the frame of discernment).
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This kind of distance may lose information given by the initial bba’s. Besides, we
can obtain the same pignistic probabilities by applying the pignistic transformation
on two different bba’s. So, the distance between the two obtained results does not
reflect the actual similarity between the starting bba’s values.

Counter-example 3.2 Let m1 and m2 be two bba’s defined on the same frame of
discernment ΘDepartment = {F inance, Accounts, Marketing}.

The two bba’s are respectively:
mΘ{X1}({F inance}) = 0.2, mΘ{X1}({F inance, Marketing}) = 0.3,
mΘ{X1}({Accounts, F inance}) = 0.2, mΘ{X1}({ΘDept}) = 0.3

mΘ{X2}({F inance}) = 0.2, mΘ{X2}({F inance, Marketing}) = 0.2,
mΘ{X2}({Marketing}) = 0.1, mΘ{X2}({Accounts}) = 0.05, mΘ{X2}({ΘDept}) =
0.45

The pignistic transformation is applied and the results are:
BetP1({F inance}) = 0.45, BetP1({Accounts}) = 0.2, and BetP1({Marketing}) =
0.35
BetP2({F inance}) = 0.45, BetP2({Accounts}) = 0.2, and BetP2({Marketing}) =
0.35

If we will consider the two following distinct belief functions and after applying
the pignistic transformation, the obtained probabilities can be the same. Hence, the
distance between the two results computed via the pignistic transformation when it
is equal to zero does not reflect the real distance’s value between the initial belief
distributions which are different. This explains the fact that this kind of distance is
not suitable within this context.

Distances measures between bba’s

The second kind of belief distance measures are those which are applied directly to
bba’s and not to the pignistic probabilities. These measures are defined on the power
set [11, 24].

The second one developed by Fixen and Mahler [24] is defined as follows:
Let (β1, m1) and (β2, m2) be two bodies of evidence (see Section 1.2.3), the distance
between these two bodies of evidence is defined by:

d2
α(β1, β2) = αq(β1, β1)− 2α(β1, β2) + αq(β2, β2) (3.5)
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where αq(β1, β2) is the scalar product defined as follows:

αq(β1, β2) =
∑

A∈β1

∑

B∈β2

m1(A)m2(B)
q(A∩B)

q(A)q(B)
(3.6)

Assuming q is uniform q(A) = |A|/|Θ|, for all A subsets of Θ. Equation 3.6 reduces
to:

αq(β1, β2) =
∑

A∈β1

∑

B∈β2

m1(A)m2(B)|Θ|
|A∩ B|

|A|.|B|
(3.7)

Similarity matrix D defining to this distance measure is then given by its elements:

Dα(A, B) =
|A ∩B|

|A|.|B|
, ∀ A, B ∈ 2Θ (3.8)

The result is a pseudo-metric, since the condition of non-degeneracy of one distance
metric (see Definition 3.1) is not respected, this means that (β1, m1) 6= (β2, m2) exists
such that dα(β1, β2) = 0.

Our idea is to adapt the belief distance defined by [11] to this uncertain clustering
context to compute the dissimilarity between any object and each cluster mode since
it lies in the non-degeneracy which not respected by the previous presented distance
and it verifies all presented properties in Definition 3.1.
This distance measure takes into account both the bba’s distributions provided by
the objects and one similarity matrix D which is based on the cardinalities of the
subsets of the corresponding frame of one attribute and those of the intersection and
union of these subsets.

The elements of the matrix D satisfy the follow equation :

D(A, B) =
|A ∩ B|

|A ∪ B|
, A, B ∈ 2Θ (3.9)

Let m1 and m2 be two bba’s on the same frame of discernment Θ, the distance
between m1 and m2 is :

d(m1, m2) =

√

1

2
( ~m1 − ~m2)D( ~m1 − ~m2) (3.10)

D is an 2Θ × 2Θ matrix whose elements are defined by Equation 3.9, another way to
write d is:

d(m1, m2) =

√

1

2
(‖ ~m1‖2 + ‖ ~m2‖2 − 2 < ~m1, ~m2 >) (3.11)
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where < ~m1, ~m2 > is the scaler product defined by:

< ~m1, ~m2 >=
2
Θj

∑

w=1

2
Θj

∑

z=1

m1(Bw)m2(Bz)
|Bw ∩ Bz|

|Bw ∪ Bz|
(3.12)

with Bw, Bz ∈ D for w,z = 1,...,2Θ, and ‖ ~m ‖2 is then the square norm of ~m :
‖~m‖2 = < ~m, ~m >
Thus, the dissimilarity measure between any object Xi and each mode Q can be
defined as follows:

D(Xi, Q) =
s

∑

j=1

d(mΘj{Xi}, m
Θj{Q}) (3.13)

where mΘ{Xi} and mΘ{Q} are the relative bba of the attribute Aj provided by
respectively the object Xi and the mode Q.

3.7 The BKM algorithm

If we will consider the proposed distance measure, detailed in the previous section,
and the averaging rule (the belief mean) for computation the modes of the clusters and
applying the K-modes method, we will obtain what we call belief K-modes method
to handle categorical data within uncertainty represented by belief function theory
concepts.

3.7.1 Building phase

The BKM algorithm has the same skeleton as standard K-modes method. The dif-
ferent construction steps of our approach are described as follows:

1. Giving K, the number of clusters to form.

2. Partition objects of the training set T in K nonempty subsets.

3. Compute seed points as the clusters’ modes of the current partition using the
averaging rule of combination (see Equation 3.2).

4. Assign each object to the cluster with the nearest seed point after computing its
distance measures respectively to all clusters’ modes defined in Equation 3.13.

5. Go back to step 3, stop when no more new assignment. In other word, all
objects have no changed clusters.
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Table 3.2: Data set T relative to BKM
Objects Qualification Income Department
X1 A High mΘ3{X1}
X2 B Low mΘ3{X2}
X3 C Average mΘ3{X3}
X4 C Average mΘ3{X4}
X5 B Low mΘ3{X5}
X6 A High mΘ3{X6}
X7 B Low mΘ3{X7}

Example 3.3 Let us illustrate our method by a simple example. Assume that a firm
wants to group its staff by taking into account their attributes.
Let T be a training set (see Table 3.2) composed of seven instances characterized by
three categorical attributes:

• Qualification with possible values {A, B, C}.

• Income with possible values {High, Low, Average}.

• Department with possible values {F inance, Accounts, Marketing}.

For each attribute Aj for an object Xi belonging to the training set T, we assign a bba
mΘj{Xi} expressing beliefs on its assigned attributes values, defined respectively on:
Θ1 = {A, B, C}
Θ2 = {High, Low, Average}
Θ3 = {F inance, Accounts, Marketing}.

If we consider that only the department attribute is known with uncertainty. The
structure of the data set T is defined as in Table 3.2.

Where:

• mΘ3{X1}({F inance}) = 0.5 ; mΘ3{X1}({F inance, Accounts}) = 0.3
and mΘ3{X1}(Θ3) = 0.2

• mΘ3{X2}({F inance}) = 0.8 and mΘ3{X2}(Θ3) = 0.2

• mΘ3{X3}({Marketing}) = 0.8 ; mΘ3{X3}({F inance, Accounts}) = 0.1
and mΘ3{X3}(Θ3) = 0.1

• mΘ3{X4}({Accounts}) = 0.8 and mΘ3{X4}(Θ3) = 0.2
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• mΘ3{X5}({Marketing}) = 0.8 and mΘ3{X5}(Θ3) = 0.2

• mΘ3{X6}({F inance, Accounts}) = 0.8 and mΘ3{X6}(Θ3) = 0.2

• mΘ3{X7}({Accounts}) = 0.8 and mΘ3{X7}(Θ3) = 0.2

Let us now try to construct the clusters using our approach relative to the training set
T. The first step is to specify K the number of clusters to form, and select the initial
modes.

Suppose that K = 2, 2-partition of T is initialized randomly as follows: C1 = {X1},
and C2 = {X2}.

For each object Xi, i ∈ 3, ..., 7, compute the dissimilarities: d(Xi, Ql), l = 1,...,2,
using the dissimilarity measure defined by Equation 3.13.

In order to compute the distance measures, we have first to define the matrix D
that describes the similarity between the subsets of Θ3, its elements are calculated by
Equation 3.9.
Note that the Finance department is represented by F, Accounts by Ac and Marketing
by M.
D is defined as follow:







































∅ F inance Accounts Marketing F, Ac F, M Ac, M Θ

∅ 0 0 0 0 0 0 0 0

F inance 0 1 0 0 1/2 1/2 0 1/3

Accounts 0 0 1 0 1/2 0 1/2 1/3

Marketing 0 0 0 1 0 1/2 1/2 1/3

F, Ac 0 1/2 1/2 0 1 1/3 1/3 2/3

F, M 0 1/2 0 1/2 1/3 1 1/3 2/3

Ac, M 0 0 1/2 1/2 1/3 1/3 1 2/3

Θ 0 1/3 1/3 1/3 2/3 2/3 2/3 1







































We have to compute the distance measures relatively to all objects {X3, X4, X5, X6, X7}

corresponding to the 2 initial modes.

Let us now compute the distance measures of the object X3 over the two clusters’

modes by the following equation (see Equation 3.13).
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D(X3, Ql) =
∑3

j=1 d(mΘj{X3}, mΘj{Ql}), for l = {1,2}.

• For l=1

D(X3, Q1) =
∑3

j=1 d(mΘj{X3}, mΘj{Q1})

– For j=1: This attribute is known with certainty, so our belief dissimilarity

measure is equivalent to the simple matching measure (see Equation 2.2).

The object and the cluster mode have different values for this attribute (A

6= C), then d=1.

– For j=2: It is the same, the income attribute is a certain attribute. d=1,

since High 6= Average.

– For j=3:

To simplify the expression, we will replace mΘ3{X3} by m3 and mΘ3{Q1}

by m1.

d(m3, m1) =
√

1
2
(‖ ~m3‖2 + ‖ ~m1‖2 − 2 < ~m3, ~m1 >)

where ‖ ~m3‖2, ‖ ~m1‖2, and < ~m3, ~m1 > are the scaler products defined by

Equation 3.12:

‖ ~m3‖2 = (0.5 × 0.5 × 1) + (0.5 × 0.3 × 1/2) + (0.5 × 0.2 × 1/3) + (0.3 ×

0.3× 1) + (0.3× 0.5× 1/2) + (0.3× 0.2× 2/3) + (0.2× 0.2× 1) + (0.2×

0.5× 1/3) + (0.2× 0.3× 2/3) = 0.676

‖ ~m1‖2 = (0.8× 0.8× 1) + (0.8× 0.1× 0) + (0.8× 0.1× 1/3) + (0.1× 0.8×

0) + (0.1× 0.1× 1) + (0.1× 0.1× 2/3) + (0.1× 0.8× 1/3) + (0.1× 0.1×

2/3) + (0.1× 0.13× 1) = 0.727

< ~m3, ~m1 >= (0.5× 0.8× 0)+ (0.5× 0.1×1/2)+ (0.5× 0.1×1/3)+ (0.3×

0.8× 0) + (0.3× 0.1× 1) + ((0.3× 0.1× 2/3) + (0.2× 0.8× 1/3) + (0.2×

0.1× 2/3) + (0.2× 0.1× 1) = 0.178

So, d(m3, m1) =
√

1/2(0.727 + 0.676− 2× 0.178) = 0.723.

Hence, D(X3, Q1) = 1 + 1 + 0.723 = 2.723
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• For l=2

D(X3, Q2) =
∑3

j=1 d(mΘj{X3}, mΘj{Q2})

– For j=1: d=1 (B 6= C).

– For j=2: d=1 (Low 6= Average).

– For j=3: The same procedure is applied for this attribute as explained

before, and we obtain d=0.776.

As a result, we have D(X3, Q2) = 1 + 1 + 0.776 = 2.776

Thus, for the object X3, and after computing its distance measures over the two clus-

ters’ modes, it is assigned to C1 since d(X3, Q1) < d(X3, Q2). It is the same for the

fourth other objects.

After that all objects have been assigned to appropriate clusters, the following clus-

ters are obtained:

C1 = {X1, X3, X6}, and C2 = {X2, X5, X4, X7}.

Next, we have to update clusters’ modes. The same steps will be applied until no

object has changed clusters.

We finally obtain these clusters:

C1 = {X1, X3, X4, X6}, and C1 = {X2, X5, X7}, with the corresponding modes :

Q1 = ({(A, 0.5), (C, 0.5)}; {(H, 0.5), (Av, 0.5)};

{(F, 0.125), (Ac, 0.2), (M, 0.2), ({F, A}, 0.2), ({F, A, M}, 0.275)}), and

Q2 = ({(B, 1)}, {(L, 1)}; {(F, 0.267), (Ac, 0.267), (M, 0.266), ({F, A, M}, 0.2)})

3.7.2 Classification phase

Once the clusters’ construction is done, the classification of a new object that may be
characterized by uncertain attributes’ values is guaranteed by our method. We have
to assign it to the most similar cluster based on its distance corresponding to the ob-
tained clusters’ modes resulting from the construction phase using (see the previous
section) the distance measure defined by Equation 3.13.

In standard K-modes method, each instance to classify is represented by a s-uple
containing the different attribute values (e.g(Finance,High,A)), whereas, in the belief
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extension, an instance is described as follows:
For each attribute , we assign a bba to express the uncertainty on the real attribute’s
values. Given the set of attributes A which characterize the objects, we describe the
instance to classify by a vector of belief values ~m = (m(A1), .., m(As)). We notice
these two following extreme cases:

- An attribute Aj whose value is known with certainty has exactly one value cj ∈
DAj

, such that m(cj) = 1, and all other values c′j ∈ DAj
-{cj}, m(c′j) = 0. This is a

certain bba.
- An attribute Aj whose value is totaly ignored is represented as follows: m(Θ)=1,
and for all other values cj ∈ DAj

-{Θ}, m(cj) = 0.

In our approach, a new instance to classify may be certain or uncertain. The
BKM approach ensures the classification of instances whose attributes’ values are
represented via belief functions.

It is easy to classify a new uncertain instance within BKM approach, it consists
in computing the distance measures between this instance and all obtained clusters’
modes (the results of the building step) and assign it to the nearest one.

Example 3.4 Let us consider Example 3.3 and assume a new object X to classify
using the belief K-modes approach. More precisely, we will use the results obtained
from the building phase.

The standard instance Xh whose attributes’ values are certain will be represented
by the following table.

Table 3.3: A certain instance
mQualification mIncome mDepartment

∅ 0 ∅ 0 ∅ 0
A 1 High 1 Finance 1

B 0 Low 0 Accounts 0
C 0 Average 0 Marketing 0

A,B 0 High,Lo 0 Finance,Accounts 0
A,C 0 High,Average 0 Finance,Marketing 0

B,C 0 Low,Average 0 Accounts,Marketing 0
ΘQualification 0 ΘIncome 0 ΘDepartment 0

Once the two clusters are fixed (the final partition which is obtained by applying
the building procedure), and since our method consists in a generalization of standard
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K-modes method, it must be able to ensure the standard classification that means clas-
sify instances whose attributes’ values are certainly known.

If we would classify a new certain instance Xh as represented before in Table 3.3.
Note that the two clusters’ modes Q1 and Q2 were already obtained in the building
step in Example 3.3 as follows:
Q1 = ({(A, 0.5), (C, 0.5)}; {(H, 0.5), (Av, 0.5)};
{(F, 0.125), (Ac, 0.2), (M, 0.2), ({F, A}, 0.2), ({F, A, M}, 0.275)}), and
Q2 = ({(B, 1)}, {(L, 1)}; {(F, 0.267), (Ac, 0.267), (M, 0.266), ({F, A, M}, 0.2)})

Let us compute the dissimilarity measures of this object respectively to the two clus-
ters’ modes as follows (see Equation 3.11 and 3.13):
D(Xh, Ql) =

∑3
j=1 d(mΘj{Xh}, mΘj{Ql}), for l = {1,2}.

As a result, we assign it to the first cluster C1 since D(Xh, Q1) < D(Xh, Q2).

Suppose that we would classify a new object Xi characterized by certain and exact
values for its qualification and income attributes which are respectively the values B
and Low. However, there is some uncertainty in the value of the department attribute
as represented in Table 3.4.

Table 3.4: An uncertain instance
mQualification mIncome mDepartment

∅ 0 ∅ 0 ∅ 0

A 0 High 0 Finance 0.4
B 1 Low 1 Accounts 0

C 0 Average 0 Marketing 0
A,B 0 High,Lo 0 Finance,Accounts 0

A,C 0 High,Average 0 Finance,Marketing 0.3
B,C 0 Low,Average 0 Accounts,Marketing 0

ΘQualification 0 ΘIncome 0 ΘDepartment 0.3

As a result, we obtain that the new instance to classify has as distances respectively
to the two clusters (see Equation 3.11 and 3.13):
D(Xi, Q1) =

∑3
j=1 d(mΘj{Xi}, mΘj{Q1}) = 1.355, and

D(Xi, Q2) =
∑3

j=1 d(mΘj{Xi}, mΘj{Q2}) = 0.300.

So, this object is assigned to the second cluster C2 since D(Xi, Q2) < D(Xi, Q1).
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3.8 Conclusion

We have presented our method which consists in developing a new K-modes method
in an uncertain environment for partitioning categorical data bases. Our method is
based on the belief function theory in order to represent the uncertainty relative to
the parameters of the classification problem precisely about attributes’ values.

In this chapter, the belief K-modes approach was developed. We have exposed
what kind of uncertainty is handled by this approach as well as its different parame-
ters namely the computation of the clusters’ modes and the measure of dissimilarity
allowing to assign objects to appropriate clusters. Then, we have exposed the BKM
algorithm allowing the construction of such clusters.

Once clusters are built, the result will be used to classify new instances with
unknown attributes’ values. This task is known as the classification procedure. As
mentioned in the beginning of this chapter, uncertainty may pervade both the build-
ing and the classification steps.

In the next chapter, we will present the implementation for checking the perfor-
mance of our belief clustering method called BKM.

Then, we will show different results obtained from simulations and that have been
performed on real databases in this uncertain context.



Chapter 4

Implementation and simulation

4.1 Introduction

Implementing our belief K-modes approach (BKM) is important since it allows us to
have an idea concerning the feasibility of our proposed method.

In this chapter, we present the implementation of our new method, the belief
K-modes method (BKM). To this end, we have developed all programs in MATLAB
V6.5 .

Once the different programs are implemented, for checking the feasibility of our
approach regarding belief K-modes method and judging its performances, we have
performed several tests and simulations on several real databases obtained from the
U.C.I. repository [42]. Different results will be presented and analyzed in order to
evaluate our proposed method.

In fact, this chapter is composed of two parts:

• The first part deals with the implementation of the belief K-modes method
where the major variables and programs are detailed. The principal BKM
algorithms are also exposed.

• The second one is interested to the simulation phase. Then, results over data
from a real world problem are presented with an analysis of them. Note that the
objective of this simulation is the feasibility of our belief K-modes algorithm.

57
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4.2 Implementation

4.2.1 Framework

In order to ensure the implementation of our approach, we have developed programs
in Matlab V6.5.
Obviously, we have implemented the building algorithm as well as the classification
one which are detailed in the previous chapter.

These programs have as inputs:

1. An ordinary data set with certain objects, i.e., objects whose attributes are
represented by single certain values as in standard K-modes method.

2. The different attributes that will be uncertain.

3. The different values of the parameter p (uncertainty degree respectively to each
attribute) allowing the generation of uncertain attributes whose masses will be
equal to 1− f , where f is a randomly number that must be less or equal to p.

4. The percent of data that will be generated within uncertain context.

5. K which represents the number of clusters to form.

6. An uncertain instance to classify.

The outputs of our programs are:

1. The obtained K modes, one for each cluster.

2. The obtained clusters’ memberships of all objects belonging to the data set to
cluster.

3. The K clusters’ modes and their corresponding attributes’ values.

4. The accuracy of the belief K-modes method given by the Percent of Correct
Classification (PCC) (a most used criterion for measuring the accuracy of clas-
sifiers).
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4.2.2 Principal variables

Our programs use the following variables to implement our proposed method:

• data: a matrix whose first row contains the different attributes’ labels including
the class label obtained from the ordinary data set. It contains the ordinary
data set with certain objects.

• all−val: a matrix whose first column contains the different attributes’ labels
including the class label in the last one, and in the remaining columns the
corresponding values.

• nbreobj: the number of objects which compose the real data set.

• nbreatt: the number of attributes which characterize the data set instances.

• att: a cell array which contains the different Θ respectively to all data attributes.

• attrib: a cell array which contains the different 2Θ respectively to all data
attributes.

• cardatt: a vector of the different attribute cardinalities.

• cardattrib: a vector of the different 2Θ cardinalities respectively to all data
attributes.

• val−clus: a cell contains the real class values.

• degr: a vector which contains the corresponding uncertainty degree p of each
attribute.

• percent: the percent of uncertain data to generate.

• cluster: a vector of n elements, such as n is equal to nbreobj, of cluster mem-
bership of each data object.

• center: the obtained K clusters’ centers or modes after applying the BKM
procedure: a matrix of K rows which contains the different attributes belief
functions (bba’s).

• mat: a matrix of nbreobj rows which indicates the certain/uncertain data set
represented via a belief function.

• result: a matrix which contains generated uncertain data set and in its last
column we mention the obtained clusters from the building step.



Chapter 4: Implementation and simulation 60

• n1: the number of correctly classified instances.

• n2: the number of incorrectly classified instances.

• PCC: the percent of correctly classified instances.

• instance−to−classify: a vector which specifies the different attributes’ values
represented via belief functions of one new instance to classify.

4.2.3 Main programs

Many programs are developed to ensure the construction of our software, we will
present them in this section regrouped as follows in the three distinct parts.

Data set creation

The idea is to assign to each attribute, a bba over the set of remaining attributes of
this object, based on the set of their possible values . After precise the uncertainty
degree respective to each attribute, we affect 1 − f , where f is a randomly number
that must be less or equal to p (p is the uncertainty degree) as bbm to the certain
attribute’s value and f to the frame of discernment corresponding to this attribute.

Once belief degrees are fixed for each attribute and the percent of uncertain data
is indicated, we use the belief K-modes method to cluster the uncertain data set which
is obtained from one real data set in the known number of clusters K.

In order to respect the instances’ representation that we have proposed in advance,
we have to deal with an existing ordinary data set in which instances are characterized
by certain (single) attribute values and then create, artificially, belief functions (bba)
on attributes’ values of instances. To create such instances, we have developed these
programs:

• Generate−cert−data−set: generates a certain data set from an ordinary data
set: it creates for each attribute of a given data instance (from the ordinary
data set) a certain bba, i.e., each created bba has only one element with basic
belief mass equal to 1 and the others with bbm equal to 0.

• Generate−uncert−data−set: generates an uncertain data set from an ordi-
nary data set. Artificially, a bba on possible values of each attribute of the data
instance is created in order to add uncertainty about the attribute values.

– Get−p: allows to get the value of the parameter p, the uncertainty degree
respectively to each attribute.
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– Get−percent: allows to get the percent of uncertain data objects.

The two previous procedures (generate certain and uncertain datasets) use the fol-
lowing one.

• Init−data: allows to load the data set from which we will apply the BKM
method.

Building Clusters

The implementation of the building clusters procedure relative to the belief K-modes
approach represents an important task. Many programs have been developed to
ensure this purpose. Allowing the building of clusters from a certain/uncertain gen-
erated data set from loaded one, these main programs are defined as follow:

• Get−K: allows to get the value of the parameter K, number of clusters to form.

• Belief−clustering: is an iterative procedure allowing to build the clusters and
compute the corresponding modes relatively to the generated data set from the
loaded one and to the introduced respective value of p for each attribute and
the percentage of uncertain data objects. This procedure uses the following
main function:

– Beliefkm: this procedure has as output the K modes and the cluster’s
memberships of different generated uncertain objects which form the data
set. It uses this function:

∗ Beldist: it consists in computing the distance measure between each
object and anyone cluster mode. It is an iterative procedure which is
repeated s times (s is the number of attributes).

Classification

Once clusters and their corresponding modes are generated, we have to develop pro-
grams that will ensure the classification of such instances represented via bba’s on
their different attributes’ values to corresponding constructed clusters. These pro-
grams are the following ones:

• Classify−instance: allows the classification of a certain/uncertain instance
within a BKM results. This procedure uses the Beldist procedure to compute
the distance of this instance respectively to all obtained modes.

• Eval−BKM: evaluates the BKM by computing its PCC: the percent of cor-
rectly classified data instances presented to the BKM.
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4.2.4 Belief K-modes algorithms

In this section, we will present the major algorithms relative to the belief K-modes
method, namely, the building and the classification algorithms.

The building procedure

Algorithm BKM(nbre)
Output: PCC

1. begin

2. (* Load data set to cluster *)

3. [data, all val, filename, path] ← Init data;

4. [a,b]← size(all val);

5. (* b is the number of attributes+1 (cluster column)*)

6. (* Define the uncertainty degrees of all attributes *)

7. for i ← 1 to b-1 do

8. degr(i) ← Get p;

9. end for

10. (* Define the percent of uncertain objects *)

11. percent ← Get percent;

12. SPCC ← 0

13. MPCC ← 0

14. for iter ← 1 to nbre do

15. (* Generate uncertain data set from loaded one *)

16. [mat]← Generate uncert data set(data, all val, filename, path, degr, percent);

17. (* The actual clusters’ values*)

18. l ← 1;

19. val cluster(l) ← all val(2,b);

20. for i ← 3 to a do

21. if all val(i,b) not exist (val cluster) then

22. l← l + 1;

23. val cluster(l)← all val(i,b);

24. end if

25. end for
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26. (* Give the number of clusters to form*)

27. K ← Get K;

28. (* The obtained uncetain data set with the corresponding clusters’ membership and the
different K modes*)

29. [result, center] ← Belief clustering(mat, K, data, all val, filename, path, val cluster);

30. [n1,n2]← Evaluate BKM(data, result);

31. (* Computing PCC *)

32. PCC ← n1/nbreobj * 100;

33. SPCC ← SPCC+PCC;

34. end for

35. MPCC ← SPCC/nbre

36. end.

Algorithm Generate uncert data set
Input: data, all val, filename path, degr, percent
Output: mat

1. begin

2. (* Generate the different power sets of all attributes and compute the respective cardinalities*)

3. [attrib,cardattrib] ← generate all val(all val);

4. [nl, nc] ← size(data);

5. nbreobj ← nl-1;

6. nbattrib ← nc-1;

7. uncert data ← (percent*nbreobj)/100;

8. (* Generate the uncertain part of data*)

9. for i ← 1 to uncert data do

10. for j ← 1 to nbreattrib do

11. indcour ← indexval(data(i,j),attrib(j));

12. pred ← 0;

13. for l ← 1 to cardattrib(j)-1 do

14. if l = indcour then

15. x← rand;

16. While x > degr(j) do

17. x ← rand;

18. end while
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19. mat(i,l+pred)← 1-x;

20. else

21. mat(i,l+pred) ← 0;

22. end if

23. mat(i,cardattrib(j)+pred) ← x;

24. end for

25. k ← j+1;

26. pred ← cardattrib(k-1);

27. end for

28. end for

29. (* Generate the certain part of data*)

30. for i ← uncert data+1 to nbreobj do

31. for j ← 1 to nbreattrib do

32. indcour ← indexval(data(i,j),attrib(j));

33. pred ← 0;

34. for l ← 1 to cardattrib(j) do

35. if l = indcour then

36. mat(i,l+pred)← 1;

37. else

38. mat(i,l+pred) ← 0;

39. end if

40. end for

41. k ← j+1;

42. pred ← cardattrib(k-1);

43. end for

44. end for

45. end.

Algorithm Belief clustering
Input: mat, data, K, all val, filename, path, val cluster
Output: result, center

1. begin

2. [a,b]← size(data);

3. nbreobj ← a-1;
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4. [result] ← data(2:a,1:b-1);

5. for h ← 1 to nbreobj do

6. col(h,1) ← ’ ’;

7. end for

8. [result] ← [result,col];

9. [attrib,cardattrib] ← generate all val(all val);

10. [cluster,center] ← beliefkm(mat,attrib,cardattrib,K);

11. for h ← 1 to nbreobj do

12. result(i,b) ← cluster(i);

13. end for

14. end.

Algorithm Beliefkm
Input: mat, attrib, cardattrib, K
Output: cluster, center

1. begin

2. [nbreobj,nbrecol] ← size(mat);

3. if K = 1 then

4. center← mean(mat,1);

5. cluster← ones(1,nbreobj);

6. else

7. ii ← randperm(nbreobj);

8. center ← mat(ii(1:K),:);

9. DD ← zeros(nbreobj,K);

10. cl ← ones(1,nbreobj);

11. Fin ← 0;

12. While not Fin do

13. for i ← 1 to nbreobj do

14. for l ← 1 to K do

15. for j ← 1 to nbreattrib do

16. DD(i,l)← DD(i,l)+beldist(mat(i,j),center(l,j));

17. end for

18. end for

19. end for
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20. [Dmin,cluster] ← min(DD);

21. for l ← 1 to K do

22. iii← Find(cluster=l);

23. center(l,:) ← mean(mat(iii,:),1);

24. end for

25. Fin ← (cl==cluster)

26. end while

27. end if

28. end.

The classification procedure

Algorithm Classify−instance
Input: cluster, center, instance−to−classify
Output: membership

1. begin

2. mode ← center;

3. [nbrecluster, nbrecol] ← size(mode);

4. (* Computing the distance between this instance to classify and all modes *)

5. for i ← 1 to nbrecluster do

6. (*Computing the distance corresponding to each attribute*)

7. for j ← 1 to nbreattribut do

8. D(i) ← D(i)+beldist(instance
−

to
−

classify(j),mode(i,j))

9. end for

10. end for

11. (*The obtained cluster to which this instance belongs*)

12. [Dmin, membership] ← min(D)

13. end.

Algorithm Eval−BKM
Input: data, result
Output: n1, n2

1. begin

2. (* Initializing the number of correctly classified instances to 0 *)

3. n1 ← 0;
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4. (* Initializing the number of incorrectly classified instances to 0 *)

5. n2 ← 0;

6. [nbreobj, nbrcol] ← size(result);

7. for i ← 1 to nbreobj do

8. (* comparing the actual cluster value and the obtained one by applying our method *)

9. if data(i,nbrecol) = result(i,nbrecol) then

10. n1← n1 + 1;

11. else

12. n2 ← n2 + 1;

13. end if

14. end for

15. end.

4.3 Simulations and results

4.3.1 Experimental setup

The implementation of our BKM algorithm will be useful in the simulation phase.
We have performed several tests and simulations on real databases obtained from
the U.C.I. repository. Different results carried out from these simulations will be
presented and analyzed in order to evaluate our proposed method.

4.3.2 Artificial uncertainty creation in the training set

Training sets are generally composed with certain objects described by known at-
tribute values and classes. Instances with partially known values are usually elimi-
nated from the databases and they are not considered in learning process, probably
because it is not easy to know what to do with these objects since the users are in
pain to precise exactly their characteristics.

The belief K-modes method is essentially developed to handle uncertain objects
where their uncertainty is represented by a bba given on the set of possible attribute
values. So, the question is how construct these bba’s to obtain uncertain data sets,
since there is not real databases within the belief framework.
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Attributes’ values of training instances are perfectly known in the standard K-
modes method and also in the fuzzy extension as well as in EVCLUS method. How-
ever, in this work, uncertainty is introduced in the values of attributes and it is
presented through bba’s concept. Thus, in the case of total certainty of attributes’
values we deal with certain bba’s and this case is equivalent to the standard version
of the K-modes method.

These bba’s are created artificially. They take into account these following basic
parameters:

• The real attributes’ values of the training instances.

• Degree of uncertainty. Since, p (one for each attribute): it will vary in [0, 1]
interval. The fixed value of p has a direct effect on the quality of results. In
fact, for a large value of p, the number of the correctly classified instances will
decrease. The two extreme cases occur when:

– p = 0, no uncertainty, we recover a standard K-modes method and this
is the certain case.

– p = 1, we obtain the total ignorance.

We will consider these four different intervals of p for our simulations:

• Level 1: we take 0 < p ≤ 0.25

• Level 2: we take 0.25 < p ≤ 0.5

• Level 3: we take 0.5 < p ≤ 0.75

• Level 4: we take 0.75 < p ≤ 1

Thus, the choice of the value of p for a given attribute is crucial.

The resulting bba’s are the bba’s which describe our belief about the value of the
actual attributes’ values which the object has.

Each bba has 2 focal elements:

1. The first is the actual attribute’s value of the object with bbm , m(A)= 1-f (f
is a probability generated randomly which must be less or equal to p).

2. The second is Θ such as m(Θ)= f .
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4.3.3 Evaluation criteria

Huang [31] proposed a measure of clustering results called the clustering accuracy r

computed as follows: r =
∑k

i=1
ai

n
, where n is the number of instances in the dataset,

k is the number of clusters, ai is the number of instances occurring in both cluster
Ci and its corresponding labeled class. This criterion is equivalent to the most well
one, the PCC expressing the percent of the correctly classified instances. These two
measures are equivalent. To evaluate our belief K-modes method, we will consider
the last mentioned criterion, which is the most relevant one.

So, the accuracy of our method is determined by measuring the number of in-
stances correctly classified among the total number of data instances presented to the
classifier which is a most used performance indicator namely Percent of Correct
Classification (PCC ). Let us give the definition of this criterion:
The PCC represents the percent of correct classification of the instances which are
classified according to the BKM procedure. It is given by:

PCC =
number of well classified instances

total number of classified instances
∗ 100 (4.1)

The PCC is computed as follows: for each instance, we make comparison between
its real class (its class in the real data set) and the class given by the belief K-modes
method. Hence, the number of well classified instances represents the number of in-
stances for which the class obtained by the BKM is the same as their real class.

When the obtained PCC is equal to 100%, it means that this classifier is ’an
excellent classifier’, whereas a ’null’ classifier has a PCC equal to 0%.

4.3.4 Validation procedure

In our simulations, in order to obtain an unbiased estimation of the PCC, we have
used a certain number of tests and after that we will calculate the final PCC as the
average of all obtained ones.

This method consists in randomly permutation of the integers from 1 to n of a
given data set such as n is the number of objects that compose this data set (from
which the clusters will be built) and the K first objects will be extracted to compute
the initial clusters’ modes. The procedure is repeated x times, each time using an-
other K first instances as the initial clusters’ modes.
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Obviously, in each fold, we compute the corresponding PCC and the final PCC
is given by the mean of the computed PCC s. It is M.PCC.

4.3.5 Simulations on the real databases

Description of the databases

For the evaluation of the proposed BKM method, we have developed programs which
consist in both building and the classification procedures corresponding to our ap-
proach. Then, we have applied these programs to real databases obtained from
the U.C.I repository of Machine Learning databases [42]. We have modified these
databases by introducing uncertainty in the attributes’ values of their instances as
explained before. A brief description of these databases is presented in Table 4.1.

Table 4.1: Description of databases
Database #intances #attributes #clusters
Congressional voting records database 497 16 2
Balance scale database 625 4 3
Wisconsin breast cancer database 699 8 2

Experimental results

Two parameters will be considered in our simulations, namely the percent of uncer-
tain data set and the uncertainty degree p for each attribute.

In order to evaluate the BKM approach, for each data set, we run the algorithm
several times. The accuracy of our results is measured according to the mean PCC
criterion (M.PCC) of the obtained ones. We were interested by the impact of varying
these parameters on the M.PCC of each BKM result.

Our simulations will be performed for two cases, namely, the certain case and the
uncertain case.

1. The certain case : The first case tests the efficiency of our method when there
is no uncertainty in attributes’ values, it means that each attribute is known
with certainty and it has a unique value, and compares the results with ones
obtained by apply the standard K-modes method. It shows that this case is
equivalent to the standard K-modes method.
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2. The uncertain case : The second case tests the efficiency of the proposed
method with different level of uncertainty according to the uncertain degrees p
corresponding to all attributes which characterize the data set to cluster. We
take also into account the percent of uncertainty in the data set.

Results of the certain case:

Table 4.2 summarizes different results relative to Wisconsin breast cancer, Balance
Scale weight and Congressional voting databases for the certain case.

Table 4.2: Experimental results : certain case

Database M.PCC(Standard K-modes) M.PCC (BKM)
Congressional voting records database 86.52 88.35
Balance scale database 79.20 79.20
Wisconsin breast cancer database 71.39 72.48

Figure 4.1: M.PCC on the certain case

In order to compare our method’s results to obtained ones by applying the Huang’s
algorithm, we have developed programs (also in MATLAB) implementing Huang’s al-
gorithm.
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When there is no uncertainty in the attributes’ values of instances (which rep-
resents our case here), we can make comparison between the two results: the first
one corresponds to the our method and the second is obtained from the standard
K-modes method given by the Huang algorithm.

From this table, we can conclude that our belief clustering method in certain case
has a good results. There are an improvement of the PCC of the results in two
databases. But, for Balance Scale weight database, The obtained PCC is the same
for the two methods (79.20%).

Results have shown that our approach can outperform the standard K-modes
method. For example, for the congressional voting records database the mean PCC
(M.PCC) of the standard K-modes is equal to 86.52% whereas, we have obtained
larger PCC’s equal to 88.35%.

Similarly, for the W.breast cancer database, the PCC have leapt from 71.39% to
72.48% when using our BKM approach instead of the standard one.

As explained in the chapter 2, one problem encountered in the K-modes method
and its extensions is the choice of the initial modes which has an effect on the pro-
duced results. For both methods, the Huang method and the proposed one, the
initial modes are chosen randomly, it explains the obtained results, which are differ-
ent, although the two methods are applied in the same context namely the certain
framework.

We should mention that within the standard version of the K-modes method, the
clusters’ modes can be non-unique which makes the algorithm unstable. However,
our method solves this problem. Thus, our PCC’s are, for the most of databases,
better than the ones obtained by applying the standard approach.

Results of the uncertain case:

In this section, we will present different results carried out from applying our
proposed BKM approach relative to the Wisconsin breast cancer and Balance Scale
weight databases on uncertain case.

The following tables (Table 4.3, Table 4.4 and Table 4.5) summarize different re-
sults carried out from testing our method to the same three datasets respectively to
the four intervals of uncertainty degree p defined before and the different values of
the uncertainty percent of dataset instances which are defined as follows : 25%, 50%,
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75% and 100%.

These uncertainty percents represent the percent of generated uncertain objects of
one given dataset, where as the other objects are known with certainty. For example,
if we fix this percent at 25%, it means, for one database which contains 100 objects,
that 25 instances will be generated with uncertainty (in their attributes) and the 75
others are exactly know and they have unique attributes’ values.

These values of the uncertainty parameters (the uncertainty degrees and the un-
certainty percent) allow us to generate the uncertain databases.

Table 4.3: Experimental results (Congressional voting records, uncertain case)
Percent 25% 50% 75% 100%

Degree
0 < p ≤ 0.25 91.25% 89.13% 88.15% 86.23%
0.25 < p ≤ 0.5 90.11% 87.52% 87.48% 81.13%
0.5 < p ≤ 0.75 88.82% 86.03% 85.57% 76.29%
0.75 < p ≤ 1 85.17% 83.57% 84.12% 71.63%
Mean 88.84% 86.56% 86.33% 78.82%

Figure 4.2: M.PCC of the uncertain case (Voting)

As with the certain case, the results show that the proposed approach deals with
uncertain instances as good as with certain instances. For instance, if we analyze the
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results shown in Figure 4.1 (relative to the voting database), we remark that the PCC
(uncertain case) remains high (larger than 85% for most cases) in average as in the
certain case. These results, certify that our proposed approach is also well adapted
to classify instances with uncertain attributes’ values.

Table 4.4: Experimental results (Balance scale, uncertain case)
Percent 25% 50% 75% 100%

Degree
0 < p ≤ 0.25 82.26% 80.12% 79.29% 77.22%
0.25 < p ≤ 0.5 79.89% 79.95% 78.56% 77.15%
0.5 < p ≤ 0.75 78.23% 76.30% 75.59% 74.35%
0.75 < p ≤ 1 75.83% 76.01% 74.44% 71.23%
Mean 79.05% 78.09% 76.97% 74.98%

Figure 4.3: M.PCC of the uncertain case (Balance)

Note that the PCC’s decrease in average where uncertainty in parameters (the
uncertainty percent and the uncertainty degrees) increases as shown in Figures 4.2,
4.3, and 4.4.

For example for the Congressional voting records database, the PCC value be-
comes 71.63% when the uncertainty percent is at 100% and the uncertainty degrees
are in [0.75, 1[, which is considered as a high uncertainty, comparing to 91.25% with
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Table 4.5: Experimental results (Wisconsin breast cancer, uncertain case)
Percent 25% 50% 75% 100%

Degree
0 < p ≤ 0.25 75.24% 75.13% 74.08% 73.91%
0.25 < p ≤ 0.5 73.55% 73.21% 72.42% 71.51%
0.5 < p ≤ 0.75 71.03% 70.81% 68.69% 68.88%
0.75 < p ≤ 1 70.99% 69.18% 68.87% 68.02%
Mean 72.70% 72.08% 71.01% 70.58%

Figure 4.4: M.PCC of the uncertain case (Cancer)

a low uncertainty (25% of uncertainty percent and the uncertainty degrees of the
attributes are defined as follows: 0 < p <= 0.25) as shown in Table 4.3.

Furthermore, we notice that for each database, there is a specific values of the
uncertainty parameters for which we obtain the highest PCC.

As a conclusion, we have to note that these values are purely experimental and
that depend on the used database and even on the used uncertainty degree and the
considered uncertainty percent within a given database.

It is found that the clustering results produced by the proposed method are very
high in accuracy. The PCC’s show that our method presented interesting results.
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So, These results confirm that our approach is well appropriate within the uncertain
context.

4.4 Conclusion

In this chapter, the major variables and the main programs that we have used in
order to implement our belief clustering method, are detailed. The principal BKM
algorithms are also presented.

Experimental results, provided in this chapter, show that our new approach (de-
scribed in chapter 3) gives better results than the standard version of this method
within a certain context.
These results are interesting since they show that with data bases having uncertain
attributes’ values, we can cluster it.

The obtained results from simulations that have been performed on real databases
in both certain and uncertain cases are mentioned and have shown encouraging re-
sults.

Note that the major results of this work are developed in [6].



Conclusion

Datasets containing uncertain information are common in real life data mining ap-
plications. However, standard versions of clustering methods are badly adapted to
ensure their role in such environment. Thus, the need of the development of appro-
priate approaches to this kind of environment is vital.

This master dissertation has contributed to the development of one clustering
method under uncertainty in belief function theory framework. Our method called
Belief K-modes Method (BKM), using the K-modes paradigm, was developed to cope
with the problem of clustering data sets with uncertain attributes.

After reviewing the K-modes method, we noticed that the standard version is not
adapted to an uncertain framework. Consequently, our idea was to propose a new
clustering method appropriate to this kind of environment. For this purpose, we were
interested in belief function theory which presents an appropriate framework to deal
with uncertain classification problems. So, we have developed what we call Belief K-
modes Method (BKM), a combination between the K-modes method and the belief
function theory.

In order to cluster dataset objects characterized by uncertain attributes’ values,
where this uncertainty is represented via basic belief assignments (bba’s), we have
defined two major parameters namely the computation of the clusters’ modes (the
belief mean) and the dissimilarity measure.

The proposed method (BKM) allows us to construct clusters within objects hav-
ing uncertain attributes values. Another advantage of BKM method is that once the
clusters are fixed, the classification of new instances that may be uncertain is possible.

We have performed simulations on real databases in order to evaluate the perfor-
mance of our belief clustering method.
Using the PCC as an evaluation criterion, the results of the experiments on certain

77
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and uncertain data sets show the efficiency of our approach.

Our work can be extended on different manners. In fact, our method can be im-
proved by applying one technique to select the initial modes instead of the current
one which consists in choosing randomly K objects from the dataset to cluster as the
initial modes.

An interesting future work is to make our method able to cluster datasets char-
acterized by continuous attributes. Thus, the proposed method will be more flexible
to handle mixed numerical and categorical databases.

In addition to the uncertainty on attribute values, another line of research will be
to assume that each object in the training set may belong to more than one cluster,
this uncertainty in the cluster membership can be represented via belief functions.



Appendix A

Data bases used for simulations

A.1 Introduction

In our experiments, we have used these three databases : the Wisconsin breast cancer
database, the Congressional voting database and the Balance scale database [42] to
evaluate our method.

A.2 The Wisconsin breast cancer database

1. Title: Wisconsin Breast Cancer Database (January 8, 1991).

2. Source Information:

(a) Dr. William H. Wolberg (physician) University of Wisconsin Hospitals
Madison, Wisconsin USA.

(b) Donor: Olvi Mangasarian (mangasarian@cs.wisc.edu) Received by David
W. Aha (aha@cs.jhu.edu).

(c) Date: 15 July 1992.

3. Relevant Information:

Samples arrive periodically as Dr. Wolberg reports his clinical cases. The
database therefore reflects this chronological grouping of the data. This group-
ing information appears immediately below, having been removed from the data
itself:
Group 1: 367 instances (January 1989)
Group 2: 70 instances (October 1989)
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Group 3: 31 instances (February 1990)
Group 4: 17 instances (April 1990)
Group 5: 48 instances (August 1990)
Group 6: 49 instances (Updated January 1991)
Group 7: 31 instances (June 1991)
Group 8: 86 instances (November 1991)
So the total = 699 points (as of the donated datbase on 15 July 1992).

4. Number of Instances:
699 (as of 15 July 1992).

5. Number of Attributes:
8 attributes + class name = 9.

6. Class Distribution:
Benign: 458 (65.5%).
Malignant: 241 (34.5%).

A.3 Balance scale database

1. Title: Balance Scale Weight & Distance Database.

2. Source Information:

(a) Source: Generated to model psychological experiments reported by Siegler,
R. S. (1976). Three Aspects of Cognitive Development. Cognitive Psychol-
ogy, 8, 481-520.

(b) Donor: Tim Hume (hume@ics.uci.edu).

(c) Date: 22 April 1994.

3. Relevant Information:

This data set was generated to model psychological experimental results. Each
example is classified as having the balance scale tip to the right, tip to the left,
or be balanced. The attributes are the left weight, the left distance, the right
weight, and the right distance. The correct way to find the class is the greater
of (left-distance * left-weight) and (right-distance * right-weight). If they are
equal, it is balanced.

4. Number of Instances:
625 (49 balanced (B), 288 left (L), 288 right (R)).
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5. Number of Attributes:
4 attributes + class name = 5.

6. Attribute Information:

(a) Class Name: 3 (L, B, R).

(b) Left-Weight: 5 (1, 2, 3, 4, 5).

(c) Left-Distance: 5 (1, 2, 3, 4, 5).

(d) Right-Weight: 5 (1, 2, 3, 4, 5).

(e) Right-Distance: 5 (1, 2, 3, 4, 5).

7. Class Distribution:
1. 46.08 percent are L.
2. 07.84 percent are B.
3. 46.08 percent are R.

A.4 Congressional voting records database

1. Title: 1984 United States Congressional Voting Records Database.

2. Source Information:

(a) Source: Congressional Quarterly Almanac, 98th Congress, 2nd session
1984, Volume XL: Congressional Quarterly Inc. Washington, D.C., 1985.

(b) Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu).

(c) Date: 27 April 1987.

3. Relevant Information:

This data set includes votes for each of the U.S. House of Representatives Con-
gressmen on the 16 key votes identified by the CQA. The CQA lists nine different
types of votes: voted for, paired for, and announced for (these three simplified
to yea), voted against, paired against, and announced against (these three sim-
plified to nay), voted present, voted present to avoid conflict of interest, and
did not vote or otherwise make a position known (these three simplified to an
unknown disposition).

4. Number of Instances:
435 (267 democrats, 168 republicans).
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5. Number of Attributes:
16 + class name = 17.

6. Attribute Information:

(a) Class Name: 2 (democrat, republican).

(b) handicapped-infants: 2 (y,n).

(c) water-project-cost-sharing: 2 (y,n).

(d) adoption-of-the-budget-resolution: 2 (y,n).

(e) physician-fee-freeze: 2 (y,n).

(f) el-salvador-aid: 2 (y,n).

(g) religious-groups-in-schools: 2 (y,n).

(h) anti-satellite-test-ban: 2 (y,n).

(i) aid-to-nicaraguan-contras: 2 (y,n).

(j) mx-missile: 2 (y,n).

(k) immigration: 2 (y,n).

(l) synfuels-corporation-cutback: 2 (y,n).

(m) education-spending: 2 (y,n).

(n) superfund-right-to-sue: 2 (y,n).

(o) crime: 2 (y,n).

(p) duty-free-exports: 2 (y,n).

(q) export-administration-act-south-africa: 2 (y,n).

7. Class Distribution:
45.2 percent are democrat.
54.8 percent are republican.

A.5 Conclusion

In this appendix, we have shown the description of the data sets which we have used
in the simulation phase.

Note that in our experiments, we have created the uncertain versions of these data
bases via the belief function theory as explained in the last chapter.
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