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Introduction

Classification refers to data mining problems of attempting to predict the
category of unseen objects by building a model based on some predictor vari-
ables. There is a number of classification techniques which are widely used
in artificial intelligence and machine learning like decision trees, artificial
neural networks, k-nearest neighbors, naive bayesian networks, etc. These
techniques are applied in several real-world applications such as marketing,
medical diagnosis, credit approval, etc.

The rough set theory based on approximation reasoning and proposed
by Pawlak (1982, 1991) also constitutes a sound basis for data mining ap-
plications and knowledge discovery. This theory provides efficient methods,
algorithms and tools for finding hidden patterns in databases. It also al-
lows for attribute reduction by finding minimal sets of data with the same
knowledge as in the original data. It can also be used to evaluate the signif-
icance attributes and to identify partial or total dependencies in databases.
The rough set approach offers solutions to the problem of feature selection,
discretization, data reduction and decision rule generation to classify new
objects, etc.

Classification technique based on rough sets called Rough Set Classifier
(RSC) is a successful classification technique applied in several real-world ap-
plications such as medicine, finance, telecommunication, intelligent agents,
image analysis, pattern recognition, marketing, etc. The models generated
by rough set classifier take the form of ’IF-THEN’ rules. RSC performs fea-
ture selection and data reduction before generating rules, this method can
avoid many iterations. It is an efficient technique that can produce optimal
and minimal set of decision rules. RSC has the advantages of time complex-
ity of learning, accuracy and size of the discovered rules. It is not true for
some other classification techniques which have the problems of size, accu-
racy and time complexity of learning models especially from large databases

1



2 Introduction

(Trabelsi et al., 2006, 2007).

The standard rough set classifier like the other classification techniques,
do not perform their classification task very well in an environment charac-
terized by uncertainty or incomplete data. Many researchers have extended
rough sets and its applications to accommodate uncertainty (Grzymala-
Busse, 2003, 2004; Hong et al., 2002; Kryszkiewicz, 1995). These extensions
of rough set classifiers work with incomplete or missing data sets. Two main
cases of missing condition attribute values are considered: ’lost’ (the orig-
inal value was erased) and ’do not care’ conditions (the original value was
irrelevant). These extensions do not deal with partially uncertain condition
or decision attribute values in decision system. This kind of uncertainty
exists in many real-world applications like in medicine where diseases (deci-
sion attribute) of some patients (objects) or even their symptoms (condition
attributes) may be partially uncertain. It is not useful to eliminate these
objects from classification process because it represents a loss of important
information.

In this work, we will focus on rough set classifiers due to its advantages
and we will extend it to deal with partial uncertainty. The latter appears
only in decision attribute values of decision system. We handle only sym-
bolic condition and decision attribute values. To deal with this kind of
uncertainty, we will choose the belief function theory which is able to repre-
sent the partial or the total ignorance in a flexible way. It is considered to
be a useful theory for representing and managing uncertain knowledge. The
belief function theory is appropriate to handle uncertainty in classification
problems such as belief decision tree (Denœux & Skarstein-Bjanger, 2000;
Elouedi et al., 2001; Vannoorenberghe & Denœux, 2002), belief clustering
(Ben-Hariz et al., 2006; Masson & Denœux, 2004), belief neural networks
(Denœux, 2000) and belief K-nearest neighbors (Denœux, 1995).

Our thesis deals with the problem of learning decision rules based on
rough set methodology from dataset characterized by uncertain decision at-
tribute values. The uncertainty is represented by the Transferable belief
Model (TBM), one interpretation of the belief function theory. To solve this
problem, we propose two classification systems based on rough set method-
ology. The first classification technique is called Belief Rough Set Classifier
(BRSC) which is based on the new definition of the basic concepts of rough
sets under belief function framework. The second is more sophisticated and
is called Belief Rough Set Classifier based on Generalization Distribution Ta-
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ble (BRSC-GDT) which is derived from the hybrid system named GDT-RS.
The latter is a combination of Generalization Distribution Table (GDT) and
Rough Sets (RS) which is also redefined under the belief function framework
to be called belief GDT-RS. Our solutions aim at generating from uncertain
data a minimal and a significant set of decision rules to classify unseen in-
stances.

To improve the time requirement of learning models relative to both the
classifiers: BRSC and BRSC-GDT, we propose a heuristic feature selection
method based on rough sets under the uncertain context. By applying it in a
pre-processing stage, we obtain two new versions of BRSC and BRSC-GDT
denoted respectively by H-BRSC and H-BRSC-GDT. Furthermore, to im-
prove the classification power, we propose a dynamic reduct method which
yields to more stable results under the uncertain context. The latter notion
yields to new versions of BRSC and BRSC-GDT denoted respectively by
D-BRSC and D-BRSC-GDT.

Note that there is also another similar classifier denoted Belief Deci-
sion Tree (BDT) (Elouedi et al., 2001) which induces uncertain decision
rules from uncertain databases that are able to classify new instances. The
uncertainty also appears in decision attributes values and is represented
through the TBM. There are two approaches of building the BDT: the aver-
aging and the conjunctive approaches. However, inducing a BDT may lead
in most cases to very large trees with bad classification accuracy and diffi-
cult comprehension. To cope with this problem, pre-pruning (Elouedi et al.,
2002) and post-pruning (Trabelsi et al., 2007) methods have been applied
to simplify the belief decision tree and improve its classification accuracy.
Hence, the BDT needs the step of pruning which is not a simple task. Our
two new solutions based on rough set theory generate a minimal and an
efficient set of decision rules without costly calculation, without many iter-
ations. We hope to obtain satisfactory results without creating a decision
tree and without pruning it.

To show the applicability and the effectiveness of our two classification
techniques based on rough sets with their versions, we carry experimen-
tations on modified real-world databases to include uncertainty and on a
naturally uncertain web usage mining database. Three evaluation criteria
are chosen : time requirement of learning, size of models and classification
accuracy. Then, we compare the results with those obtained from the Be-
lief Decision Tree (BDT), which also deals with uncertain decision attribute.



4 Introduction

Our thesis is organized as follows:

• Part I presents the necessary theoretical aspects concerning the ba-
sic notions of belief function theory as understood through TBM. In
addition, this part also details the basic concepts of rough set theory
and rough set classifier.

• Part II details the proposed developments that we have made to build
our two classification approaches based on rough sets namely Belief
Rough Set Classifier and Belief Rough Set Classifier based on Gener-
alization Distribution Table. The knowledge about decision attribute
values of the training objects is represented by belief function theory.
In this part, the main basic concepts of our classification systems are
detailed like the new definitions of the basic concepts of rough sets
and the hybrid system GDT-RS under the belief function framework.
Then, we have detailed the two main procedures needed to create them
namely construction and classification procedures. Next, we have pro-
posed two ideas to improve the results relative to the construction
procedure of our classifiers like the use of a heuristic and a dynamic
feature selection methods. Finally, to judge the performance of our two
proposed classifiers and their versions, experimentations on modified
real-world databases are made where the uncertainty in the decision
attribute is created artificially and on a naturally uncertain web usage
database obtained from web access logs of the introductory comput-
ing science course at Saint Mary’s University. The uncertainty appears
only in decision attributes and is handled by the belief function theory.

Finally, a general conclusion summarizes the major achievements of this
thesis and presents possible future developments. Two appendices complete
this thesis. The first appendix details the major programs and algorithms
needed to build and test our two approaches which are implemented to
check their feasibility and qualities. The second appendix gives a part of
the naturally uncertain web usage mining database used in the experimental
part.
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Theoretical Aspects
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Our thesis deals with the elaboration of two new classification approaches
based on rough set theory called Belief Rough Set Classifier (BRSC)
and Belief Rough Set Classifier based on Generalization Distribution Table
(BRSC-GDT). These proposed models make it possible to learn decision
rules from uncertain data where the uncertainty is represented by the belief
function theory. Hence, in this first part of our thesis, we present the the-
oretical aspects which are useful to understand the developments made in
this thesis concerning the BRSC and the BRSC-GDT.

This part presents the necessary background concerning the belief func-
tion theory and the rough set theory. Hence, it is composed of two chapters:

• The first chapter deals with the belief function theory as understood
in the transferable belief model. This theory is a useful tool which
offers a convenient framework thanks to its ability to represent uncer-
tain knowledge.

This chapter presents the basic concepts of this theory. Next, some
special belief functions are described. Finally, useful concepts within
the belief function theory are detailed namely the combination, the
conditioning, the discounting and also the decision process. The dif-
ferent notions are illustrated by examples.

• The second chapter presents the rough set theory as a new mathe-
matical approach to deal with imperfect knowledge. Rough sets have
been proposed for a very wide variety of applications. In particular,
the rough set approach seems to be important for machine learning
and knowledge discovery.

This chapter details the basic concepts of the rough set theory such
as decision table, indiscernibility relation, set approximations, positive
region and reduct. The rough set theory offers solution forKnowledge
Discovery Database (KDD) process such as discretization, data re-
duction, feature selection and generation of decision rules. In this
chapter, the classification process based on rough sets, called Rough
Set Classifier (RSC), is also presented with its two main procedures.
Some variants and extensions of rough set classifier are presented like
combination with other theories of uncertainty to handle incomplete
data. Illustrative examples are also provided in order to further ex-
plain various notions.
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Chapter 1

Belief function theory

1.1 Introduction

The theory of belief functions has been proposed for modeling someone’s
degrees of belief to quantify subjective judgments. It is considered as a
useful theory for representing and managing uncertain knowledge because
of its relative flexibility. This theory was introduced by Dempster (1968)
and Shafer (1976). Hence, it is usually called the Dempster-Shafer theory.
The belief function theory is widely applied in artificial intelligence and pro-
vides sound and elegant solutions to real life problems. There are several
interpretations of this theory: the lower probability model (Walley, 1991),
the Dempster’s model (Dempster, 1967, 1968), the theory of hints (Kohlas
& Monney, 1995) and the Transferable Belief Model (TBM) (Smets, 1988,
1998b; Smets & Kennes, 1994; Smets & Kruse, 1997). Each model corre-
sponds to different understandings of the concept of uncertainty.

TBM is not an adaptation of probability theory. It seems to fit essentially
with what Shafer (1976) developed in his work. It is developed to quantify
beliefs. It covers the same domain as the Bayesian-subjectivist probabilities
except it is based on belief functions (including Dempster’s rule of condi-
tioning and Dempster’s rule of combination). In this thesis, we focus only
on the TBM. Consequently, the presentation in this chapter will be based
on this model. This chapter presents an overview of some basic concepts of
the belief function theory. Next, useful concepts are also detailed like the
combination, the conditioning, the discounting and also the decision process.
The different notions are illustrated by examples.

9
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1.2 Basic concepts

1.2.1 Frame of discernment

Let Θ be a finite set of elementary events to a given problem, called the frame
of discernment. These events are assumed to be exhaustive and mutually
exclusive. Such set Θ is also referred to as the universe of discourse or the
domain of reference (Smets, 1988). All the subsets of Θ belong to the power
set of Θ, denoted by 2Θ and defined as follows:

2Θ = {E : E ⊆ Θ} (1.1)

Every element of 2Θ is called a proposition or an event. It can also be
seen as a possible answer to a given question. Note that the empty set ∅
belongs to the power set 2Θ and it corresponds to the impossible proposition
(the contradiction), whereas the set Θ corresponds to the certain proposi-
tion (the tautology).

Example 1.1 Let us treat the problem of identification ’Who murdered
John?’ and we have three suspects. Thus, the frame of discernment re-
lated to this problem is defined as follows:

Θ = {Henry, Peter, Sara}

The power set of Θ is:
2Θ = {∅, {Henry}, {Peter}, {Sara}, {Henry, Peter}, {Peter, Sara}, {Henry,
Sara}, {Henry, Peter, Sara}}

1.2.2 Basic belief assignment

The impact of a piece of evidence on the different subsets of the frame of
discernment Θ is represented by basic belief assignment (bba), called initially
by Shafer (1976) basic probability assignment (bpa), an expression that has
unfortunately created serious confusion in the past. The bba is defined as
follows:

m:2Θ → [0,1]

∑

E⊆Θ

m(E) = 1 (1.2)
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The value m(E), named a basic belief mass (bbm), represents the portion
of belief committed exactly to the event E. Due to the lack of information,
this quantity cannot be apportioned to any strict subset of E. So, it repre-
sents the direct specific support of evidence on E.

The quantity m(Θ) measures the portion of belief assigned to the whole
frame Θ. It represents the beliefs not assigned to the different subsets of Θ.

Shafer (1976) initially proposed a normality condition expressed by:

m(∅) = 0 (1.3)

Such bba is called a normalized basic belief assignment.

Smets (1990) relaxed this condition and interpreted m(∅) as the amount
of conflict between the pieces of evidence or as the part of belief given to the
fact that none of the hypotheses in Θ is true, in other words the hypotheses
making up the frame of discernment of hypotheses are not exhaustive. This
last interpretation refers to the so-called open-world assumption (Smets,
1990) (in contrast to the exhaustive frame of discernment which is referred
to as the closed-world assumption).

Example 1.2 Assume Θ = {Henry, Peter, Sara}.

The bba related to a piece of evidence concerning the murderer of John
is defined as follows:

m({Henry})=0.1;
m({Henry, Peter})=0.7;
m({Sara})=0.2;

For example, 0.1 represents the part of belief exactly supporting that the
murderer is Henry.

1.2.3 Belief function

A belief function, denoted bel, quantifies the total amount of justified
specific support given to E. The belief function bel (Shafer, 1976) is defined
as follows:

bel(E) =
∑

∅6=F⊆E

m(F ) (1.4)
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The belief is justified because bel(E) includes all the basic belief masses
given to the subsets of E, in contrast to the bba which expresses only the
part of belief committed exactly to E. The belief function is specific be-
cause bel(E) includes only the bbm given to the subsets that support E
without supporting Ē. The basic belief mass m(∅) is not included in bel(E)
as it is given to the subset ∅ that supports not only E but also its comple-
ment Ē.

Properties

• The total belief committed to the empty set is defined as follows:

bel(∅) = 0 (1.5)

Usually, bel(Θ)=1 is assumed (Shafer, 1976) corresponding to a closed-
world assumption. It can be ignored for the open-world assumption
and we only require bel(Θ) ≤ 1.

• m(E) may be expressed by the values of bel as follows (Smets, 2002):

m(E) =
∑

F⊆E

(−1)|E|−|F |bel(F ), ∀E ⊆ Θ, E 6= ∅ (1.6)

• The bbm m(∅) is computed as follows:

m(∅) = 1− bel(Θ) (1.7)

• The TBM departs from Bayesian approach based on belief functions in
that the additivity encountered in probability theory is not assumed.
It is replaced by inequalities:

bel(E ∪ F ) ≥ bel(E) + bel(F )− bel(E ∩ F ), ForE, F ⊆ Θ (1.8)

• Sub-additivity:
bel(E) + bel(Ē) ≤ 1 (1.9)

This rule shows that the knowledge of the belief given to a proposi-
tion E does not necessarily give us an information about the degree of
belief of the proposition Ē.

Contrary to the theory of probability, in the belief function theory
increasing beliefs on a proposition E does not necessary require the
decrease of beliefs on Ē.
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• Monotonicity:

E ⊆ F =⇒ bel(F ) ≥ bel(E) (1.10)

Hence, Θ will get the highest value of bel (the upper limit), whereas
∅ will get the lowest value (the lower limit).

Example 1.3 The belief function bel corresponding to the bba m (see ex-
ample 1.2) is defined as follows:

bel(∅)=0;
bel({Henry})=0.1;
bel({Peter})=0;
bel({Sara})=0.2;
bel({Peter, Sara})=0.7;
bel({Henry, Peter})=0.1+0.7=0.8;
bel({Henry, Sara})=0.1+0.2=0.3;
bel(Θ)=0.1+0.7+0.2=1;

For example, 0.8 is the total belief committed to the proposition {Henry,
Peter}.

1.2.4 Plausibility function

The plausibility function pl quantifies the maximum amount of potential
specific support of belief that could be given to a proposition E of the
frame of discernment. It is obtained by adding all those basic belief masses
given to propositions F compatible with E.

The word potential is used because the basic belief masses included in
pl(E) could be transfered to non-empty subsets of E if new information
could justify such a transfer.

The plausibility function pl is defined as follows:

pl(E) =
∑

E∩F 6=∅
m(F ) (1.11)

= bel(Θ)− bel(Ē) (1.12)

=
∑

F⊆Θ

m(F )−
∑

F⊆Ē
m(F ) (1.13)
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Properties

• For the closed-world and the open-world assumptions, we have

bel(∅) = pl(∅) = 0 (1.14)

Note that under open-world assumption, the basic belief mass m(∅)
should not be included in bel(E) nor in pl(E), as it is given to the
subset ∅ that supports not only E but also Ē. This is the origin of
specific support.

• For the open-world assumption, we have

bel(Θ) = pl(Θ) = 1−m(∅) ≤ 1 (1.15)

• For the closed-world assumption, we have

bel(Θ) = pl(Θ) = 1 (1.16)

• Over-additivity:

pl(E) + pl(Ē) ≥ 1 (1.17)

• Monotonicity:

E ⊆ F =⇒ pl(F ) ≥ pl(E) (1.18)

• pl(E) can be expressed by bel(E), we get:

pl(E) = bel(E)+
∑

E∩F 6=∅,F 6⊂E

m(F ) (1.19)

• For E, F ⊆ Θ, E ∩ F = ∅,

pl(E ∪ F ) ≤ pl(E)+ pl(F ) (1.20)

• For E ⊆ Θ,
bel(E)≤ pl(E) (1.21)
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Example 1.4 The plausibility function pl corresponding to the bba m (see
example 1.2) is defined as follows:

pl(∅)=0;
pl({Henry})=0.1+0.7=0.8;
pl({Peter})=0.7;
pl({Sara})=0.2;
pl({Henry, Peter})=0.1+0.7=0.8;
pl({Henry, Sara})=0.1+0.7+0.2=1;
pl({Peter, Sara})=0.7+0.2=0.9;
pl(Θ)=0.1+0.7+0.2=1;

For example, 0.2 represents the maximum degree of belief that the propo-
sition {Sara} may have.

1.2.5 Commonality function

Another function is basically used to simplify computations in the belief
function theory namely the commonality function q. It has no intuitive
interpretation. However, it may represent the total mass that is free to
move to every element of E (Barnett, 1991). It is defined as follows:

q(E) =
∑

E⊆F

m(F ) (1.22)

Properties

• The commonality value relative to the empty set is defined as follows:

q(∅) = 1 (1.23)

• The commonality value relative to the whole frame of discernment is
defined as follows:

q(Θ) = m(Θ) (1.24)

Example 1.5 The commonality function q corresponding to the bba m (see
example 1.2) is defined as follows:

q(∅)=1;
q({Henry})=0.1+0.7=0.8;
q({Peter})=0.7;
q({Sara})=0.2;
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q({Henry, Peter})=0.7;
q({Henry, Sara})=0;
q({Peter, Sara})=0;
q(Θ)=0;

Remark:

The basic belief assignment (m), the belief function (bel), the plausibility
function (pl) and the commonality function (q) are considered as different
expressions of the same information (Denœux, 1999).

1.2.6 Focal elements, body of evidence and core

The subsets E of the frame of discernment Θ such that m(E) is strictly
positive are the focal elements of the bba m.

The pair (Fc, m) is called a body of evidence where Fc is the set of all
the focal elements relative to the bba m.

The union of all the focal elements of m are named the core and are
defined as follows:

ϕ =
⋃

E:m(E)>0

E (1.25)

Example 1.6 Let us continue with the example 1.2, the subsets {Henry},
{Henry, Peter}, and {Sara} are the focal elements of the bba m.

So, (Fc, m) is called the body of evidence such that: F={{Henry},
{Henry, Peter}, {Sara}}

The core of this m is defined as follows:
ϕ = {Henry} ∪ {Henry, Peter} ∪ {Sara} = Θ

1.3 Special belief functions

In the literature, several kinds of belief functions are proposed. Such func-
tions are used to express particular situations related generally to uncer-
tainty.
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1.3.1 Vacuous belief function

A vacuous belief function is a normalized belief function defined such that
(Shafer, 1976):

m(Θ) = 1 and m(E) = 0 forE 6= Θ (1.26)

The advantage of the TBM over the classical Bayesian approach resides in
its large flexibility, its ability to represent every state of partial beliefs, up
to the state of total ignorance by the vacuous belief function.

Example 1.7 Assume an expert was not able to detect the murderer. Hence,
we get a state of total ignorance where the corresponding bba is defined as
follows:

m(Θ)=1 and m(E)=0 for E 6= Θ

1.3.2 Categorical belief function

A categorical belief function is a normalized belief function such that its bba
is defined as follows (Mellouli, 1987):

m(E) = 1 for someE ⊂ Θ and m(F ) = 0, forF ⊆ Θ, F 6= E (1.27)

Example 1.8 Assume an expert was certain that ’the murderer is a male’.
So, the corresponding bba presents a categorical belief function defined as
follows:

m({Henry, Peter})=1;

1.3.3 Certain belief function

A certain belief function is a categorical belief function such that its focal
element is a singleton. Its corresponding bba is defined as follows:

m(E) = 1 and m(F ) = 0 for all F 6= E and F ⊆ Θ (1.28)

where E is a singleton event of Θ.
Such function represents a state of total certainty as it assigns all the belief
to a unique elementary event.

Example 1.9 Assume an expert affirms that the murderer is a woman. So,
the corresponding bba presents a certain belief function defined as follows:

m({Sara})=1;
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1.3.4 Simple support function

A belief function is called a simple support function (ssf) if it has at most
one focal element different from the frame of discernment Θ. This focal
element is called the focus of the ssf. A simple support function is defined
as follows (Smets, 1995):

m(X) =





w, if X = Θ
1-w, if X = E for some E ⊆ Θ
0, otherwise.

(1.29)

Where E is the focus and w ∈ [0,1].

This ssf describes a belief function induced by a piece of evidence sup-
porting E (with 1− w) and leaving the remaining beliefs for Θ.

Note that the empty set ∅ can be considered as a focus of a simple sup-
port function.

Example 1.10 Let us continue with the example 1.1. Assume we have a
bba defined as follows:

m({Sara, Peter})=0.7;
m(Θ)=0.3 ;

m is called a simple support function where the focus is the proposition {Sara,
Peter}.

1.3.5 Bayesian belief function

A belief function is said to be Bayesian if its focal elements are singletons
(Shafer, 1976). Hence, bel becomes a probability distribution. It is defined
as follows:

bel(∅) = 0 (1.30)

bel(Θ) = 1 (1.31)

bel(E ∪ F ) = bel(E) + bel(F ) Where E, F ⊂ Θ andE ∩ F = ∅ (1.32)

Properties

• bel is a Bayesian belief function if all its focal elements are singletons.
Hence, bel becomes a probability distribution.
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• As in the probability theory:

bel(E) + bel(Ē) = 1 forE ⊂ Θ (1.33)

• In the case of Bayesian belief functions we get:

bel = pl (1.34)

Example 1.11 Let us consider Θ={Henry, Peter, Sara}.

We get a piece of evidence expressed by the following bba m:

m({Henry})=0.4;
m({Peter})=0.5;
m({Sara})=0.1;
m(Θ)=0;

The bba m is a Bayesian bba since all its focal elements are singletons.

1.3.6 Consonant belief function

A belief function is said to be consonant if its focal elements (E1, E2, ...,En)
are nested, that is E1 ⊆ E2 ⊆ .......⊆ En.

Properties

• Every simple support function is a consonant belief function.

• bel is a necessity measure (Smets, 1995):

bel(E ∩ F ) = min(bel(E), bel(F )) (1.35)

• pl is a possibility measure (Smets, 1995):

pl(E ∪ F ) = max(pl(E), pl(F )) (1.36)

Example 1.12 Let us consider this bba defined as follows:

m({Henry})=0.2;
m({Henry, Peter})=0.5;
m(Θ)=0.3;

The focal elements of this bba m are nested. Hence, it is a consonant bba.
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1.3.7 Dogmatic and non-dogmatic belief functions

A belief function is said to be dogmatic if and only if its corresponding bba
m is such that m(Θ) = 0. This case involves some previous cases (certain
belief functions, categorical belief functions). A non-dogmatic belief function
is defined such that m(Θ) > 0 (Smets, 1995).

1.4 Combination

The belief function theory, as understood in the TBM framework, offers in-
teresting rules for aggregating the basic belief assignments (bba’s) induced
from distinct pieces of evidence and provided by two (or more) sources of
information.

Letm1 andm2 be two bba’s defined on the same frame of discernment Θ.
These two bba’s are collected by two distinct pieces of evidence and induced
from two experts (information sources). These bba’s can be combined either
conjunctively or disjunctively.

1.4.1 Conjunctive rule of combination

When we know that both sources of information are fully reliable then the
bba representing the combined evidence satisfies (Smets, 1998a):

(m1 ∩©m2)(E) =
∑

F,G⊆Θ:F∩G=E

m1(F )m2(G) (1.37)

This rule can be simply computed in terms of the commonality functions as
follows:

(q1 ∩©q2)(E) = q1(E)q2(E) (1.38)

where q1 and q2 are respectively the commonality functions correspond-
ing respectively to the bba’s m1 and m2. This implies the most useful
relation that explains the usefulness of the commonality function.

The conjunctive rule is considered as unnormalized Demspter’s rule of
combination dealing with the closed-world assumptions, defined as follows
(Shafer, 1976, 1986):

(m1 ⊕m2)(E) = K(m1 ∩©m2)(E) (1.39)
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Where
K−1 = 1 − (m1 ∩©m2)(∅) (1.40)

and (m1 ⊕m2)(∅) = 0 (1.41)

K is called the normalization factor.

Properties

The conjunctive rule of combination is characterized by the following
properties:

• Compositionality:

(m1 ∩©m2)(E) is function of E, m1 and m2.

• Commutativity:
m1 ∩©m2 = m2 ∩©m1 (1.42)

• Associativity:

(m1 ∩©m2) ∩©m3 = m1 ∩©(m2 ∩©m3) (1.43)

The result of the combination of pieces of evidence is independent of
the order in which they are considered and they are associated.

• Non-idempotency:
The conjunctive rule of combination is not idempotent. So,

(m ∩©m) 6= m (1.44)

• Neutral element:
The neutral element within the conjunctive rule of combination is the
vacuous basic belief assignment representing the total ignorance.

(m ∩©m0) = m (1.45)

Where m0 is a vacuous bba.
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Example 1.13 Assume Θ={Henry, Peter, Sara}.

Let two bba’s m1 and m2 relative to two pieces of evidence.

m1({Henry})=0.6;
m1({Henry,Peter})=0.2;
m1(Θ)=0.2;

m2({Peter})=0.4;
m2({Henry, Peter})=0.3;
m2(Θ)=0.3;

Applying the conjunctive rule of combination, we get:

(m1 ∩©m2)(∅)=0.24;
(m1 ∩©m2)({Henry})=0.36;
(m1 ∩©m2)({Peter})=0.16;
(m1 ∩©m2)({Henry, Peter})=0.18;
(m1 ∩©m2)(Θ)=0.06;

1.4.2 Disjunctive rule of combination

The dual of the conjunctive rule of combination that builds the bba rep-
resenting the impact of two pieces of evidence when we only know that at
least one of sources of information is reliable but we do not know which is
reliable, then the bba representing the combined evidence satisfies (Smets,
1998a):

(m1 ∪©m2)(E) =
∑

F,G⊆Θ:F∪G=E

m1(F )m2(G) (1.46)

The disjunctive rule of combination, as the conjunctive rule of combina-
tion, is commutative and associative.

• Commutativity:
m1 ∪©m2(E) = m2 ∪©m1(E) (1.47)

• Associativity:

(m1 ∪©m2(E)) ∪©m3(E) = m1 ∪©(m2(E) ∪©m3(E)) (1.48)

Example 1.14 Assume Θ={Henry, Peter, Sara}.

Let two bba’s m1 and m2 relative to two pieces of evidence see in example
1.14. By applying the disjunctive rule of combination, we get:
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(m1 ∪©m2)({Henry, Peter})=0.56;
(m1 ∪©m2)(Θ)=0.44;

Remark:

Since the conjunctive and the disjunctive rules of combination are both
commutative and associative, combining several pieces of evidence induced
from distinct information sources (either conjunctively or disjunctively) may
be easily ensured by applying repeatedly the chosen rule.

1.5 Conditioning

Suppose you have some belief on Θ represented by the basic belief assign-
ment m. Then, some further evidence becomes available to you and this
piece of information implies that the actual world cannot be in one of the
worlds in F̄. Then, the mass m(E) that initially was supporting that the
actual world is in E now supports that the actual world is in F ∩E as every
world in F̄ must be ‘eliminated’. So, m(E) is transferred to F ∩ E after
conditioning on F . The TBM gets its name from this transfer operation.

This operation leads to the conditional basic belief assignment m[F ],
belief function bel[F ] and plausibility function pl[F ], defined as follows:

m[F ](E) =
∑

G⊆F̄
m(E ∩ G) (1.49)

bel[F ](E) = bel(E ∪ F̄)− bel(F̄) (1.50)

pl[F ](E) = pl(E ∩ F ) (1.51)

q[F ](E) =
{
q(E), if E ⊆ F
0, otherwise.

(1.52)
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The rule by which these equations are built is called Dempster’s rule of
conditioning (Smets, 1988).

Example 1.15 Let us take the same bba m concerning the murderer of John
see in example 1.2. If you learn that the killer not Peter. Hence, the mass
m({Henry, Peter})=0.7 should be eliminated. So, there are a mass transfer
to:

m({Henry})=0.1+ 0.7=0.8;
m({Sara})=0.2;

1.6 Discounting

Dealing with evidence expressed by experts requires to take into account the
level of expertise of each information source. In fact, experts are not fully
reliable and a method of discounting seems imperative to update experts’
beliefs by taking into account their reliability. The idea is to weight most
heavily the opinions of the best experts and conversely for the less reliable
ones.

In the transferable belief model, discounting allows to take in considera-
tion the reliability of the information source that generates the bba m. For
α ∈ [0,1], let (1-α) be the degree of confidence (’reliability’) we assign to the
source of information. If the source is not fully reliable, the bba it generates
is ’discounted’ into a new less informative bba denoted mα (Smets, 1992):

mα(E) = (1− α).m(E), for E ⊂ Θ (1.53)

mα(Θ) = α+ (1− α).m(Θ) (1.54)

Properties

• α = 0 means that expert is totally reliable.

• α = 1 means that the expert is not reliable at all. His opinions have
to be totally ignored.

Example 1.16 Let us discount the bba m (given in the example 1.2) with
degree of reliability (1− α) is equal to 0.9, so we get:

mα({Henry})=0.9*0.1=0.09;
mα({Henry, Peter})=0.9*0.7=0.63;
mα({Sara})=0.9*0.2=0.18;
mα(Θ)=0.1 ;
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1.7 Decision process

The theory of belief functions is characterized by its ability to handle un-
certainty and to ensure the combination of evidence induced from different
sources. In order to make a decision, we hope to select the most likely
hypothesis which may be difficult to realize directly with the basics of the
belief function theory where bbm’s are given not only to singletons but also
to subsets of hypotheses.

In this section, we present some solutions allowing to ensure the decision
making within the belief function theory. The best known is the pignistic
probability proposed by the transferable belief model (Smets, 1988, 1998b;
Smets & Kennes, 1994; Smets & Kruse, 1997). Other criteria will be pre-
sented like the maximum of credibility and the maximum of plausibility
(Janez, 1996).

1.7.1 Pignistic probability

In the transferable belief model, holding beliefs and making decisions are
distinct processes. Hence, it proposes two levels:

• The credal level where beliefs are entertained and represented by belief
functions.

• The pignistic level where beliefs are used to make decisions and rep-
resented by probability functions called the pignistic probabilities and
is defined as:

BetP ({a}) =
∑

F⊆Θ

| {a} ∩ F |
| F |

m(F )
(1−m(∅)) , for all a ∈ Θ (1.55)

Example 1.17 To make a decision, we have to compute the pignistic prob-
ability BetP corresponding to the bba m (given in the example 1.2), we get:

BetP({Henry})=0.45;
BetP({Peter})=0.35;
BetP({Sara})=0.2;

It is more probable that the murderer is Henry.



26 Chapter 1: Belief function theory

1.7.2 Maximum of credibility

It consists in choosing the hypothesis having the highest value of the belief
function bel, that is the most credible hypothesis.

Decision based on the maximum of credibility is considered as a pes-
simistic approach since it chooses the ’best’ hypothesis based on the mini-
mum ’chance’ to realize.

Example 1.18 Let us continue with the example 1.2, and try to make a
decision by using the criterion of the maximum of credibility. We get:

bel({Henry})=0.1;
bel({Peter})=0;
bel({Sara})=0.2;

The largest value of bel is the one assigned to the hypothesis {Sara}. Ac-
cording to the maximum of credibility, Sara is the murderer.

1.7.3 Maximum of plausibility

It consists in choosing the hypothesis having the highest value of the plau-
sibility function pl which means that we support the hypothesis that gives
the less evidence for the contrary hypothesis.

Contrary to the maximum credibility criterion, this criterion is consid-
ered as optimistic since it takes into account of the maximum of ’chance’ of
realization of each hypothesis.

Example 1.19 Let us continue with the example 1.2, and try to make a
decision by using the criterion of the maximum of credibility. We get:

pl({Henry})=0.8;
pl({Peter})=0.7;
pl({Sara})=0.2;

The largest value of pl is the one assigned to the hypothesis {Henry}.
So, according to the maximum of plausibility, Henry is the murderer.
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1.8 Conclusion

In this chapter, we have presented the basic notions of belief function theory
as understood in the transferable belief model using illustrative examples.
This theory is appropriate to handle uncertainty in classification problems
(Ben-Hariz et al., 2006; Denœux, 1995, 2000; Denœux & Skarstein-Bjanger,
2000; Elouedi et al., 2001).

Let us remember that the objective of our thesis is to learn decision rules
using classification systems based on rough set theory, called Belief Rough
Set Classifier (BRSC) and Belief Rough Set Classifier based on General-
ization Distribution Table (BRSC-GDT), from uncertain data where the
uncertainty is handled through the TBM. Hence, the following chapter will
deal with the theory of rough sets where its basics will be described.
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Chapter 2

Rough set theory

2.1 Introduction

The idea of Rough Sets (RS) was proposed by Pawlak (1982, 1991) as a new
mathematical tool to deal with vague concepts. The main goal of the rough
set analysis is the induction of approximations of concepts. Rough set the-
ory constitutes a sound basis for KDD as a tool to discover hidden patterns
from data. It offers solutions to the problem of decision table simplification
which yields fast computer algorithms, discretization, and decision rule gen-
eration, etc. The theory of rough sets has been followed by the development
of several software systems that implement rough set operations.

Classification approach based on rough set theory, denoted Rough Set

Classifier (RSC), is a successful classification technique applied in several
real-world applications (An et al., 1997). This classifier performs feature
selection before generating rules. It is an efficient technique that tries au-
tomatically to produce a minimal and a significant set of decision rules
without many iterations. Several applications have revealed the need to
extend the traditional rough set approach to many variants to handle in-
complete and missing databases (Grzymala-Busse, 2003, 2004; Hong et al.,
2002; Kryszkiewicz, 1995). This chapter presents the basic concepts of rough
sets. Next, we present the two main procedures to create the rough set
classifier: the construction and the classification procedures. Finally, some
adaptations of rough set classifier are given under imperfect data.

29
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2.2 Basic concepts

2.2.1 Decision table

Data are represented as a table, where each row represents a case, an event,
a patient or simply an object. Every column represents an attribute (a vari-
able, an observation, a property, etc.) that can be measured for each object;
it can also be supplied by a human expert. Such table is called an infor-
mation system (information table). It is considered as the basic vehicles for
data representation in inductive learning algorithms.

One can define an information table (Pawlak, 1981) in terms of a pair
A = (U,C), where U = {o1, o2, .....on} is a non-empty, finite set of objects
(cases) called the universe and C = {c1, c2, .....ck} is a non-empty, finite set
of condition attributes.

In supervised learning, a special case of information tables is considered,
called decision tables (decision systems). A Decision Table (DT) is an infor-
mation system of the form A = (U, C ∪ {d}), where d 6∈ C is a distinguished
attribute called decision. The value set of d, called Θ = {d1, d2, .......ds}.

Example 2.1 Let us consider a very simple information table shown in
Table 2.1. There are six patients (objects) described by the means of three
symptoms (attributes): Headache, Muscle-pain and Temperature.

Table 2.1: Information table

U Headache Muscle-pain Temperature
o1 no yes high
o2 yes no high
o3 yes yes very high
o4 no yes normal
o5 yes no high
o6 no yes very high

Example 2.2 A small example of DT can be found in Table 2.2. The table
includes the same six objects as in Table 2.1 and one decision attribute (Flu)
has been added with two possible outcomes: yes, no.
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Table 2.2: Decision table

U Headache Muscle-pain Temperature Flu
o1 no yes high yes
o2 yes no high yes
o3 yes yes very high yes
o4 no yes normal no
o5 yes no high no
o6 no yes very high yes

The careful reader may notice that objects o2 and o5 have exactly the
same values of conditions, but they have a different outcome (different value
of the decision attribute).

The definitions to be synthesized from decision tables will be of the rule
form ’If Headache=no and Muscle-pain=yes and Temperature=high then
Flu=yes’. Among the possible properties of the constructed rule sets, mini-
mality is one of the important issues. This is studied in the next subsections.

2.2.2 Indiscernibility relation

A Decision Table (DT) expresses all the knowledge about the model. This
table may be unnecessarily large. The same or indiscernible objects may
be represented several times. We shall look into this issue now. The rough
sets adopt the concept of indiscernibility relation (Pawlak, 1982, 1991) to
partition the object set U into disjoint subsets, denoted by INDB or U/B,
and the equivalence class that includes oj is denoted [oj ]B. The objects oi

and oj are indiscernible on a subset of attributes B ⊆ C, if they have the
same values for each attribute in subset B of C.

For every object oj ∈ U , we will use ci(oj) to denote the value of a
condition attribute ci for an object oj . Similarly, d(oj) is the value of the
decision attribute for an object oj . We further extend these notations for a
set of attributes B ⊆ C, by defining B(oj) to be value tuple of attributes in
B for an object oj .
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The indiscernibility relation based on a subset of the condition attributes
B, denoted by INDB, is defined as follows:

INDB = U/B = {[oj ]B|oj ∈ U)} (2.1)

where [oj ]B = {oi|B(oi) = B(oj)} (2.2)

The indiscernibility relation based on the decision attribute d, denoted by
IND{d}, is defined as follows:

IND{d} = U/{d} = {[oj ]{d}|oj ∈ U)} (2.3)

Example 2.3 In order to illustrate how a decision table from Table 2.2 de-
fines an indiscernibility relation, we consider the following three non-empty
subsets of the conditional attributes: {Headache}, {Headache, Muscle-pain}
and {Headache, Muscle-pain, Temperature}. The relation IND defines three
partitions of the universe.

IND{Headache} = {{o2, o3, o5}, {o1, o4, o6}}
IND{Headache,Muscle−pain} = {{o1, o4, o6, }, {o2, o5}, {o3}}
IND{Headache,Muscle−pain, Temperature} = {{o1}, {o2, o5}, {o3}, {o4}, {o6}}

If we take into consideration the set {Headache}, the objects o2, o3 and
o5 belong to the same equivalence class; they are indiscernible.

2.2.3 Set approximation

An equivalence relation induces a partitioning of the universe. It is a nat-
ural dimension of reducing data. Since only one element of the equivalence
class is needed to represent the entire class. Subsets that are most often of
interest have the same value of the outcome attribute. It may happen that a
concept such as ’Flu’ cannot be defined in a crisp manner. The problematic
objects are o2 and o5. In other words, it is not possible to induce a crisp
description of such objects from table. It is here that the notion of rough
sets emerges.

It is possible to delineate the objects that certainly have a positive out-
come, the objects that certainly do not have a positive outcome and finally
the objects that belong to a boundary between the certain cases. If this
boundary is non-empty, the set is rough. These notions are formally ex-
pressed as follows (Pawlak, 1982, 1991):
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Let B ⊆ C and X ⊆ U . We can approximate X using only the informa-
tion contained by constructing the B−lower and B−upper approximations
of X , denoted B

¯
(X) and B̄(X) respectively where

B
¯
(X) = {oj |[oj ]B ⊆ X} (2.4)

B̄(X) = {oj |[oj]B ∩X 6= ∅} (2.5)

Objects in B
¯
(X) can be with certainty classified as members of X on

the basis of knowledge in B, while objects in B̄(X) can be only classified as
possible members of X on the basis of knowledge in B.

The set BNB(X) is called the B − boundary region of X , and thus
consists of those objects that we cannot decisively classify into X on the
basis of knowledge in B:

BNB(X) = B̄(X)− B
¯
(X) (2.6)

The set B − outside region of X consists of those objects which can be
with certainly classified as do not belonging to X , is equal to:

U − B̄(X) (2.7)

A set is said to be rough (respectively crisp) if the boundary region is
non-empty (respectively empty).

Example 2.4 We will continue with the decision table in Table 2.2. Let
X= {oj |Flu(oj)=yes }. In fact, the set X consists of four objects: o1,
o2, o3 and o6. Now, we want to describe this set in terms of conditional
attributes C = {Headache, Muscle−pain, Temperature}. Using the above
definitions, we obtain the following approximation regions: the C − lower
approximation C

¯
(X) ={o1, o3, o6}, the C − upper approximation C̄(X)

={o1, o2, o3, o5, o6}, the C − boundary region BNC(X)={o2, o5} and the
C − outside region U - C̄(X) ={ o4}. It is easy to see that the set X is
rough since the boundary region is not empty.

2.2.4 Positive region and dependency of attributes

Another important issue in data analysis is discovering dependencies be-
tween attributes. Intuitively, the decision attribute d depends totally on a
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set of condition attributes C, denoted C ⇒ {d}, if all values of attribute d
are uniquely determined by values of attributes from C.

Formally, a functional dependency can be defined in the following way
(Pawlak, 1982, 1991). The attribute d depends on C in a degree k (0 ≤ k ≤
1), denoted C ⇒k {d}, if

k = γC(A, {d}) =
|PosC(A, {d})|

|U | (2.8)

where
PosC(A, {d}) =

⋃

X∈U/{d}
C
¯
(X), (2.9)

PosC(A, {d}) is called a positive region of the partition U/{d} with respect
to C, is the set of all elements of U that can be uniquely classified to blocks
of the partition U/{d}, by means of C.

If k = 1 we say that the attribute d depends totally on C, and if k ≺ 1,
we say that the attribute d depends partially (in a degree k) on the set of
attributes C.

The coefficient k expresses the ratio of all elements of the universe, which
can be definable classified to blocks of partition U/{d}, employing attributes
C and will be called the degree of dependency.

It can be easily seen that if d depends totally on C then INDC ⊆
IND{d}. This means that the partition generated by C is finer than the
partition generated by d.

The decision attribute d is totally (partially) dependent on the set of the
condition attributes C, if employing C all (possible some) elements of the
universe U may be uniquely classified to blocks of the partition U/{d}.

Example 2.5 Let us consider again a decision table shown in Table 2.2. For
example, for dependency {Headache, Muscle-pain, Temperature} ⇒ {Flu}
we get k=4/6=2/3, because only four patients can be uniquely classified as
having flu or not, employing attributes Headache, Muscle-pain and Temper-
ature, PosC(A, {d})= {o1, o3, o4, o6}.

If we were interested in how exactly patients can be diagnosed using only
the attribute Temperature, that is in the degree of dependence {Temperature}
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⇒ {Flu}, we would get k=3/6=1/2, since in this case only patients o3, o4
and o6 out of six can be uniquely classified as having flu. In contrast to the
previous case patient o4 cannot be classified now as having flu or not. Hence
the single attribute Temperature offers worse classification than the whole
set of attributes Headache, Muscle-pain and Temperature. It is interesting
to observe that neither Headache nor Muscle-pain can be used to recognize
flu, because for both dependencies {Headache} ⇒ {Flu} and {Muscle-pain}
⇒ {Flu} we have k=0.

2.2.5 Decision rules

The decision rule induced from a Decision Table (DT) is shown as below:

α −→ β with S

-α denotes the conjunction of the conditions that a concept must satisfy.
-β denotes a concept that the rule describes.
-S is a measure of strength of which the rule holds.

The support S gives a measure of how trustworthy the rule in drawing
conclusion β on the basics of evidence α. Several numerical factors can
be associated with a synthesized rule to measure its strength. It can be a
frequency based estimate of conditional Probability Pr(β/α).

S =
|α ∩ β|
|α| (2.10)

After the lower and the upper approximations have been found, the rough
set theory can be then used to derive certain and possible rules from them.
Rules induced from the lower approximation of the concept certainly de-
scribe it, so they are called certain. On the other hand, rules induced from
the upper approximation of the concept it only possibly, so they are called
possible. The support measure S of a certain rule is equal to 1. The high
support measure S for a possible rule the more reliable rule is.

In other words, a decision rule relative to an object oj is consistent (true,
certain), if for every i 6= j C(oj) = C(oi) implies d(oj) = d(oi). A decision
table is consistent if all decision rules are consistent. A decision table is
consistent if and only if C =⇒ {d}. So, there is a relationship between con-
sistency and dependency of attributes in a decision table. If the degree of
dependency equals to 1, we conclude that the decision table is consistent.
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Example 2.6 Let us take this rule from the decision table in Table 2.2:

’If Headache=yes and Muscle-pain=no and Temperature=high then
Flu=yes’

The set of objects describes the concept β is {o1, o2, o3, o6}. The set of
objects describes the left part of the rule α is {o2, o5}. The strength of the
rule is equal to:

S= |{o2, o5}∩{o1,o2,o3 ,o6}|
|{o2, o5}| = 1

2

This rule is not true (not certain). So, the decision table is not consistent

2.2.6 Reduct and core

In a previous subsection, we have investigated one natural dimension of
reducing data which is to identify equivalence classes, objects that are in-
discernible using the available attributes. The other dimension in reduction
is to keep only those attributes that preserve the indiscernibility relation
and consequently set approximation. The remaining attributes are redun-
dant since their removal does not worsen the classification. There is usually
several such subsets of attributes and those which are minimal are called
reducts. In order to express the above idea more precisely we need some
auxiliary notions:

Let c ∈ C, the attribute c is dispensable in C with respect to d, if
PosC(A, {d}) = PosC−c(A, {d}). Otherwise attribute c is indispensable in
C with respect to d.

If all attribute c ∈ C are indispensable in C with respect to d, then C

will be called independent.

Reduct

A subset B ⊆ C is a reduct of C with respect to d, if B is independent and:

PosB(A, {d}) = PosC(A, {d}) (2.11)

Hence, a reduct is a set of attributes from C that preserves partition
and, consequently, set approximation. It means that a reduct is the mini-
mal subset of attributes that enables the same classification of elements of
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the universe as the whole set of attributes. In other words, attributes that
do not belong to a reduct are superfluous with regard to classification of
elements of the universe.

Note that computing equivalence classes is straightforward. Finding a
minimal reduct (reduct with a minimal number of attributes) among all
reduct is NP-hard. This means that computing reducts is not a trivial task
that cannot be solved by a simple increase of computational resources. It
is, in fact, one of the drawbacks of rough set methodology. Fortunately,
there exist good heuristics (Chouchoulas & Shen, 2001; Jensen & Shen,
2003; Wroblewski, 1995; Zhong et al., 2001) that compute sufficiently many
reducts in often acceptable time, unless the number of attributes is very
high.

Core

The set of all the condition attributes indispensable in C with respect to d
is denoted by CoreC(A, {d}). It is the intersection of all reducts of C.

CoreC (A, {d}) =
⋂
RedC(A, {d}) (2.12)

Where RedC(A, {d}) is the set of all reducts of C.

Since the core is the intersection of all reducts, it is included in every
reduct. Thus, in a sense, the core is the most important subset of attributes,
for none of its elements can be removed without affecting the classification
power of attributes.

We will need also a concept of a value reduct and value core. Suppose
we are given a dependency C ⇒ {d}. To further investigation of the de-
pendency, we might be interested to know exactly how values of attribute d
depend on values of attributes from C. To this end, we need a procedure of
eliminating values of attributes form C which do not influence on values of
attribute d. This issue will be detailed in the next subsection.

Example 2.7 Let us continue with the decision system in Table 2.2, to
compute the possible reducts and core.

PosC (A, {d})= {o1, o3, o4, o6}
Pos{Headache}(A, {d})=∅
Pos{Muscle−pain}(A, {d})=∅
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Pos{Temperature}(A, {d})={o3, o4, o6}
Pos{Headache,Muscle−pain}(A, {d})={o3}
Pos{Headache,Temperature}(A, {d})={o1, o3, o4, o6}
Pos{Muscle−pain,T emperature}(A, {d})={o1, o3, o4, o6}

In Table 2.2, there are two possible reducts with respect to Flu, {Muscle-pain,
Temperature} and {Headache, Temperature} are independent with respect to
the decision Flu and have the same positive region that the whole subset of
condition attributes C. That means that either the attribute Muscle− pain
or Headache can be eliminated from the table and consequently instead of
Table 2.2, we can use either Table 2.3 or Table 2.4. The core is the attribute
Temperature. It is the intersection of the two possible reducts.

Table 2.3: First reduct

U Headache Temperature Flu
o1 no high yes
o2 yes high yes
o3 yes very high yes
o4 no normal no
o5 yes high no
o6 no very high yes

Table 2.4: Second reduct

U Muscle-pain Temperature Flu
o1 yes high yes
o2 no high yes
o3 yes very high yes
o4 yes normal no
o5 no high no
o6 yes very high yes

For Table 2.2, the core with respect to the set {Headache, Muscle-pain,
Temperature} is the Temperature. This confirms that Temperature is the
only symptom that enables, at least, partial diagnosis of patients.
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2.2.7 Value reduct and value core

To further simplify the decision table, we can eliminate some values of at-
tribute from the table. To this end, we can apply similar procedure as
eliminate superfluous attributes, which is defined next.

We will say that the value of attribute c ∈ C, is dispensable for oj with
respect to d, if [oj ]C ⊆ [oj ]{d} implies [oj ]C−{c} ⊆ [oj ]{d}; otherwise the value
of attribute c is indispensable for oj with respect to d.

If for every attribute c ∈ C the value of c is indispensable for oj , then C
will be called independent (orthogonal) for oj .

A subset B ⊆ C is a value reduct of C for oj , if B is orthogonal for oj

and [oj ]C ⊆ [oj ]{d} implies [oj ]B ⊆ [oj ]{d}.

The set of all indispensable values of attributes from C for oj will be
called core of C for oj (the value core), and will be denoted CorejC(A, {d}).

We have also the following property

CorejC (A, {d}) =
⋂
Redj

C(A, {d}) (2.13)

Where Redj
C(A, {d}) is the family of all reduct of C for oj with respect to d.

Example 2.8 Let us continue with the decision system in Table 2.2. Using
the concept of a value reduct. Table 2.3 and Table 2.4 can be simplified as
follows:

Table 2.5: Reduced decision table 1

U Headache Temperature Flu
o1 no high yes
o2 yes high yes
o3 - very high yes
o4 - normal no
o5 yes high no
o6 - very high yes
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Table 2.6: Reduced decision table 2

U Muscle-pain Temperature Flu
o1 yes high yes
o2 no high yes
o3 - very high yes
o4 - normal no
o5 no high no
o6 - very high yes

In order to explain how we can obtain Tables 2.5 and 2.6, we only take the
third rule relative to the object o3 from Table 2.3 and we compute their reduct
values. The possible reduct values are Headache = yes and Temperature =
very high.

We check if: [o3]{Headache} ⊆ [o3]{d}
{o2, o3, o5} 6⊆ {o1, o2, o3, o6}
We check if: [o3]{Temperature} ⊆ [o3]{d}
{o3, o6} ⊆ {o1, o2, o3, o6}

So, Temperature = very high is the only value reduct for the object o3
with respect to Flu and it is also the value core.

Discernibility matrix and function

In order to easily compute reducts and core or value reduct and value core,
we can use the discernibility matrix (Skowron & Rauszer, 1992) which is
defined below. Let A be a decision table with n objects. The discernibility
matrix of A is a symmetric n*n matrix with entries aij as given below. Each
entry thus consists of the set of attributes upon which objects oi and oj

differ.

aij = {c ∈ C\c(oi) 6= c(oj)} and d(oi) 6= d(oj) for i, j = 1, ..., n (2.14)

Thus, entry aij is the set of all attributes which discern objects oi and oj

that do not belong to the same equivalence class IND{d}.
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A discernibility function fA for a decision table A is a boolean function of
m boolean variables c∗1...c

∗
m (corresponding to the attributes c1...cm) defined

as below, where a∗ij = {c∗|c ∈ aij}

fA(c∗1, ..., c
∗
m) = ∧{∨a∗ij |1 ≤ j ≤ i ≤ n, aij 6= ∅} (2.15)

where ∧ and ∨ are two logical operators for conjunction and disjunction.
The set of all prime implicants1 of fA determines the sets of all reducts of
A.

If we construct a boolean function by restricting the conjunction to only
run over column j in the discernibility matrix (instead of over all columns),
we obtain the so-called j-relative discernibility function. The set of all prime
implicants of this function determines the set of all j-reducts of A (the value
reduct for the object oj). The value reducts reveal the minimum amount of
information needed to discern oj ∈ U .

Example 2.9 Let us continue with the same decision table in Table 2.2. We
will use the notations H, M and T respectively for Headache, Muscle−pain
and Temperature. The discernibility matrix and function are:

Table 2.7: Discernibility matrix

o1 o2 o3 o4 o5 o6
o1
o2
o3
o4 T H,M,T
o5 H,M M,T
o6 T H,M,T

fA(H,M, T )=T ∧ (H ∨ M) ∧ (H ∨ M ∨ T) ∧ (M ∨ T)

1An implicant of a Boolean function f is any conjunction of literals (variables or their
negations) such that if the values of these literals are true under an arbitrary valuation v
of variables then the value of the function f under v is also true. A prime implicant is a
minimal implicant. Here, we are interested in implicants of monotone Boolean functions
only (functions constructed without negation).
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where each parenthesized tuple is a conjunction in the Boolean expression,
and where the one-letter Boolean variables correspond to the attribute names
in an obvious way. After the simplification of the discernibility function, we
obtain the following expression:

fA(H,M, T )= (T ∧ H) ∨ (T ∧ M)

Which represents two reducts {Temperature, Headache} and {Temperature,
Muscle-pain} in the decision table where Temperature is the core.

2.3 Rough Set Classifier (RSC)

A Rough Set Classifier (RSC) is an interesting classification technique ap-
plied in many fields like medicine, finance, telecommunication, intelligent
agents, image analysis, pattern recognition, process industry, marketing,
etc. The models generated by the rough set classifier take the form of ’IF-
THEN’ rules, which have the advantage of interpretation. Besides, feature
selection is a very critical step when building the model which decreases
the time complexity of learning, size of induced decision rules and improves
their qualities. Several software systems have been developed that support
the process of constructing and validating rough set classifier providing ad-
vanced graphical environments, for instance, KDD-R (Ziarko, 1998), LERS
(Grzymala-Busse, 1992), ProbRough (Piasta & Lenarcik, 1996), etc.

A Rough Set Classifier (RSC) is made using two different procedures:

1. Construction procedure

2. Classification procedure

2.3.1 RSC: Construction procedure

The construction procedure of the RSC is described by the mean of the
following phases:

1. Creation of the training decision table.

2. Discretization of real values attributes.

3. Simplification of the training decision table.

4. Generation of the decision rules.

We will detail these phases in the following parts:
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Phase 1. Creation of the training decision table

The raw input data set is transformed into a decision table where rows
correspond to objects, and columns correspond to features. The decision
table is subsequently split into two parts: the training dataset (a set of
instances used for learning the model generated by the classifier) and the
testing dataset (a set of instances used to evaluate the performance of the
classifier). So, the rough set classifier will be induced from the training
dataset and applied to the testing dataset to obtain a performance estimate.

Example 2.10 Let us take an example of training decision system shown
in Table 2.8 where a, b, c, d are four condition attributes and e is a decision
attribute with three possible values Θ= {0, 1, 2}. The condition attributes
b,c,d are symbolic. However, the attribute a is real valued. We need in this
case a discretization process. We look to this issue in the next phase.

Table 2.8: Training decision table

U a b c d e
o1 1.3 0 0 1 1
o2 1.3 0 0 0 1
o3 0.8 0 0 0 0
o4 1.4 1 0 1 0
o5 1.4 1 0 2 2
o6 1.6 1 0 2 2
o7 1.6 2 2 2 2
o8 1.3 0 0 0 1

Phase 2. Discretization of real values attributes

A real-world data set always contains mixed types of data such as continu-
ous valued, symbolic data, etc. When it comes to analyze attributes with
real values, they must undergo a process called discretization, which divides
the attributes value into intervals. There is a lack of the unified approach to
discretization problems so far, and the choice of method depends heavily on
data considered. Discretization is a step that is not specific to the rough set
approach but that most rule induction algorithms currently require for them
to perform well. A number of successful approaches to the problem of finding
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effective methods for real value attributes quantization have been proposed
by machine learning. The rough set community has been also committed to
constructing efficient algorithms for discretization such as a discretization
system called the RSBR that is based on hybridization of Rough Sets and
Boolean Reasoning proposed in (Nguyen, 1997).

Example 2.11 Let us continue with the Table 2.8 to discretize the attribute a
based on RSBR. The main steps of the algorithm can be described as follows:

Step 1. Define a set of Boolean Variables BV(U). We have BV (U) =
{pa

1, p
a
2, p

a
3, p

a
4}, where pa

1 corresponds to the interval [0.8, 1) of a; pa
2 corre-

sponds to the interval [1,1.3) of a; pa
3 corresponds to the interval [1.3, 1.4)

of a; pa
4 corresponds to the interval [1.4, 1.6) of a.

Step 2. Create a new decision table Ap by using the set of Boolean
variables defined in Step 1. Here Ap is called the P-discretization of A,
Ap = (U,∪{d}, pc

k), p
c
k is a propositional variable corresponding to the inter-

val [vc
k, p

c
k+1) for any k ∈ {1,...,nc-1} and c ∈ C.

Table 2.9 shows an example of Ap. We set, pa
1(o1, o2) = 1, because any

cut in the interval [0.8, 1) corresponding to p1
a discerns o1 and o2.

Table 2.9: An example of Ap

U pa
1 pa

2 pa
3 pa

4

(o1, o2) 1 0 0 0
(o1, o3) 1 1 0 0
(o1, o5) 1 1 1 0
(o4, o2) 0 1 1 0
(o4, o3) 0 0 1 0
(o4, o5) 0 0 0 0
(o6, o2) 0 1 1 1
(o6, o3) 0 0 1 1
(o6, o5) 0 0 0 1
(o7, o2) 0 1 0 0
(o7, o3) 0 0 0 0
(o7, o5) 0 0 1 0
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Step 3. Find a minimal subset of P that discerns all the objects in dif-
ferent decision classes by using the discernibility formula.

ΦU = ∧{ψ(i, j) : d(oi) 6= d(oj)} (2.16)

Where, ψ(i, j)= pa
1 means that in order to discern object o1 and o2, the

cut between a(0.8) and a(1) must be selected. From Table 2.9, we obtain the
discernibility formula:

ΦU=(pa
1) ∧ (pa

1 ∨ pa
2 ) ∧(pa

1 ∨ pa
2 ∨ pa

3) ∧(pa
2 ∨ pa

3 ) ∧ (pa
2 ) ∧(pa

2 ∨ pa
3 ∨

pa
4 ) ∧(pa

3 ∨ pa
4) ∧ (pa

4 )∧(pa
2) ∧ (pa

3 )

Finally, we obtain four prime implicants of the discernibility formula,

ΦU=(pa
1 ∨ pa

4) ∧ (pa
2) ∧ (pa

3) ∧ (pa
3)

Furthermore, we select {pa
1, p

a
4}, i.e. P = {(a, 0.9); (a, 1.5)} as the

optimal result, because it is the minimal subset of P preserving discernibility.

Table 2.10: P-discretization of the training decision table

U a b c d e
o1 1 0 0 1 1
o2 1 0 0 0 1
o3 0 0 0 0 0
o4 1 1 0 1 0
o5 1 1 0 2 2
o6 2 1 0 2 2
o7 2 2 2 2 2
o8 1 0 0 0 1

Phase 3. Simplification of the training decision table

Real-world databases are characterized by a lot of redundant and irrelevant
informations having no effect on classification performance. If these redun-
dancies are not removed, not only the time complexity of rule discovery
increases, but also the quality of the discovered rules may be significantly
depleted. Hence, the simplification of decision table has a primary impor-
tance in many applications. It has been investigated by many researchers
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and there are a variety of informal approaches to this problem. The ap-
proach to table simplification presented here consists of the following steps
(Pawlak, 1982, 1991):

Step. 1 Elimination of the superfluous condition attributes: An
example of simplification is the reduction of condition attributes in a deci-
sion table called attribute selection. In the reduced decision table, the same
decisions can be based on a smaller number of conditions. This kind of
simplification eliminates the need for checking unnecessary conditions or, in
some applications, for performing, expensive tests to arrive at a conclusion
which eventually could be achieved by simpler means.

There are several attempts to solve this problem based on rough sets
(Modrzejewski, 1993; Pawlak, 1991; Rauszer, 1991). One of the ideas was
to consider as relevant features those in reducts of the decision table. Com-
putation of reducts is equivalent to eliminate some of condition attributes
(columns) from the decision table.

Example 2.12 Let us continue with the same example in Table 2.8. It
is easy to compute that only dispensable attribute is c with respect to e;
consequently, we can remove column c in Table 2.8, which yields Table 2.11
shown below.

Table 2.11: Reduct of the training decision table

U a b d e
o1 1 0 1 1
o2 1 0 0 1
o3 0 0 0 0
o4 1 1 1 0
o5 1 1 2 2
o6 2 1 2 2
o7 2 2 2 2
o8 1 0 0 1

Step 2. Elimination of the redundant objects: After selecting the
more relevant features from conditional attributes, we will find duplicate
objects (rows) in the decision table. Duplicate rows have the same value of
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condition and decision attributes.

Example 2.13 In Table 2.11, there are two redundant objects o2 and o8.
Hence, we keep the object o2 and we delete the object o8.

Step 3. Elimination of the superfluous values of condition at-
tributes: A reduced table can be seen as a rule set where each rule corre-
sponds to one object of the table. The rule set can be generalized further
by applying rough set value reduction method. The main idea behind this
method is to drop those redundant condition values of rules and to unite
those rules in the same decision. Hence, after removing the superfluous at-
tributes and redundant objects, we can remove some superfluous attributes
values for some rule using the concept of value reduct and value core.

Example 2.14 In this step we have to reduce superfluous values of condi-
tion attributes, in every decision rule. We have first to compute core values
of condition attributes in every decision rule. For the sake of illustration,
let us compute the core values of condition attributes for the first object o1:

’If a=1 and b=0 and d=1 then e=1’.

If we remove the value a=1 from the rule there are no inconsistency. So,
a=1 is dispensable with respect to the decision e. It is not a core value.
If we remove the value d=1 from the rule there are no inconsistency. So,
d=1 is dispensable with respect to the decision e. It is not a core value.
If we remove the value b=0 from the rule there are inconsistencies :

1. ’If a=1 and d=1 then e=1’,

2. ’If a=1 and d=1 then e=0’.

So, b=0 is dispensable with respect to the decision e. It is the only core value.

Similarly we can compute remaining core values of condition attributes
in every decision rule and the final results are presented in Table 2.12.

Having computed core values of condition attributes, we can proceed to
compute value reducts. As an example, let us compute value reduct for the
object o1 of the decision table. The set of possible reducts are:

’If b = 0 then e = 1’. It is not consistent.
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Table 2.12: Core values of the decision rules

U a b d e
o1 - 0 - 1
o2 1 - - 1
o3 0 - - 0
o4 - 1 1 0
o5 - - 2 2
o6 - - - 2
o7 - - - 2

’If b = 0 and d = 1 then e = 1’. It is consistent.
’If a = 1 and b = 0 then e = 1’. It is consistent.

Hence, we have two value reducts b = 0 and d = 1 or a = 1 and b = 0.

In Table 2.13 below we list value reducts for all decision rules.

Table 2.13: Reduct values of the decision rules

U a b d e
o1 1 0 - 1
o1’ - 0 1 1
o2 1 0 - 1
o2’ 1 - 0 1
o3 0 - - 0
o4 - 1 1 0
o5 - - 2 2
o6 - - 2 2
o6 2 - - 2
o7 - - 2 2
o7’ - 2 - 2
o7” 2 - - 2
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Phase 4. Generation of the decision rules

The reader has certainty realized that the reducts and reduct values can be
used to synthesize minimal decision rules. Once they have been computed,
the rules are easily constructed by reading off the values. The rule derived
from this stage can be used to classify the data. The set of rules is referred
to as a classifier and can be used to classify new and unseen data.

Example 2.15 As we can see from Table 2.13, for decision rules 1 and
2, we have two value reducts of condition attributes. Decision rules 3, 4
and 5 have only one value reducts of condition attributes for each decision
rule row. The remaining decision rules 6 and 7 contain two and three value
reducts respectively. Thus, there are 2*2*2*3=24 (not necessarily) solutions
to our problem. Since decision rules 1 and 2 are identical, and so are rules
5, 6 and 7, we can represent our table in the form :

Table 2.14: Simplified decision rules

U a b d e
o1, o2 1 0 - 1
o3 0 - - 0
o4 - 1 1 0

o5, o6, o7 - - 2 2

This solution will be referred to as minimal. Looking in Table 2.14, the
induced decision rules are:

’If a=1 and b=0 then e=1’,
’If a=0 then e=0’,
’If b=1 and d=1 then e=0’,
’If d=2 then e=2’.

All the induced decision rules from Table 2.14 are true.

2.3.2 RSC: Classification procedure

To classify objects, which have never been seen before, decision rules gen-
erated from the training set will be used. These rules represent the actual
classifier. This classifier is used to predict to which class (decision) new



50 Chapter 2: Rough set theory

object is attached. The same cuts computed from training dataset dis-
cretization method are first used to discretize the new object dataset.

Let us consider one of the simplest application scheme which has shown
to be useful in practice.

• When a rough set classifier is presented with a new case, the rule set
is scanned to find applicable rules. Rules whose predecessors match
the case.

• If no rule is found, the most frequent outcome in the training data is
chosen.

• If more than one rule fires, these may in turn indicate more than
possible outcome. A voting process is then performed among the rules
that fire in order to solve conflicts and to rank the predicted outcomes.
The new object will be assigned to the decision class with maximal
strength of the selected rule set.

For a systematic overview of rule synthesis see (Grzymala-Busse & Wang,
1997; Skowron, 1995; Stefanowski, 1998).

2.4 Rough set classifier for incomplete data

Data sets can be roughly classified into two categories: complete and in-
complete data sets. All objects in complete data sets have known attribute
values. If at least one object in data set has a missing or imprecise value,
the set is incomplete or uncertain.

Learning from incomplete or uncertain data sets is usually more diffi-
cult than from complete data sets. Several extensions of induction systems
based on rough sets have been developed to handle the problem of incom-
plete data sets with missing attribute values (Grzymala-Busse, 2003, 2004;
Hong et al., 2002; Kryszkiewicz, 1995, 1999; Lingras, 1995; Stefanowski,
2001; Stefanowski & Tsoukias, 2001).

All these extensions deal with incomplete and missing data, but not
with partially uncertain data. There are two kinds of missing data existing
in decision table:

1. Lost value: where the original value was erased, represented by the
symbol ’?’.
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2. Do not care value: where the original value was irrelevant, repre-
sented by the symbol ’*’.

Incomplete decision tables in which all attribute values are lost, from
the viewpoint of the rough set theory, were studied for the first time in
(Grzymala-Busse & Wang, 1997) where two algorithms for rule induction,
modified to handle lost attribute values, were presented. This approach was
studied later in (Stefanowski, 2001; Stefanowski & Tsoukias, 2001), where
the indiscernibility relation was generalized to describe such incomplete de-
cision tables.

Incomplete decision tables in which all missing attribute values are ’Do
not care’ conditions, from the view point of rough set theory, were attempted
for the first time in (Grzymala-Busse, 1991), where a method for rule induc-
tion was introduced in which missing attribute values were replaced by all
values from the domain of the attribute. ’Do not care’ conditions were also
studied later in (Kryszkiewicz, 1995, 1999), where the indiscernibility rela-
tion was again generalized, this time to describe incomplete decision tables
with ’do not care’ conditions.

In general, incomplete decision tables are described by characteristic
relations, in a similar way as complete decision tables are described by in-
discernibility relations (Grzymala-Busse, 2003, 2004). In rough set theory,
one of the basic notions is the idea of lower and upper approximations. For
complete decision tables, once the indiscernibility relation is fixed and the
concept is given, the lower and upper approximations are unique. For in-
complete decision tables, for a given characteristic relation and a concept,
there are three different possibilities to define the lower and the upper ap-
proximations, called singleton, subset and concept approximations. Only
the latter is applicable in data mining (Grzymala-Busse, 2003, 2004).

Some other works have combined the rough set theory with other theories
of uncertainty to handle the problem of incomplete data such as probability
theory, fuzzy set theory and belief function theory.

2.4.1 Probability theory and rough set theory

Piasta and Lenarcik (1996) present an algorithm ProbRough for inducing
decision rules from data. The algorithm combines all the positive aspects of
rule induction systems with the flexibility of the probabilistic representation
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of data and learned knowledge. It accepts imprecise and incomplete data of
any mixed qualitative and quantitative type. The probabilistic structure of
data is estimated from the learning set using the frequency-based estima-
tors. The results of learning are described in the form of a certain partition
of the feature space. The partition elements are of a special geometrical
shape, which enables the presentation of the decision rules in a simple form
meaningful to humans. Nevertheless, the prediction accuracy is compara-
ble or superior to more sophisticated classifiers. The ProbRough algorithm
searches through the set of various partitions using the criterion based on
minimizing the misclassification costs.

2.4.2 Fuzzy set theory and rough set theory

In (Hong et al., 2002), the problem of producing a set of certain and possible
rules from incomplete quantitative data is handled. The rough set theory
and the fuzzy set concepts are combined to solve this problem. A new
generalized fuzzy learning algorithm based on fuzzy incomplete equivalence
classes proposed to simultaneously derive certain and possible fuzzy rules
from incomplete quantitative data sets and estimate the missing values in
the learning process.

2.4.3 Belief function theory and rough set theory

In (Lingras, 1995), a rough set based methodology for extracting rules from
incomplete databases was proposed. Conventionally, the rough set model is
used for rule extraction from databases where some values of the attributes
are precisely known. The proposed approach is a generalization of existing
approach by allowing for a set of possible attribute values. Such an approach
can be useful in situations where the value of an attribute may be one of a
few possible choices. The developed work suggests a relaxation of some of
the assumptions in the rough set theory as well as the resulting plausibility
functions. The rule extraction process described in this study is based on
belief functions.

2.5 Conclusion

The rough set theory is applied in many real-world applications such as med-
ical data analysis, finance, voice recognition, image processing and others.
The standard version of rough set is too simple for many real life appli-
cations. This chapter presented the basic concepts of this theory, its role
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in KDD process and some extensions and variants proposed by various re-
searchers.

All extensions of the rough set classifier handle only incomplete decision
table characterized by some missing attribute values and not with partially
uncertain decision attribute values. Our work also presented other exten-
sions of rough set classification from partially uncertain data where the
uncertainty exists only in decision attribute values and is handled by the
TBM. Our new solutions, denoted by Belief Rough Set Classifier (BRSC)
and Belief Rough Set Classifier based on Generalization Distribution Table
(BRSC-GDT), will be detailed in the next part.
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In this second part, considered as the major of our thesis, we detail
the developments that we have proposed in order to build our two classi-
fication approaches called the Belief Rough Set Classifier (BRSC) and
the Belief Rough Set Classifier based on Generalization Distribution
Table (BRSC-GDT) from Uncertain Decision Table (UDT). The uncer-
tainty exists only in the decision attribute and is handled by the TBM, one
interpretation of the belief function theory. We only handle symbolic condi-
tion and decision attribute values. This part is composed of four chapters:

• Chapter 3 describes the basic concepts of rough sets under the belief
function framework. These new definitions of the basic concepts are
needed to create our first classification approach called BRSC. We also
detail the basic notions of the hybrid system GDT-RS needed to cre-
ate the second classification approach called BRSC-GDT. The latter
was also generalized under the new context to be called belief GDT-RS.

• Chapter 4 presents the two main procedures of the belief rough set
classifier and the belief rough set classifier based on generalization
distribution table: the construction and the classification procedures.
The first procedure consists of the main phases needed to create both
the classifiers and the second procedure deals with the classification of
new objects.

• Chapter 5 presents some ideas to improve the performance of our clas-
sification systems (BRSC, BRSC-GDT). To reduce the time require-
ment needed to build the two models, we propose a heuristic attribute
selection method from the partially uncertain data. This heuristic
method selects the more relevant condition attributes without costly
calculation. To obtain more stable results from the two classifiers, we
propose the concept of dynamic reduct from uncertain data to select
the more efficient and stable attributes from noisy and uncertain data.

• Chapter 6 presents the experimental phase which is performed in order
to check the feasibility of our approaches and judge their qualities.
The time requirement, the size of the model and the accuracy are the
evaluation criteria . Results obtained from real-world databases are
analyzed and compared with those obtained from a similar classifier
called Belief Decision Tree (BDT).
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Chapter 3

Basic concepts of belief
rough set classifiers

3.1 Introduction

The objective of our thesis is to learn decision rules from uncertain data
to classify new objects. Hence, we propose in our work two classification
approaches based on Rough Sets (RS) that are able to generate decision
rules from uncertain data. We assume that the uncertainty exists only in
the decision attribute values of the Decision Table (DT) and is represented
by the belief functions. The first classification technique, named Belief
Rough Set Classifier (BRSC), is only based on the basic concepts of the
Rough Sets (RS). The second is more sophisticated, called Belief Rough
Set Classifier based on Generalization Distribution Table (BRSC-GDT),
and derived from the hybrid system GDT-RS. The latter is a combination of
the Generalization Distribution Table (GDT) and the Rough Set method-
ology (RS).

In the first part of this chapter, we describe the modified basic concepts
of rough sets under belief function framework like uncertain decision table
and tolerance relation. These concepts are useful to build the BRSC. The
second part of this chapter presents the basic notions of the hybrid system
GDT-RS and its new definition under the belief function framework called
belief GDT-RS. It is needed to build the BRSC-GDT.

59
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3.2 Basic concepts of rough sets under belief func-

tions

One issue in real-world databases is the uncertainty. This kind of data exists
in many real-world applications like in medicine where symptoms or diseases
of some patients may be totally or partially uncertain. It is not efficient to
eliminate these objects from classification process because it will result in
a loss of important information. Many works have been done to adapt
rough sets to this kind of environment (Grzymala-Busse, 2003, 2004; Hong
et al., 2002; Kryszkiewicz, 1995; Stefanowski, 2001; Stefanowski & Tsoukias,
2001). These extensions deal with incomplete decision tables which may be
characterized by missing condition attribute values, but not with uncertain
decision attributes. Due to this shortcoming, we propose in this thesis our
two classification approaches the BRSC and the BRSC-GDT which are able
to learn decision rules from uncertain data in the objective to classify unseen
objects. The uncertainty only exists in the decision attribute of the training
sets. This kind of uncertainty can be represented by the theory of belief
functions. It is considered as a useful theory for representing partial uncer-
tain knowledge. In this work, we use the TBM, one interpretation of belief
function theory (Smets & Kennes, 1994; Smets, 1998a). In order to cre-
ate our new classification systems based on rough sets especially the BRSC,
we need to redefine the basic concepts of rough sets in the uncertain context.

This section describes the modified definitions of an uncertain decision
table, tolerance relation, set approximation, positive region, dependency of
attributes and especially core and reduct needed in the construction proce-
dure of BRSC. These news definitions were originally proposed in (Trabelsi
& Elouedi, 2008, 2009).

3.2.1 Uncertain decision table

Our Uncertain Decision Table (UDT) is defined as follows: A = (U , C ∪
{ud}), where U = {o1, o2, ...on} is a finite set of n objects characterized by
a set of k certain condition attributes C = {c1, c2, ...ck} and an uncertain
decision attribute ud 6∈ C.

We propose to represent the uncertainty of each object oj by a bba
mj expressing belief on decisions defined on the frame of discernment Θ
={ud1, ud2, ...uds} representing the s possible values of the decision attribute
ud. These bba’s are generally given by an expert (or several experts) to ex-
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press partially uncertain decision attribute values, they can also present the
two extreme cases of total knowledge and total ignorance.

Example 3.1 Let us take Table 3.1 to describe our uncertain decision table.
The latter contains eight objects (patients), three certain condition attributes
C={Headache, Muscle − pain, Temperature} and an uncertain decision
attribute ud = Flu with two possible values {yes, no} representing Θ.

Table 3.1: Uncertain decision table 1

U Headache Muscle- Temperature Flu
pain

o1 yes yes very high m1({yes}) = 0.95 m1({no}) = 0.05
o2 yes no high m2({no}) = 1
o3 yes yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 no yes normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 no yes normal m5({no}) = 1
o6 yes no high m6({no}) = 0.95 m6(Θ) = 0.05
o7 no yes very high m7({yes}) = 1
o8 no yes high m8({yes}) = 0.9 m8(Θ) = 0.1

For the object o3, 0.5 of beliefs are exactly committed to the decision
yes, whereas 0.5 of beliefs is assigned to the whole of frame of discernment
Θ (ignorance). With bba, we can represent the certain case (with a certain
decision) like for the objects o2, o5 and o7.

3.2.2 Tolerance relation

The standard rough sets adopt the concept of indiscernibility relation (Pawlak,
1982, 1991) to partition the object set U into disjoint subsets (equivalence
classes), denoted by U/B. The objects oi and oj are indiscernible on a sub-
set of attributes B, if they have the same values for each attribute in subset
B.

In our uncertain context, the indiscernibility relation for the condition
attributes U/C is the same as in the certain case because their values are
certain and it is computed using eqn.(2.1).
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Example 3.2 Let us continue with the same uncertain decision system in
Table 3.1 to compute the equivalence classes based on condition attributes in
the same manner as in the certain case:

U/C= {{o1}, {o2, o6}, {o3}, {o4, o5}, {o7}, {o8}}.

Contrary to the condition attributes, the indiscernibility relation U/{ud}
for the uncertain decision attribute ud is not the same as in the certain case.
The decision value is represented by a bba. For this reason, the indiscerni-
bility relation will be called tolerance relation and denoted by Tolud. It
should be noted here that the term equivalence class from the certain de-
cision attribute case will be replaced by tolerance class for the uncertain
decision attribute, because the resulting classes may overlap.

The number of tolerance classes is known. The latter represents the
possible values of ud. So, we need for optimal decision making assign each
object oj , characterized by a bba mj , to the right tolerance class Xi relative
to the decision value udi.

To solve this issue, we propose two alternatives described in the following
parts:

First alternative: restrictive solution

The first idea is to use the pignistic transformation. It is a function which
can transform the belief function to probability function in order to make
decisions from beliefs using eqn. (1.55). We suggest, for each object oj in the
uncertain decision table, compute the pignistic probability, denoted BetPj ,
by applying the pignistic transformation to mj .

For every udi, we define a tolerance class Xi as follows:

Xi = {oj |BetPj ({udi}) > 0} (3.1)

Besides, we define a tolerance relation Tol{ud} as follows:

Tol{ud} = U/{ud} = {Xi|udi ∈ Θ} (3.2)

Example 3.3 Let us continue with the same example to compute the tol-
erance classes based on the uncertain decision attribute U/{ud} by applying
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the first alternative as follows:

Table 3.2: Pignistic transformation to mj for oj

mj BetPj

m1 BetP1({yes}) = 0.95 BetP1({no}) = 0.05
m2 BetP2({yes}) = 0 BetP2({no}) = 1
m3 BetP3({yes}) = 0.75 BetP3({no}) = 0.25
m4 BetP4({yes}) = 0.2 BetP4({no}) = 0.8
m5 BetP5({yes}) = 0 BetP5({no}) = 1
m6 BetP6({yes}) = 0.975 BetP6({no}) = 0.025
m7 BetP7({yes}) = 1 BetP7({no}) = 0
m8 BetP8({yes}) = 0.95 BetP8({no}) = 0.05

Table 3.2 shows the pignistic probability applying to each mj. Accord-
ing to it, the object o7 is assigned only to the tolerance class X1 relative to
the decision value ud1 = yes. The objects o2 and o5 are assigned only to
the tolerance class X2 relative to the decision value ud2 = no. The objects
o1, o3, o4, o6 and o8 are included in the two tolerance classes. So, the tol-
erance relation Tolud based on the uncertain decision attribute ud is equal to:

U/{ud}={{o1, o3, o4, o6, o7, o8}, {o1, o2, o3, o4, o5, o6, o8}}.

We can conclude that the first alternative is too restrictive. The objects
o1, o6 and o8 are near from the certain case. However, they exist in the two
tolerance classes X1 and X2.

Second alternative: flexible solution

Let us remember that we would like to assign each object to the right tol-
erance class Xi relative to the decision value udi according to its bba mj .
Our second idea is to use a distance measure between two bba’s mj and
the certain bba m (such that m({udi}) = 1) representing the bba of the
tolerance class Xi relative to the decision value udi.
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For every udi, we define a tolerance class Xi as follows:

Xi = {oj |dist(m,mj) < 1− threshold}, such thatm({udi}) = 1 (3.3)

Besides, we define a tolerance relation Tol{ud} as follows:

Tol{ud} = U/{ud} = {Xi|udi ∈ Θ} (3.4)

Remark:

Many distance measures between two bba’s were developed (Bauer, 1997;
Jousselme et al., 2001; Elouedi et al., 2004; Fixsen & Mahler, 1997; Tessem,
1993; Zouhal & Denœux, 1998) which can be characterized into two kinds:

• Distance measures based on pignistic transformation (Bauer, 1997;
Elouedi et al., 2004; Tessem, 1993; Zouhal & Denœux, 1998): For
these distances, one unavoidable step is the pignistic transformation
of the bba’s. Since, there is no bijection between bba’s and pignistic
probabilities (transformations from the power set to the set). This
kind of distance may lose information given by the initial bba’s. Be-
sides, we can obtain the same pignistic transformation on two different
bba’s distributions. So, the distance between the two obtained results
does not reflect the actual similarity between the starting bba’s distri-
butions.

• Distance measures between bba’s defined on the power set were devel-
oped in (Jousselme et al., 2001; Fixsen & Mahler, 1997). The first one
defines a meaningful metric distance (dist) between two bba’s m1 and
m2:

dist(m1, m2) =
√

1
2
(‖m→

1 ‖2 + ‖m→
2 ‖2 −2 < m→

1 , m
→
2 >) (3.5)

Where < m→
1 , m

→
2 > is the scalar product defined by:

< m→
1 , m

→
2 >=

|2Θ|∑

i=1

|2Θ|∑

j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj |

(3.6)

with Ai, Aj ∈ 2Θ for i,j= 1..|2Θ|. ‖m→
1 ‖2 is then the square norm of

m→
1 .
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which satisfies the following properties:

1. Non− negativity : dist(m1, m2) ≥ 0.

2. Non− degeneracy : dist(m1, m2) = 0⇐⇒ A = B.

3. Symmetry : dist(m1, m2) = dist(m2, m1).

4. Triangle inequality : dist(m1, m2) ≤ dist(m1, m3)+dist(m3, m2)

The second distance measure between two bodies of evidence devel-
oped by Fixen and Mahler (Fixsen & Mahler, 1997) is a pseudo-metric,
since the condition of non-degeneracy is not respected.

In our work, we choose the distance measure developed in (Jousselme
et al., 2001) which is directly defined on bba’s and satisfies more proper-
ties than the distance measure developed by Fixen and Mahler (Fixsen &
Mahler, 1997).

Example 3.4 Let us continue with the same example to compute the tol-
erance classes based on the uncertain decision attribute U/{ud} by applying
the second alternative. The user fixed the value of the threshold at 0.1. So,
1- threshold is equal to 0.9. We will obtain the following results:

Table 3.3: Distance between the bba mj and the certain bba m

mj dist(mj, m) dist(mj, m)
such that m({yes})=1 such that m({no})=1

m1 0.08 < 0.9 0.92 > 0.9
m2 1.00 > 0.9 0.00 < 0.9
m3 0.66 < 0.9 0.34 < 0.9
m4 0.84 < 0.9 0.26 < 0.9
m5 1.00 > 0.9 0.00 < 0.9
m6 0.93 > 0.9 0.07 < 0.9
m7 0.00 < 0.9 1.00 > 0.9
m8 0.08 < 0.9 0.92 > 0.9

For the uncertain decision value ud1 = yes, the tolerance class X1 is
equal to {o1, o3, o4, o7, o8}. This tolerance class is obtained according to
Table 3.3 which computes the distance between the bba mj and the certain
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bba m where m({yes}) = 1.

For the uncertain decision value ud2=no, the tolerance class X2 is equal
to { o2, o3, o4, o5, o6}. This tolerance class is obtained according to Table
3.3 which also computes the distance between the bba mj and the certain bba
m where m({no}) = 1.

The relative tolerance relation Tol{ud} is equal to U/{ud}={{o1, o3, o4,
o7, o8}, {o2, o3, o4, o5, o6 }}.

Note that in our work, we will focus on the second alternative because
the threshold value make the results more flexible. The objects o1, o6 and
o8 are near from the certain case and they exist in the right tolerance class.

3.2.3 Set approximation

The set of all objects which can be certainly classified as members of X ⊆
U with respect to B ⊆ C is called B-lower approximation. The set of all
objects which can be only classified as possible members of X with respect
to B is called B-upper approximation. The set of all objects which can be
decisively classified neither as members of X nor as members of −X with
respect to B is called the boundary region. If this boundary is non-empty,
the set is rough. In this section, we redefine these definitions in the new
uncertain context.

To compute the new lower and upper approximations for our uncertain
decision table, we should follow two steps:

1. For each equivalence class based on condition attributes C, combine
the bba’s of its objects using the mean operator (Murphy, 2000) as
follows:

m̄[oj ]C(E) =
1

|[oj ]C |
∑

oi∈[oj]C

mi(E), for allE ⊆ Θ (3.7)

Let us remember that [oj ]C is the equivalence class containing the
object oj . In our case, this rule of combination is more suitable to
combine these bba’s than the rule of combination in eqn. (1.37) which
is proposed especially to combine different beliefs on decision for one
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object and not different bba’s relative to different objects.

2. For each tolerance class Xi from U/{ud} relative to the uncertain
decision attribute udi, we compute the new lower and upper approxi-
mations using two alternatives described in the following subsections:

First alternative: restrictive solution

As a first alternative, the lower approximation contains all the equivalence
classes from U/C included to the tolerance class Xi and have a certain bba.

C
¯
(Xi) = {oj |[oj ]C ⊆ Xi and m̄[oj]C ({udi}) = 1} (3.8)

We compute the upper as the same manner as in the certain case.

C̄(Xi) = {oj |[oj ]C ∩Xi 6= ∅} (3.9)

The set of boundary region is defined as follows:

BNC(Xi) = C̄(Xi)− C
¯
(Xi) (3.10)

Example 3.5 We continue with the same example to compute the new lower

and upper approximations by applying the first alternative.

After the first step, we obtain the combined bba for each equivalence
classes from U/C using mean operator. Table 3.4 represents the combined
bba for the equivalence classes (subsets) {o2, o6} and {o4, o5}. Note that to
simplify the notation, we have used m2,6 to mean m̄[o2]C .

Table 3.4: Combined bba for the subsets {o2, o6} and {o4, o5}

m̄[oj ]C m({yes}) m({no}) m(Θ)
m2 0 1 0
m6 0 0.95 0.05
m2,6 0 0.975 0.025
m4 0 0.6 0.4
m5 0 1 0
m4,5 0 0.8 0.2
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Next, we compute the lower and upper approximations for each toler-
ance class Xi.

For the uncertain decision value ud1=yes, let X1= {o1, o3, o4, o6, o7,
o8}.

Only the subset {o7} is included to X1 and has a certain bba. Hence,
we put it in the lower C

¯
X1. The subsets {o1}, {o3} and {o8} are included

to X1, but they have an uncertain bba. So, we put them in the upper C̄X1.
The subsets {o2, o6} and {o4, o5} are partially included to X1. So, we put
them in the upper C̄(X1).

C
¯
(X1)={o7} and C̄(X1)={o1, o2, o3, o4, o5, o6, o7, o8}

BNC(X1)={o1, o2, o3, o4, o5, o6, o8}

For the uncertain decision value ud2=no, let X2= {o1, o2, o3, o4, o5, o6,
o8}.

The subsets { o1}, {o2, o6}, {o4, o5}, {o3} and {o8}are included to X2.
However, they have an uncertain bba. So, we put them in the upper C̄(X2).

C
¯
(X2)=∅ and C̄(X2)={o1, o2, o3, o4, o5, o6, o8}

BNC(X2)={o1, o2, o3, o4, o5, o6, o8}

The boundary region is non-empty. So, the uncertain decision Flu is rough.

We can conclude that the first alternative is also restrictive for the set
approximation. For example, the subset {o2, o6} is totally included to X2

and has a bba near from the certain case. However, we put it in the upper
C̄X2.

Second alternative: flexible solution

As a second alternative, the lower approximation contains all the equiv-
alence classes from U/C included to Xi which the distance between the
combined bba m̄[oj]C (with [oj ]C is the equivalence class containing oj) and
the certain bba m (such that m({udi}) = 1) is less than a threshold. In an
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uncertain context, the threshold is needed to give more flexibility to the set
approximations.

C
¯
(Xi) = {oj |[oj ]C ⊆ Xi and dist(m̄[oj]C , m) ≤ threshold} (3.11)

We compute the upper as the same manner as in the certain and in the first
alternative.

C̄(Xi) = {oj |[oj ]C ∩Xi 6= ∅} (3.12)

Note that in the case of uncertainty the threshold value gives more flex-
ibility to the tolerance relation and the set approximations. Threshold value
is fixed by the user and it should be the same to be coherent.

Example 3.6 Let us continue with the same example to compute the lower
and upper approximations with the second alternative with a threshold fixed
at 0.1.

For the uncertain decision value ud1=yes, let X1 ={o1, o3, o4, o7, o8}.

The equivalence classes (subsets) {o1}, {o3}, {o7} and {o8} from U/C
are included to X1. We should check the distance between their bba m̄[oj]C

and the certain bba m (such that m({yes}) = 1).

According to Table 3.5, the subsets {o1}, {o7} and {o8} are included in
the lower C

¯
X1. The subset {o3} is included in the upper C̄X1. The subset

{o4, o5} is partially included to X1. So, we put it in the upper C̄X1.

C
¯
(X1)={o1, o7, o8} and C̄(X1)={o1, o3, o4, o5, o7, o8}

BNC(X1)={o3, o4, o5}

For uncertain decision value ud2=no, let X2 ={ o2, o3, o4, o5, o6}.

The equivalence classes (subsets) {o2, o6}, {o3} and {o4, o5} from U/C

are included to X2. We should check the distance between their bba and the
certain bba m (such that m({no}) = 1).

According to Table 3.5, the subset {o2, o6} is included in the lower C
¯
X2.

The subsets {o4, o5} and {o3} are included to the upper C̄X2.
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C
¯
(X2)={o2, o6} and C̄(X2)={o2, o3, o4, o5, o6}

BNC(X2)={o3, o4, o5}

Table 3.5: Distance between the bba m̄[oj]C and the certain bba m

m̄[oj ]C dist(m̄[oj]C , m) such that m({yes}) = 1)
m1 0.07 < 0.1
m3 0.66 > 0.1
m7 0.00 < 0.1
m8 0.07 < 0.1

m̄[oj ]C dist(m̄[oj]C , m) such that m({no}) = 1)
m2,6 0.02 < 0.1
m3 0.34 > 0.1
m4,5 0.26 > 0.1

Note that in our work, we will also use the second alternative for set
approximation like for the tolerance relation due to the threshold value which
makes the results more flexible.

3.2.4 Positive region and dependency of attributes

Using the new formalism of lower approximation, we can redefine the new
positive region denoted by UPosC(A, {ud}), is the set of all elements of U
that can be uniquely classified to blocks of the partition U/{ud}, by means
of C:

UPosC(A, {ud}) =
⋃

Xi∈U/{ud}
C
¯
(Xi) (3.13)

The uncertain decision attribute ud depends partially on the set of at-
tributes C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k {ud}, if

k = γC(A, {ud}) =
|UPosC(A, {ud})|

|U | (3.14)

Example 3.7 Let us continue with the same example, to compute the posi-
tive region and dependency degree of A.

UPosC (A, {ud})={o1, o2, o6, o7, o8}

γC(A, {ud}) = 5
8
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3.2.5 Belief decision rules

The decision rules induced from our new partially uncertain decision system
are denoted belief decision rules where the decision is represented by a bba.

Example 3.8 Some of the belief decision rules induced from our decision
table (see Table 3.1) for the object o3 and o7 are as follows :

’If Headache=yes and Muscle-pain=yes and Temperature=normal then
m3({yes}) = 0.5; m3(Θ) = 0.5’

’If Headache=no and Muscle-pain=yes and Temperature=very high then
m7({yes}) = 1’

Hence, these belief decision rules could be simplified by removing superflu-
ous condition attributes and condition attribute values. With simplification,
we can improve the time and the performance of classification for unseen
objects. We look to this issue in the next subsections.

3.2.6 Reduct and core

Let us remember that a reduct is a minimal set of attributes from C that
preserves the partitioning of the universe and the ability to perform classi-
fications as the whole attribute set C does. In other words, attributes that
do not belong to a reduct are superfluous with regard to classification of
elements of the universe. The core is the intersection of all possible reducts,
it is included in every reduct. Thus, in a sense, the core is the most impor-
tant subset of attributes, for none of its elements can be removed without
affecting the classification power of attributes.

Using the new formalism of positive region, we can redefine these con-
cepts in the new uncertain situation.

Let c ∈ C, the attribute c is dispensable in C with respect to ud, if
UPosC (A, {ud}) = UPosC−c(A, {ud}). Otherwise, attribute c is indispensable
in C with respect to ud.

If all attribute c ∈ C are indispensable in C with respect to ud, then C
will be called independent with respect to ud.
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Let B ⊆ C, B is the reduct of C with respect to ud, if B is independent
set of attributes with respect to ud and:

UPosB(A, {ud}) = UPosC(A, {ud}) (3.15)

The core is the intersection of all reducts or is the set of all indispensable
attributes form C with respect to ud.

UCoreC ({ud}) =
⋂

URedC({ud}) (3.16)

Where URedC({ud)) is the set of all reducts of A relative to ud.

Computing and finding a minimal reduct among all reduct from uncer-
tain decision table is NP-hard problem like in the certain case. In this thesis,
we propose a heuristic method of attribute selection. This latter is able to
compute reduct in a quick time from a huge number of condition attributes
(see Chapter 5).

Example 3.9 Let us continue with the same example, to compute the pos-
sible reducts and the core of A.

UPos{Headache}(A, {ud})=∅
UPos{Muscle−pain}(A, {ud})=∅
UPos{Temperature}(A, {ud})={o1, o7}
UPos{Headache, Muscle−pain}(A, {ud})={o2, o6}
UPos{Headache, T emperature}(A, {ud})={o1, o2, o6, o7, o8}
UPos{Muscle−pain, Temperature}(A, {ud})={o1, o2, o6, o7, o8}

We find that only the subsets {Muscle-pain, Temperature} and {Headache,
Temperature} are independent and have the same positive region that the
whole set of condition attributes C. So, the subsets {Muscle-pain, Tempera-
ture} and {Headache, Temperature} are two reducts relative to the decision
Flu in our uncertain decision table. It can be simplified in Table 3.6 or Ta-
ble 3.7. The only core is the attribute Temperature. It is the intersection
of the two possible reducts.
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Table 3.6: First reduct

U Muscle-pain Temperature Flu
o1 yes very high m1({yes}) = 0.95 m1({no}) = 0.05
o2 no high m2({no}) = 1
o3 yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 yes normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 yes normal m5({no}) = 1
o6 no high m6({no}) = 0.95 m6(Θ) = 0.05
o7 yes very high m7({yes}) = 1
o8 yes high m8({yes}) = 1

Table 3.7: Second reduct

U Headache Temperature Flu
o1 yes very high m1({yes}) = 0.95 m1({no}) = 0.05
o2 yes high m2({no}) = 1
o3 yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 no normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 no normal m5({no}) = 1
o6 yes high m6({no}) = 0.95 m6(Θ) = 0.05
o7 no very high m7({yes}) = 1
o8 no high m8({yes}) = 0.9 m8(Θ) = 0.1

3.2.7 Value reduct and value core

We need redefine the concept of value reduct and value core for each belief
decision rule R(oj) of the form: If C(oj) then mj as follows:

For all B ⊂ C, Let X = {ok|B(oj) = B(ok) and j 6= k}
If X = ∅ then B is a value reduct of R(oj).
Else If Max(dist(mj , m̄[ok ]C )) ≤ threshold then B is a value reduct of
R(oj).

The value core is the intersection of all value reducts for oj .

UCorejC (A, {d}) =
⋂
URedj

C(A, {ud}) (3.17)
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Where Redj
C(A, {ud}) is the family of all value reduct of C for oj with re-

spect to ud.

Example 3.10 We compute the value reduct of the first decision rule from
Table 3.6 with threshold = 0.1:

’If Muscle-pain=yes and Temperature=very high then m1’.

Let us split the rule into:

1. ’If Muscle-pain=yes thenm1’ : X = {o3, o4, o5, o7, o8} and Max(dist(m1,
m3), dist(m1, m4,5)) > threshold.

2. ’If Temperature=very high then m1’ : X = {o7} dist(m1, m7) <

threshold.

So, Temperature=very high is the only value reduct and the value core for
the first rule.

If we compute all the value reducts to Tables 3.6 and 3.7, we obtain
respectively Tables 3.8 and 3.9.

Table 3.8: Value reducts 1

U Muscle-pain Temperature Flu
o1 - very high m1({yes}) = 0.95 m1({no}) = 0.05
o2 no - m2({no}) = 1
o3 yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 yes normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 yes normal m5({no}) = 1
o6 no - m6({no}) = 0.95 m6(Θ) = 0.05
o7 - very high m7({yes}) = 1
o8 yes high m8({yes}) = 0.9 m8(Θ) = 0.1
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Table 3.9: Value reducts 2

U Headache Temperature Flu
o1 - very high m1({yes}) = 0.95 m1({no}) = 0.05
o2 yes high m2({no}) = 1
o3 yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 no normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 no normal m5({no}) = 1
o6 yes high m6({no}) = 0.95 m6(Θ) = 0.05
o7 - very high m7({yes}) = 1
o8 no high m8({yes}) = 0.9 m8(Θ) = 0.1

3.3 Generalization Distribution Table (GDT) and
Rough Sets (RS)

The rough set theory has attracted attention of many researchers whose
contributions have further enhanced it. This theory is not competitive but
complementary to other methods and can be often used jointly with other
methodologies. In (Dong et al., 1999; Zhong et al., 1998), a soft hybrid
induction system for discovering classification decision rules called GDT-RS
which is a combination of the Generalization Distribution Table (GDT)
and the Rough Sets (RS) has been proposed. Our second classification
technique based on rough sets under the belief function framework namely
BRSC-GDT is derived from the belief GDT-RS which is a generalization of
the hybrid system GDT-RS in the new context due to its advantages (see
subsection 3.3.2).

Before detailing the main characteristics of the GDT-RS system and the
belief GDT-RS, we start by the definition of the basics of the Generalization
Distribution Table (GDT). The latter will not be generalized in the new
context. Since, it is based only on the condition attributes.

3.3.1 Generalization Distribution Table (GDT)

The Generalization Distribution Table (GDT) is a hypothesis search space
for generalization, in which the probabilistic relationship between concepts
and instances over discrete domain are presented (Zhong & Ohsuga, 1996).
The GDT consists of three components:
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1. Possible instances (PI), represented at the top row of GDT , are de-
fined by all possible combinations of attribute values from a database.

2. Possible generalizations of instances (PG), represented by the left col-
umn of a GDT , are all possible cases of generalization for all possible
instances. A wild card ‘*’ denotes the generalization for instances.
For example, the generalization ∗b0c0 means that the attribute a is
superfluous (irrelevant) for the concept description.

In other words, if an attribute a takes values from {a0, a1} and it
is superfluous, both a0b0c0 and a1b0c0 describe the same concept.
Therefore, we use the generalization ∗b0c0 to describe the set {a0b0c0,
a1b0c0}.

3. Probabilistic relationships between possible instances (PI) and possible
generalizations (PG), represented by entries Gij of a given GDT , are
defined by means of a probabilistic distribution describing the strength
of the relationship between any possible instance and any possible gen-
eralization. The prior distribution is assumed to be uniform if back-
ground knowledge is not available. Thus, it is defined by:

Gij = p(PIj |PGi) =





1
NPGi

if PGi is a generalization of PIj

0 otherwise.
(3.18)

where PIj is the j-th possible instance, PGi is the i-th possible general-
ization, and NPGi is the number of the possible instances satisfying the i-th
possible generalization,

NPGi =
∏

k∈{l|PGi[l]=∗}
nk (3.19)

where PGi[l] is the value of the l-th attribute in the possible generaliza-
tion PGi, and nk is the number of values of the k-th attribute. Certainly,
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we have
∑

j Gij = 1 for any i.

Example 3.11 Table 3.10 describes a GDT generated from the UDT shown
in Table 3.1. To simplify the notations in the GDT, we use H0 to mean
Headache=yes and H1 to mean Headache=no.

Table 3.10: Generalization distribution table

PG/PI H0M0T0 H0M0T1 H0M0T2 H0M1T0 H0M1T1 H0M1T2 H1M0T0 ....

∗M0T0 1/2 1/2 ....

∗M0T1 1/2 ....

∗M0T2 1/2 ....

∗M1T0 1/2 ....

∗M1T1 1/2 ....

∗M1T2 1/2 ....

H0 ∗ T0 1/2 1/2 ....

H0 ∗ T1 1/2 1/2 ....

H0 ∗ T2 1/2 1/2 ....

H1 ∗ T0 1/2 ....

H1 ∗ T1 ....

H1 ∗ T2 ....

H0M0* 1/3 1/3 1/3 ....

H0M1* 1/3 1/3 1/3 ....

H1M0* 1/3 ....

H1M1* ....

∗ ∗ T0 1/4 1/4 1/4 1/4 ....

∗ ∗ T1 1/4 1/4 1/4 ....

∗ ∗ T2 1/4 1/4 1/4 ....

∗M0∗ 1/6 1/6 1/6 1/6 ....

∗M1∗ 1/6 1/6 1/6 ....

H0 ∗ ∗ 1/6 1/6 1/6 1/6 1/6 1/6 ....

H1 ∗ ∗ 1/6 ....

3.3.2 Hybrid system GDT-RS

GDT-RS is a soft hybrid induction system for discovering classification rules
from noisy databases (Dong et al., 1999; Zhong et al., 1998). The system is
based on a hybridization of the Generalization Distribution Table (GDT)
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and the Rough Set (RS) methodology.

The advantages of this hybrid system that can generate, from noisy
training data, a set of rules with the minimal description length, having
large strength and covering all instances. By using the GDT as a proba-
bilistic search space, unseen instances can be considered in rule discovery
process and the uncertainty of a rule, including its ability to predict unseen
instances, can be explicitly represented in the strength of the rule.

From the decision table (DT), we can generate decision rules expressed
in the following form:

P → Q with S

• P is a conjunction of descriptors over C.

• Q denotes a concept that the rule describes.

• S is a ‘measure of the strength’ of the rule.

According to the GDT-RS, the strength S is equal to (Dong et al., 1999;
Zhong et al., 1998):

S(P → Q) = s(P ) ∗ (1− r(P → Q)) (3.20)

where s(P ) is the strength of the generalization P (the condition of the
rule) and r is the noise rate function. The strength of a given rule reflects
incompleteness and noise. On the assumption that the prior distribution is
uniform, the strength of the generalization P = PG is given by:

s(P ) =
∑

l

p(PIl|P ) =
1
NP
|[P ]DT | (3.21)

where [P ]DT is the set of all the objects in DT satisfying the gener-
alization P and NP is the number of the possible instances satisfying the
generalization P which is computed using eqn. (3.19). The strength of the
generalization P represents explicitly the prediction for unseen instances.
On the other hand, the noise rate is given by:

r(P → Q) = 1− |[P ]DT ∩ [Q]DT |
|[P ]DT |

(3.22)
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It shows the quality of classification measured by the number of the
instances satisfying the generalization P which cannot be classified into class
Q. The user can specify an allowed noise level as a threshold value. Thus,
the rule candidates with a noise level larger than the given threshold value
will be deleted.

3.3.3 Belief GDT-RS

Belief GDT-RS is a generalization of the hybrid system GDT-RS under the
belief function framework. The Belief GDT-RS is a soft induction system
for discovering classification rules from uncertain database where the uncer-
tainty exists only in the decision attribute values. The latter is represented
by the belief functions.

From the uncertain decision table (UDT), we can also generate decision
rules expressed in the following form:

P → Q with S

According to the Belief GDT-RS, the strength S is also equal to the eqn.
(3.20). The strength s(P ) of the generalization P depends only on the
condition attribute values which are certain. So, it is also equal to eqn.
(3.21). However, the noise rate function r depends on the condition and the
decision attribute values. So, it should be generalized in our uncertain case
based on a distance measure as follows:

r(P → Q) = dist(m̄[P ]DT
, m), such that m({Q}) = 1 (3.23)

The idea is to use the distance measure (Jousselme et al., 2001) be-
tween two bba’s m̄[P ]DT

and a certain bba m (such that m({Q}) = 1).
Where m̄[P ]DT

is the combined bba using mean operator (Murphy, 2000)
for the equivalence class [P ]DT or the set of objects from U satisfying
the generalization P . To be more flexible in this uncertain context, if
r(P → Q) < threshold. So, r(P → Q) will be equal to 0.

Example 3.12 Let us continue with the same UDT shown in Table 3.1
and the GDT shown in Table 3.10. If we have this decision rule: ’If Tem-
perature= very high then Flu=yes’. According to the Belief GDT-RS, the
strength S of this decision rule is computed as follows with threshold value
equal to 0.1: S= s*(1 - r)= 1

2 with s = 1
4 ∗ 2=1

2 and r = dist(m1,7, m) =
0.06 ' 0 such that m({yes})=1.



80 Chapter 3: Basic concepts of belief rough set classifiers

Remark:

The new definitions of the basic concepts of the rough sets and the
hyprid system done in the previous sections under the new uncertain context
represent a generalization of the certain case.

3.4 Conclusion

In this chapter, we have generalized the basic concepts of rough sets in the
new context such as uncertain decision table, tolerance relation, set approxi-
mation, positive region and dependency of attributes. These new definitions
of the basic concepts relative to rough sets are needed to describe belief
rough set classifier. We have also presented the basic concepts of the hybrid
system GDT-RS which is a combination of generalization distribution table
and rough sets methodology. This hybrid system is also generalized under
the belief function framework and is called belief GDT-RS to be used for the
creation of the belief rough set classifier based on generalization distribution
table.

In the next chapter, we will present the two principal procedures: the
construction of our belief rough set classifiers from uncertain data and the
classification of new instances.



Chapter 4

Belief classification systems
based on rough sets

4.1 Introduction

In this chapter, we detail our two classification approaches based on Rough
Sets (RS) that are able to learn decision rules from uncertain data. We as-
sume that the uncertainty exists only in the decision attribute values of the
Decision Table (DT) and is represented by the belief functions. The first
classification technique, named Belief Rough Set Classifier (BRSC), is
only based on the basic concepts of the Rough Sets (RS). The second is more
sophisticated, calledBelief Rough Set Classifier based on Generalization
Distribution Table (BRSC-GDT), and is derived from an hybridization of
the Generalization Distribution Table and theRough Sets (GDT-RS). The
two classifiers aim at simplifying the Uncertain Decision Table (UDT) in
order to generate significant decision rules for classification process.

In the first part of this chapter, we describe the two principal procedures
relative to the BRSC: the construction of the BRSC from uncertain data
and the classification of new instances. In fact, the building of the BRSC is
based on the redefined basic concepts of rough sets under the belief function
framework detailed in the previous chapter which are uncertain decision ta-
ble, tolerance relation, set approximations, positive region, dependency of
attributes and reducts. After the generation of minimal and relevant set of
belief decision rules from an uncertain decision table, we can classify unseen
instances.

81
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In the second part of this chapter, we describe the construction and
the classification procedure relative to the BRSC-GDT. The BRSC-GDT
is derived from the hybrid system GDT-RS which is a combination of the
Generalization Distribution Table (GDT) and theRough Sets (RS) method-
ology. The soft hybrid system from previous chapter was also redefined in
the new context to be called belief GDT-RS. After the generation of the more
significant decision rules from an uncertain decision table using BRSC-GDT,
we can also classify unseen objects.

4.2 Belief Rough Set Classifier (BRSC)

Our first classification approach based on rough sets under the belief func-
tion framework is denoted the Belief Rough Set Classifier (BRSC). This
technique is only based on the basic concepts of rough sets especially reduct
and value reduct redefined in the uncertain context in the previous chapter.
It is a new classification method that is able to learn and generate uncer-
tain decision rules from partially uncertain data under the belief function
framework. The uncertainty exists only in decision attribute values and is
handled through the TBM, one representation of the belief function theory.
The set of decision rules generated from belief rough set classifier are able
to classify the unseen objects.

The two main procedures used to create the BRSC are as follows:

1. Construction procedure.

2. Classification procedure.

These two procedures are described in the next parts.

4.2.1 BRSC: Construction procedure

The Belief Rough Set Classifier (BRSC) seems to learn decision rules from
uncertain training dataset. The generated model is able to classify the new
objects. To build the BRSC, we propose three main phases. Each phase is
explained by examples:

1. Creation of the uncertain training decision table.

2. Simplification of the uncertain training decision table.

3. Generation of the decision rules.
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We handle in our work only symbolic condition and decision attribute val-
ues. Hence, we do not need the step of discretization detailed in subsection
2.3.1. The Simplification of the uncertain training decision table is the most
important phase in the construction procedure.

Phase 1. Creation of the uncertain training decision table

Dividing a data set into a training set and a testing set is a fundamental
component in the pre-processing phase of Data Mining (DM). Hence, our
Uncertain Decision Table (UDT) should be divided into two parts: uncer-
tain training decision table (a set of instances used for learning the model
generated by the classifier) and uncertain testing decision table (a set of
instances used to evaluate the performance of the classifier). We only need
the uncertain training decision table to apply the phases (2) and (3). Let
us remember that our uncertain decision table (the training set or the test-
ing set) should takes this form: A = (U , C ∪ {ud}) originally described in
subsection 3.2.1.

Example 4.1 Table 4.1 shows an example of uncertain training decision
table used to create our classifier. It consists of ten objects, three certain
condition attributes C={Headache, Muscle− pain, Temperature} and an
uncertain decision attribute ud = Flu with two possible values {yes, no}.

Table 4.1: Uncertain training decision table

U Headache Muscle-pain Temperature Flu
o1 no yes high m1({yes}) = 0.3 m1(Θ) = 0.7

o2 no yes very high m2({yes}) = 1

o3 no yes high m3({yes}) = 0.5 m3(Θ) = 0.5

o4 yes no very high m4({no}) = 0.9 m4(Θ) = 0.1

o5 yes no very high m5({no}) = 1

o6 no yes very high m6({yes}) = 1

o7 no yes normal m7({no}) = 1

o8 yes yes very high m8({yes}) = 1

o9 no yes very high m9({yes}) = 1

o10 no yes normal m10({no}) = 1

The decision rules induced from our training decision table are denoted
belief decision rules where the decision is represented by a bba. As an ex-
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ample of a rule is : ’If Headache=yes and Muscle-pain=yes and Tempera-
ture=normal Then m3({yes}) = 0.5; m3(Θ) = 0.5’.

Phase 2. Simplification of the uncertain training decision table

When the uncertain training decision table is ready, we move to the simpli-
fication phase. It consists in removing all redundant and unnecessary data
for rule discovery. Like in the certain case, the simplification yields more
minimal and significant belief decision rules. So, it is the most important
phase in the construction procedure.

The simplification phase relative to the BRSC is done by the mean of
the following steps:

Step 1. Elimination of the superfluous condition attributes: In
uncertain training decision table, there often exist conditional attributes
that do not provide (almost) any additional information about the objects.
These attributes need to be removed in order to reduce the complexity and
cost of decision process. In this step, we remove the superfluous condition
attributes that are not in reduct from our uncertain training decision table.
This leaves us with a minimal set of attributes that preserve the ability to
perform the same classification as the original set of attributes. A decision
table may have more than one reduct, and any of these reducts could be
used to replace the original table. To achieve this task, we need the new
definitions of reduct and core under belief function framework which are
made in the previous chapter.

Example 4.2 Let us continue with the same example in Table 4.1 to compute
the possible reducts using the new definition of the concept of reduct using
eqn. (3.15).

UPos{Headache}(A, {ud})=∅
UPos{Muscle−pain}(A, {ud})={o4, o5}
UPos{Temperature}(A, {ud})={o7}
UPos{Headache, Muscle−pain}(A, {ud})={o4, o5, o8}
UPos{Headache, T emperature}(A, {ud})={o2, o6, o7, o9, o10}
UPos{Muscle−pain, Temperature}(A, {ud})={o2, o4, o5, o6, o7, o8, o9, o10}
UPos{Headache, Muscle−pain, Temperature}(A, {ud})={o2, o4, o5, o6, o7, o8, o9,
o10}
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We find that only the subset {Muscle-pain, Temperature} is independent
and has the same positive region that the whole set of condition attributes
C. So, the subset {Muscle-pain, Temperature} is the reduct relative to the
decision Flu in our uncertain decision table. It can be simplified in Table
4.2. The only core is the subset {Muscle-pain, Temperature}.

Table 4.2: Reduct of uncertain training decision table

U Muscle-pain Temperature Flu
o1 yes high m1({yes}) = 0.3 m1(Θ) = 0.7

o2 yes very high m2({yes}) = 1

o3 yes high m3({yes}) = 0.5 m3(Θ) = 0.5

o4 no very high m4({no}) = 0.9 m4(Θ) = 0.1

o5 no very high m5({no}) = 1

o6 yes very high m6({yes}) = 1

o7 yes normal m7({no}) = 1

o8 yes very high m8({yes}) = 1

o9 yes very high m9({yes}) = 1

o10 yes normal m10({no}) = 1

Step 2. Elimination of the redundant objects: After removing the
superfluous condition attributes from our uncertain training decision table,
we will find redundant objects having the same condition attribute values.
They may not have the same bba on decision attributes. So, we combine
their corresponding bba’s using the mean operator (Murphy, 2000) which is
the most suitable rule of combination in our context (see subsection 3.2.3).

m̄[oj]B(E) =
1

|[oj]B|
∑

oi∈[oj]B

mi(E), for all E ⊆ Θ (4.1)

Where B is the reduct of C with respect to ud and [oj]B is the equiva-
lence class containing the object oj with respect to the condition attribute
subset B.

Example 4.3 After removing the superfluous condition attributes and the
redundant objects for the uncertain decision table, we obtain Table 4.3. Note
that to simplify the notation, we have used m2,6,8,9 to mean m̄[o2]B .
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Table 4.3: Combined objects relative to the reduct

U Muscle-pain Temperature Flu
o1,o3 yes high m1,3({yes}) = 0.4 m1,3(Θ) = 0.6

o2,o6,o8,o9 yes very high m2,6,8,9 ({yes}) = 1

o4,o5 no very high m4,5({no}) = 0.95 m4,5(Θ) = 0.05

o7,o10 yes normal m7,10({no}) = 1

Step 3. Elimination of the superfluous values of condition at-
tributes: After removing superfluous In this step, we need use the new
definition of the concept value reduct for each belief decision rule R(oj) of
the form: If C(oj) then mj (see subsection 3.2.7).

Example 4.4 If we compute the value reduct of each belief decision rule
from Table 4.3 with threshold = 0.1, we obtain Table 4.4.

Table 4.4: Simplified belief decision rules

U Muscle-pain Temperature Flu
o1,o3 yes high m1,3({yes}) = 0.4 m1,3(Θ) = 0.6

o2,o6,o8,o9 yes very high m2,6,8,9 ({yes}) = 1

o4,o5 no - m4,5({no}) = 0.95 m4,5(Θ) = 0.05

o7,o10 - normal m7,10({no}) = 1

Phase 3. Generation of the decision rules

After the simplification of the training uncertain decision table, we can gen-
erate short and significant belief decision rules. With simplification, we can
improve the time and the performance of classification unseen objects. From
one example of UDT, we can find many solutions of simplification where hav-
ing many reducts and value reducts. The number of solutions, denoted nb,
is computed as follows:

nb = |URedC({ud})| ∗
n∏

j=1

|URedj
C({ud})| (4.2)
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Example 4.5 Table 4.4 gives the minimal and the unique solution shown
as follows:

1. ’If Muscle-pain=yes and Temperature= high then m1,3({yes}) = 0.4;
m1,3(Θ) = 0.6’

2. ’If Muscle-pain=yes and Temperature= very high then m2,6,8,9({yes}) =
1’

3. ’If Muscle-pain=no then m4,5({no}) = 0.95; m4,5(Θ) = 0.05’

4. ’If Temperature=normal then m7,10({no}) = 1’

4.2.2 BRSC: Classification procedure

Once the belief rough set classifier is constructed, the following procedure
will be the classification of unseen instances referring to as new objects.
Such task is also named the inference task.

Our method is able to ensure the standard classification where each at-
tribute value of the new instance to classify is assumed to be exact and
certain.

We search among all belief decision rules which one corresponds to the
unseen object. The new instance’s decision will be defined by a basic belief
assignment. This bba defined on the set on decisions, represents beliefs on
the different subsets of classes of the new instance to classify. In order to
make a decision and to get the probability of each singular decision, we pro-
pose to apply the pignistic transformation.

Example 4.6 Let us continue with Example 4.5 and assume a new object
to classify is characterized by the following values:

Headache = no
Muscle− pain = no

Temperature = high

This instance corresponding to the third decision rule ’If Muscle-pain=no
then m4,5({no}) = 0.95; m4,5(Θ) = 0.05’. If we compute the pignistic
transformation relative to m4,5, we find that the decision is no.
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4.3 Belief Rough Set Classifier based on General-

ization Distribution Table (BRSC-GDT)

To improve the performance of classification systems based on rough sets,
many researchers have extended this theory and have combined it with other
methodologies. In (Dong et al., 1999; Zhong et al., 1998) a soft hybrid
induction system called GDT-RS for discovering classification rules from
databases has been proposed. The system is based on a combination of the
Generalization Distribution Table and the Rough Set methodology.

To pick up the qualities of our Belief Rough Set Classifier (BRSC),
we combine it with Generalization Distribution Table (GDT). The re-
sult will be a new classifier called Belief Rough Set Classifier based
on Generalization Distribution Table (BRSC-GDT). The belief GDT-RS
which is proposed in the previous chapter is a new definition of the hybrid
system GDT-RS under the belief function framework. The advantages of
the belief GDT-RS used to build the BRSC-GDT that can generate, from
noisy and uncertain training data, a set of rules with the minimal descrip-
tion length, having large strength and covering all instances. Like the BRSC,
the uncertainty exists only in decision attributes and is represented by the
Transferable Belief Model (TBM), one interpretation of the belief function
theory. In this section, we detail the two main procedures needed to create
the BRSC-GDT: the construction and the classification procedures.

4.3.1 BRSC-GDT: Construction procedure

In this subsection, we explain the construction procedure relative to the
BRSC-GDT. This new approach seems to learn a minimal set of decision
rules from partially uncertain data having large strength and covering all
instances by following three main phases. Each phase is explained by exam-
ples:

1. Creation of the uncertain training decision table.

2. Simplification of the uncertain training decision table.

3. Generation of the decision rules.

We can conclude that our two classification systems based on rough sets
namely BRSC and BRSC-GDT have the same phases to build their models.
The first phase ’the creation of the uncertain training decision table’ and
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the third phase ’the generation of the decision rules’ are also similar for both
the. However, the main difference between the two classifiers is summarized
in the most important phase ’the simplification of the uncertain training
decision table’. For each classification system, the steps relative to this
latter phase are different. After the simplification of the uncertain decision
table which is based on the reduction of the superfluous condition attributes
(reduct) and the superfluous condition attribute values (value reduct), the
BRSC generates all possible decision rules. However, the BRSC-GDT, in
addition to of the simplification of the uncertain decision tables, it eliminates
the contradictory decision rules. Finally, if one decision rule has more than
one possibility of simplification, we keep only the decision rule with best
strength. So, the BRSC-GDT can generate smallest models than the BRSC.
The BRSC-GDT can also be more fast than the BRSC by avoiding some
iterations.

Phase 1. Creation of the uncertain training decision table

Let us remember that this first phase consists of preparing a training un-
certain decision table, where the structure is described in subsection 3.2.1,
used to build the model using phases (2) and (3).

Example 4.7 Let us continue with the same example of uncertain training
decision table shown in Table 4.1 to illustrate the idea.

Phase 2. Simplification of the uncertain training decision table

The simplification of the uncertain decision table consists of removing all
redundant and unnecessary data for rule discovery process. The phase of
simplification relative to the BRSC-GDT is done by the means of the fol-
lowing steps:

Step 1. Creation of the GDT: The standard GDT depends only on
condition attributes and not on decision attribute values. In the uncertain
context, our GDT still have the same structure as in (Zhong & Ohsuga,
1996). Note that this step can be omitted because the prior distribution of
a generalization can be calculated using eqns. (3.18) and (3.19).

Step 2. Definition of the compound object: Objects from U having
the same condition attribute values are considered as one object over C,
called the compound object o′j and defined as follows:
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o′j = {oi|C(oi) = C(oj)} (4.3)

For objects composing each compound object, combine their bba’s using
the mean operator as follows:

m′
j(E) =

1
|o′j |

∑

oj∈o′j

mj(E), ∀E ⊆ Θ (4.4)

The reasons for choosing the mean operator (Murphy, 2000) to combine
these bba’s are the same as described in the previous chapter (see subsection
3.2.3).

Example 4.8 Let us continue with the same example in Table 4.1. By
applying the step 2, we obtain the following tables:

Table 4.5: Compound objects

U Headache Muscle-pain Temperature
o′1 (o1, o3) no yes high

o′2 (o2, o6, o9) no yes very high
o′4 (o4, o5) yes no very high
o′7 (o7, o10) no yes normal
o′8 (o8) yes yes very high

Table 4.6: Combined bba’s

U ud
o′1 m′

1({yes}) = 0.4 m′
1(Θ) = 0.6

o′2 m′
2({yes}) = 1

o′4 m′
4({no}) = 0.95 m′

4(Θ) = 0.05
o′7 m′

7({no}) = 1
o′8 m′

8({yes}) = 1



Chapter 4: Belief classification systems based on rough sets 91

Step 3. Elimination of the contradictory compound objects: For
any compound object o′j from U , compute rudi(o

′
j) which representing a

noise rate for each decision value udi, If there exists a udi such that rudi(o
′
j)

= min {rudi′ (o
′
j)|udi′ ∈ Θ} < Tnoise (threshold value), then we assign the

decision value udi to the object oj . If there is no udi ∈ Θ such that rudi(o
′
j)

< Tnoise, we treat the compound object o′j as a contradictory one, and set
the decision value of o′j to ⊥(uncertain).

According to the belief GDT-RS, the noise rate is calculated using eqn.
(3.23). This latter is used in this step for detecting the contradictory com-
pound objects. So, we propose that the noise rate in this step which is also
based on a distance measure is reformulated as follows:

rudi(o
′
j) = dist(m′

j , m), such that m({udi}) = 1 (4.5)

The idea is to use the distance between two bba’s m′
j and a certain bba

m (such that m({udi}) = 1). With this manner, we can check that the
decisions of all instances belong to the compound object are near from a
certain case. So, it is considered as a not contradictory compound object.

Note that the distance measure used in this step is the same as used and
described in Chapter 3, i.e. the Jousselme distance (Jousselme et al., 2001).

Example 4.9 We fixed the threshold value of Tnoise at 0.05. For the
compound object o′1, the noise rate for the decision value ud1 is equal to
rud1(o

′
1)=0.36 and the noise rate for the decision value ud2 is equal to

rud2(o
′
1)=0.63. So, o′1 is a contradictory compound object. By applying

the step 3 to Tables 4.5 and 4.6, we obtain Table 4.7:

Table 4.7: Contradictory and not contradictory compound objects

U Headache Muscle-pain Temperature ud
o′1 no yes high ⊥
o′2 yes yes very high yes
o′4 no no very high no
o′7 no yes normal no
o′8 yes yes very high yes
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Step 4. Minimal description length of decision rule: Select from U ′,
the set of all the compound object except the contradictory ones, one com-
pound object o′j then create a discernibility vector (the row or the column
with respect to o′j in the discernibility matrix (Skowron & Rauszer, 1992))
for o′j (see subsection 2.2.7).

The discernibility matrix of A is a symmetric n*n matrix with entries
aij as given below. Each entry thus consists of the set of attributes upon
which objects oi and oj differ.

aij = {c ∈ C|c(oi) 6= c(oj)} and ud(oi) 6= ud(oj) for i, j = 1, ..., n (4.6)

Next, we compute all the so-called local relative reducts for the compound
object o′j by using the discernibility function fA(o′j). It is a boolean function
of k boolean variables corresponding to the k condition attributes defined
as below:

fA(o′j) = ∧{∨aij |1 ≤ i ≤ n, aij 6= ∅} (4.7)

The set of all prime implicants of fA(o′j) determines the sets of all reduct
values of the compound object o′j .

Example 4.10 According to Table 4.7, the discernibility vector for the com-
pound object o′2 is shown in Table 4.8.

Table 4.8: Discernibility vector for o′2

U’ o′1(⊥) o′2(yes) o′4(no) o′7(no) o′8(yes)
o′2(yes) Temperature ∅ Headache, Temperature ∅

Muscle-pain

Compute all the so-called local relative reducts for object o′2 by using the
discernibility function, we obtain two value reducts namely {Headache, Tem-
perature} and {Temperature, Muscle-pain} where fA(o′2)=(Temperature)∧
(Headache∨Muscle−pain)∧(Temperature)= (Headache∧Temperature)∨
(Muscle− pain ∧ Temperature).

Step 5. Selection of the best rules: We start by constructing the deci-
sion rules obtained from the local reduct for the object o′j and revising their
strength according to the belief GDT-RS and using the eqn. (3.20). Then,
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we select only the best rule for o′j having minimal description length, large
strength or covering instances as much as possible.

Example 4.11 For example, the following rules are acquired for object o′2:

1. ’If Headache=no and Temperature=very high then yes’ with S = 1 *
1
2= 0.5.

2. ’If Muscle-pain=yes and Temperature=very high then yes’ with S = 2
* 1

2= 1.

The rule ’If Muscle-pain=yes and Temperature=very high then yes’ is
selected for the instance o′2 according to it strength.

Step 6. Stopping criterion: Let U ′ = U ′ − {o′j}. If U ′ 6= ∅, then go
back to Step 4. Otherwise, STOP.

Phase 3. Generation of the decision rules

After the simplification of the uncertain decision table based on BRSC-
GDT, new version of the GDT-RS induction system under the belief function
framework, we can generate only one subset of decision rules with minimal
description length, having large strengths and covering all instances. The
induced decision rule has the form described as below:

α −→ β with S

-α denotes the conjunction of the some conditions that a concept must sat-
isfy.
-β denotes a concept that the rule describes.
-S is a measure of strength of which the rule holds.

Remark:

The decision rules generated from the two classifiers: BRSC and BRSC-
GDT have not the same structure. However, the classification of unseen
objects is possible for the two cases.

Example 4.12 The following table gives the set of decision rules generated
from the chosen database shown in Table 4.1:
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Table 4.9: Decision rules

U’ rules strengths
o′2, o

′
8 If Temperature=very high and Muscle-pain=yes then yes 1

o′4 If Muscle-pain=no then no 0.167
o′7 If Temperature=normal then no 0.25

4.3.2 BRSC-GDT: Classification procedure

If the model generated by the BRSC-GDT is ready, we can classify a new
objects characterized by certain attribute values. This step is similar as the
certain case (see subsection 2.3.2).

Remark:

The time complexity of our new solutions namely BRSC and BRSC-
GDT is the same which is O(kn2Nrmax), where:

- n is the number of instances in a given database,
- k stands for the number of attributes,
- Nrmax is the maximal number of reducts for instances.

These algorithms are not suitable for large databases with many number
of attributes. We suggest application of a heuristic method for attribute
selection in pre-processing stage before using our BRSC and BRSC-GDT
(see Chapter 5).

4.4 Conclusion

In this chapter, we have described the two main procedures namely the
construction and the classification procedures relative to our two proposed
classifiers BRSC and BRSC-GDT. Both are shown to simplify the uncertain
decision table and to generate more efficient decision rules for the classifi-
cation process. The uncertainty appears only in decision attribute values
which is represented through the belief functions. We have detailed the ma-
jor phases needed to build them under the belief function framework. The
most important phase is the simplification of the uncertain training decision
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table. The classifiers are able to generate a minimal and a significant set of
uncertain decision rules to classify unseen objects.

In the next chapter, we suggest to improve the qualities of our two ap-
proaches in term of time complexity of learning by applying a heuristic
method for attribute selection and improve the classification accuracy by
applying the notion of dynamic reduct.
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Chapter 5

Improvements of the belief
rough set classifiers

5.1 Introduction

In the previous chapter, we have detailed our two classification approaches
based on rough sets under the belief function framework namely the Belief
Rough Set Classifier (BRSC) and the Belief Rough Set Classifier based on
Generalization Distribution Table (BRSC-GDT). In this chapter, we propose
to improve the qualities of our two approaches in term of time complexity of
learning by applying a heuristic method for attribute selection and improve
the accuracy of classification by applying the notion of dynamic reduct.

In the first part of this chapter, we detail our heuristic method for feature
selection based on rough sets under the uncertain context to avoid a costly
calculation of the reduct from the uncertain decision table. The objective
is to reduce the time requirement needed to construct the two approaches:
the BRSC and the BRSC-GDT. Using this heuristic method to construct
them results in two other versions of classifiers denoted by H-BRSC and
H-BRSC-GDT.

In the second part of this chapter, we redefine the concept of dynamic
reduct under the belief function framework to avoid unstable results. The
objective is to obtain more accurate and stable classification. Using the
notion of dynamic reduct to construct them leads to two other versions of
classifiers denoted by D-BRSC and D-BRSC-GDT.

97
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5.2 Heuristic method for attribute selection

The exhaustive research to compute all possible reducts needed for the sim-
plification of the uncertain decision table is an expensive solution which
is only practical for simple datasets. In fact, finding all possible reducts is
NP-hard complexity problem yields costly calculation. Especially with large
datasets containing huge numbers of features, which would be impossible to
process further. Another problem of finding all possible reducts using rough
sets: What is the best reduct for the classification process? Which one we
should select? The solution to these problems is to apply a heuristic at-
tribute selection method.

In this section, we propose a heuristic method of feature selection based
on rough sets that is on one hand able to select the relevant features and
on the other hand does not damage the performance of induction, from our
partially uncertain data under the belief function framework without hard
calculation. At first, we give an overview among the heuristic attribute se-
lection methods based on rough sets. Then, we choose one of them based
on its advantages to generalized it in the uncertain context.

Our solution could be applied for our both proposed classification ap-
proaches BRSC and BRSC-GDT to obtain two other versions of classifica-
tion systems denoted by H-BRSC and H-BRSC. We carry experimentations
on real-world databases to evaluate the performance of this heuristic to re-
duce the learning time (see Chapter 6).

5.2.1 Heuristic attribute selection methods using rough sets

Recently feature selection has received considerable attention from machine
learning and knowledge discovery researchers interested in improving the
performance of their algorithms and in cleaning their data. In handling
large databases, feature selection is even more important since many learn-
ing algorithms may falter or take too long to run before the data are reduced.

There are several attempts to solve this problem by rough set community.
Most feature selection methods based on rough set can be grouped into two
categories: exhaustive or heuristic search of an optimal set of attributes.

1. Exhaustive feature selection methods based on rough sets (Pawlak,
1991; Skowron & Rauszer, 1992): They consist of selecting the optimal
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reduct from all possible reducts. However, most of time only one subset
of attributes is used to reduce a dataset. So, all the calculation involved
in discovering the rest are pointless (see subsection 2.2.6).

2. Heuristic feature selection methods based on rough sets (Chouchoulas
& Shen, 2001; Jensen & Shen, 2003; Modrzejewski, 1993; Wroblewski,
1995; Zhong et al., 2001): They carry out an exhaustive search to
find a minimal combination of features that is sufficient to construct
a hypothesis consistent with a given set of examples.

In this section, we present an overview of these heuristic methods in
order to adapt one of them to extract the more relevant subset of attributes
in a quick time from our partially uncertain data under the belief function
framework.

QuickReduct algorithm

QuickReduct algorithm (adapted from (Chouchoulas & Shen, 2001)) at-
tempts to calculate a reduct without exhaustively generating all possible
subsets. It starts off with an empty set and adds in turn, one at a time,
those attributes that result in the greatest increase in the rough set depen-
dency metric. According to the QuickReduct algorithm, the dependency of
each attribute is calculated and the best candidate is chosen. This process
continues until the dependency of the reduct equals the consistency of the
dataset (1 if the dataset is consistent).

Drawbacks: Determining the consistency of the entire dataset is rea-
sonable for most datasets. However, it may be infeasible for very large data,
so alternative stopping criteria may have to be used. One such criterion
could be to terminate the search when there is no further increase in the
dependency measure.

ReverseReduct algorithm

Other developments include ReverseReduct, adapted from (Chouchoulas &
Shen, 2001), where the strategy is backward elimination of attributes as
opposed to the current forward selection process. Initially, all attributes
appear in the reduct candidate; the least informative ones are incrementally
removed until no further attribute can be eliminated without introducing
inconsistencies.
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Drawbacks: However, ReverseReduct is not guaranteed to find a min-
imal subset. Using the dependency function to discriminate between can-
didates may lead the search down a non-minimal path. It is impossible to
predict which combinations of attributes will lead to an optimal reduct based
on changes in dependency with the addition or deletion of single attributes.
They do result in a close-to-minimal subset.

PRESET algorithm

Another approach to generating reducts from decision table have been devel-
oped in (Modrzejewski, 1993), called the PRESET algorithm. It is another
feature selector that uses rough set theory to rank heuristically the features.

Drawbacks: Since PRESET algorithm does not try to explore all com-
binations of the features. It is certain that PRESET algorithm fails on
problems whose attributes are highly correlated. In feature selection, a
good subset of features is one whose features are highly correlated with the
decision.

Attribute selection heuristic based on genetic algorithm

In (Wroblewski, 1995), another attribute selection heuristic was proposed
which uses genetic algorithms to discover optimal or close-to-optimal reducts.
Reduct candidates are encoded as bit strings, with the value in position i set
if the ith attribute is present. The fitness function depends on two parame-
ters. The first parameter is the number of bits set. The function penalizes
those strings which have larger numbers of bits set, driving the process to
find smaller reducts. The second is the number of classifiable objects given
this candidate. The reduct should discern between as many objects as pos-
sible (ideally all of them).

Drawbacks: Although, this approach is not guaranteed to find mini-
mal subsets, it may find many subsets for any given dataset. It is useful
for situations where new objects are added to or old objects are removed
from a dataset. The reducts generated previously can be used as the initial
population for the new reduct-determining process. The main drawback is
the time taken to compute each bit strings fitness.
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Attribute selection heuristic using ant-based framework

In (Jensen & Shen, 2003), authors propose a new rough set approach to
feature selection based on Ant colony optimization (ACO). The latter has
been applied to many combinatorial problems. It is particularly attractive
for feature selection since ants can discover the best feature combinations
as they traverse the graph. The precomputed heuristic desirability of edge
traversal is the entropy measure, with the subset evaluation performed us-
ing the rough set dependency heuristic. The number of ants used is set to
the number of features, with each ant starting on a different feature. Ants
construct possible solutions until they reach a rough set reduct. To avoid
fruitless searches, the size of the current best reduct is used to reject those
subsets whose cardinality exceeds this value.

Drawbacks: However, this heuristic is very complex with many param-
eters. Besides, the major drawbacks of this approach is the complexity: the
problem space is represented as a graph of all features and this does not
scale well to very large datasets.

Attribute selection heuristic using filter-based approach

In (Zhong et al., 2001), a heuristic filter-based approach is presented based
on rough set theory. The proposed algorithm starts with the core of the
dataset (those attributes that cannot be removed without introducing in-
consistencies) and incrementally adds attributes based on a heuristic mea-
sure (strategy for attribute selection). Additionally, a threshold value is
required as a stopping criterion to determine when a reduct candidate is
˝near enough˝ to being an optimal reduct. On each iteration, those objects
that are consistent with the current reduct candidate are removed. It is
an optimization which can speed up the algorithm on each iteration as it
removes objects that are already in the positive region.

Advantages: The advantages of this heuristic are as follows:

1. It is fast with time complexity is equal to O(k ∗ n). Where n repre-
sents the number of instances and k is the number of the condition
attributes.

2. It generates only one reduct. The latter is a minimal combination of
features that is sufficient to reduce the decision table without affecting
the classification power.
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3. It is better than the other heuristic methods by trying to avoid the
local optimum. It is due to the efficient strategy for attribute selection.

4. It holds more flexibility with threshold.

5. It is not complex with many parameters.

5.2.2 Heuristic method for attribute selection under belief
function framework

Among all these heuristic methods for feature selection based on rough sets,
we choose the heuristic proposed in (Zhong et al., 2001) to adapt it in our
uncertain context due to its advantages.

Notations

The following notations are used to introduce the algorithm:

• R: the set of selected condition attributes,

• P : the set of unselected condition attributes,

• ε: reduct threshold.

Principle

Our algorithm uses the attributes from core as an initial attribute subset.
Next, it selects attributes one by one from unselected ones using some strate-
gies, and adds them to the attribute subset until a reduct approximation is
obtained.

The strategy for attribute selection used in this algorithm can be de-
scribed as follows: select a given attribute c, if by adding it to the subset R
of attributes, the cardinality of UPosR∪{c}(A, {ud}) increases faster and the
max−size(UPosR∪{c}(A, {ud}) /R∪{c}∪{ud})) andmax−size(U/R∪{c})
are larger than by adding any other attribute. The discussed conditions can
be competitive. So, we choose in our quality criterion the result of multipli-
cation of the three values.
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Algorithm

Initial state
(1) R ← UCoreC(A, {ud}) // calculation of the core
P ← C − UCoreC(A, {ud})
(2) while (γR(A, {ud}) < ε)
(3) U ← U − UPosR({ud}) //optimization
(4) ∀ c ∈ P
(5) vc = |UPosR∪{c}(A, {ud})|
(6) mc = max− size(UPosR∪{c}(A, {ud})/R∪ {c} ∪ {ud}))
(7) xc = max− size(U/R ∪ {c})
(8) Choose c with largest vc ∗mc ∗ xc

(9) R ← R ∪ {c}
(10) P← P -{c}
(11) return R

Example 5.1 Let us take Table 5.1 to compute the reduct using our heuristic
method. This latter contains eight objects, three certain condition attributes
C={Headache, Muscle-pain, Temperature} and an uncertain decision at-
tribute ud=Flu with possible value {yes, no} representing Θ.

Table 5.1: Uncertain decision table 2

U Headache Muscle-pain Temperature Flu
o1 yes yes very high m1({yes}) = 1
o2 yes no high m2({no}) = 1
o3 yes yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 no yes normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 no yes normal m5({no}) = 1
o6 yes no high m6({no}) = 1
o7 no yes very high m7({yes}) = 1
o8 no yes high m8({yes}) = 1

We start by computing the core (the set of indispensable condition at-
tributes) as follows:

Remove the ′Headache′ attribute from the condition attributes:



104 Chapter 5: Improvements of the belief rough set classifiers

UPos{Muscle−pain,T emperature}(A, {ud})={o1, o2, o6, o7, o8}= UPosC(A, {ud})
So, the ′Headache′ attribute is not indispensable.

Remove the ′Temperature′ attribute from the condition attributes:
UPos{Headache,Muscle−pain}(A, {ud})={o8} 6= UPosC (A, {ud})
So, the ′Temperature′ attribute is indispensable.

Remove the ′Muscle− pain′ attribute from the condition attributes:
UPos{Headache,Temperature}(A, {ud})={o1, o2, o6, o7, o8} = UPosC (A, {ud})
So, the ′Muscle− pain′ attribute is not indispensable.

Only the Temperature attribute is indispensable with respect to ud. Hence,
it is the core.

We have, in the initial state:
R=UCoreC(A, {ud})={Temperature}
P=C-UCoreC(A, {ud})={Headache, Muscle-pain}

Setting reduct threshold: ε =γC(A, {ud})=5/8, the termination condi-
tion will be γR(A, {ud}) ≥ 5/8. Since γR(A, {ud})= 2/8 < 5/8, R is not a
reduct, and we must continue adding other condition attributes to R until a
reduct is obtained.

The positive region of the attribute {Temperature} with respect to {ud}:
UPos{Temperature}(A, {ud})= {o1, o7}. The initial state is U = {o2, o3, o4, o5,
o6, o8}, without consistent objects {o1, o7}, is shown in Table 5.2.

Table 5.2: Initial state

U Temperature Flu
o2 high m2({no}) = 1
o3 normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 normal m5({no}) = 1
o6 high m6({no}) = 1
o8 high m8({yes}) = 1
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Next, we have two candidates Muscle− pain and Headache. Tables 5.3
and 5.4 give the results of adding Muscle − pain and Headache to R, re-
spectively.

From Tables 5.3 and 5.4, we obtain the following positive regions:
UPos{Muscle−pain,T emperature}(A, {ud}) = {o2, o6, o8}
UPos{Headache,Temepature}(A, {ud}) = {o2, o6, o8}
vMuscle−pain=|UPOS{Muscle−pain,T emperature}(A, {ud})|=3
vHeadache=|UPOS{Headache,Temepature}(A, {ud})|=3

The two candidates have the same vc. So, we should check the value of mc

UPos{Muscle−pain,T emperature}(A, {ud})/{Muscle−pain, Temerature, F lu}=
{{o2, o6}, {o8}}
UPos{Headache,Temperature}(A, {ud})/{Headache, Temperature, F lu}=
{{o2, o6}, {o8}
mMuscle−pain=2
mHeadache=2

The two candidates have the same mc. So, we should check the value of
xc

U/{Muscle− pain, Temperature}={{o2, o6}, {o3, o4, o5}, {o8}}
U/{Headache, Temperature}={{o2, o6}, {o3}, {o4, o5}, {o8}}
xMuscle−pain = 3
xHeadache = 2

One can see that by selecting the ′Muscle−pain′ or ′Headache′ attribute,
we can reduce the number of contradictory instances. Since the maximal set
is in U/{Muscle − pain, Temperature}. Then, according to our selection
strategies, Muscle−pain should be selected first. After adding Muscle−pain
to R, γR(A, {ud})= 5/8 ≥ 5/8. The process is finished. Thus, the selected
attribute subset is {Muscle− pain, Temperature}.
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Table 5.3: Selecting ’Muscle-pain’ attribute

U Muscle-pain Temperature Flu
o2 no high m2({no}) = 1
o3 yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 yes normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 yes normal m5({no}) = 1
o6 no high m6({no}) = 1
o8 yes high m8({yes}) = 1

Table 5.4: Selecting ’Headache’ attribute
U Headache Temperature Flu
o2 yes high m2({no}) = 1
o3 yes normal m3({yes}) = 0.5 m3(Θ) = 0.5
o4 no normal m4({no}) = 0.6 m4(Θ) = 0.4
o5 no normal m5({no}) = 1
o6 yes high m6({no}) = 1
o8 no high m8({yes}) = 1

5.3 Dynamic method for attribute selection

Feature selection is an important pre-processing stage in machine learn-
ing. Rough set theory provides an attractive mechanism for feature selec-
tion (Modrzejewski, 1993; Pawlak, 1991; Skowron & Rauszer, 1992). The
simplest approach is based on the calculation of reduct. Another issue in
real-world applications is the uncertain, imprecise or incomplete data.

However, computing reducts from uncertain and noisy data make the
results unstable, and sensitive to the sample data. All of these limit the ap-
plication of rough set theory. Dynamic reducts (Bazan et al., 1994) can lead
to better performance in very large datasets, and also provide the ability to
accommodate noisy data. The rules calculated by means of dynamic reducts
are better predisposed to classify unseen cases, because these reducts are in
some senses the most stable reducts, and they appear most frequently in
sub-decision systems created by random samples of a given decision system.
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In this section, we will generalize the concepts of dynamic reduct and
dynamic core under belief function framework. Before that, we start by
defining the concepts of dynamic reduct and dynamic core in the certain
case.

5.3.1 Dynamic reduct and dynamic core

If A = (U, C ∪ {d}) is a decision table, then any system B = (U ′, C ∪ {d})
such that U ′ ⊆ U is called a subtable of A. Let F be a family of subtables
of A (Bazan et al., 1994).

DR(A, F ) = RED(A, d)∩
⋂

B∈F

RED(B, d) (5.1)

Any element of DR(A, F ) is called an F -dynamic reduct of A. From the
definition of dynamic reducts, it follows that a reduct of A is dynamic if it
is also a reduct of all subtables from a given family F. This notation can
be sometimes too restrictive so we apply a more general notion of dynamic
reduct. They are called (F, ε)-dynamic reducts, where 0 ≤ ε ≤ 1. The set
DRε(A, F ) of all (F, ε)-dynamic reducts is defined by

DRε(A, F ) =
{
R ∈ RED(A, d) :

|{B ∈ F : R ∈ RED(B, d)}|
|F | ≥ 1− ε

}

(5.2)
Nevertheless, computing reducts from uncertain and noisy data leads to re-
sults which are unstable and sensitive to the sample data. Therefore it is
important to search the most stable reduct denoted dynamic reduct (Bazan
et al., 1994) or computing reduct containing dynamic core defined as follows:

If A = (U, C ∪ {d}) is a decision table, then any system A′ = (U ′, C ∪
{ud}) such that U ′ ⊆ U is called a subtable of A. Let F be a family of
subtables of A.

DCoreC(A, F ) = CoreC (A, {ud})∩
⋂

A′∈F

CoreC(A′, {ud}) (5.3)

Any element of DCoreC(A, F ) is called an F -dynamic core of A. From
the definition of dynamic core, it follows that a core of A is dynamic if it is
also a core of all subtables from a given family F .
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5.3.2 Dynamic reduct and dynamic core under belief func-
tion framework

Our decision system is characterized by high level of uncertain and noisy
data. One of the issues with such a data is that the resulting reducts are
not stable, and are sensitive to sampling. The belief decision rules gen-
erated are not suitable for classification. The solution to this problem is
to redefine the concept of dynamic reduct in the new context. The rules
calculated by means of dynamic reducts are better predisposed to classify
unseen objects, because they are the most frequently appearing reducts in
sub-decision systems created by random samples of a given decision system.
In this subsection, we will generalize the concepts of dynamic reduct and
dynamic core in the uncertain context. The objective is to extract more
stable reducts from the uncertain decision system.

Using the new definition of reduct in our uncertain context, we can
redefine the concept of dynamic reduct as follows:

UDR(A, F ) = URED(A, ud)∩
⋂

B∈F

URED(B, ud) (5.4)

Where F be a family of subtables of A. This notation can be sometimes too
restrictive so we apply a more general notion of dynamic reduct. They are
called (F, ε)-dynamic reducts, where 0 ≤ ε ≤ 1. The set UDRε(A, F ) of all
(F, ε)-dynamic reducts is defined by:

UDRε(A, F ) =

{
R ∈ URED(A, ud) :

|{B ∈ F : R ∈ URED(B, ud)}|
|F | ≥ 1− ε

}
(5.5)

If A = (U, C ∪ {ud}) is an uncertain decision table, then any system A′ =
(U ′, C∪{ud}) such that U ′ ⊆ U is called a subtable of A. Let F be a family
of subtables of A.

UDCoreC(A, F ) = UCoreC(A, {ud})∩
⋂

A′∈F

UCoreC (A′, {ud}) (5.6)

Any element of UDCoreC(A, F ) is called an F -dynamic core of A. From
the definition of dynamic core, it follows that a core of A is dynamic if it is
also a core of all subtables from a given family F .



Chapter 5: Improvements of the belief rough set classifiers 109

Example 5.2: To compute the dynamic reduct of the uncertain decision
system A. We divide our uncertain decision system into two subtables B and
B′ to obtain a family F of sub-decision system. B contains the objects o1,
o2, o3, o4 and B′ contains the objects o5, o6, o7, o8. The two subtables have
the same reducts as the whole decision system A. So, the subsets {Headache,
Temperature} and {Muscle-pain, Temperature} are dynamic reducts relative
to the chosen family F .

5.4 Conclusion

In this chapter, we have presented two major ideas to improve the qualities
of our two classification approaches namely BRSC and BRSC-GDT. The
first idea focuses on reducing the time complexity requirement to construct
our two classifiers by applying a heuristic feature selection method in a pre-
processing stage. Using this heuristic method leads to two other versions of
classifiers denoted by H-BRSC and H-BRSC-GDT.

The second idea attempts to increase the classification accuracy of the
generated rules of our two classifiers by applying the notion of dynamic
reduct to reduce the uncertain decision table. This dynamic method results
in two other versions of classifiers denoted by D-BRSC and D-BRSC-GDT.

In the next chapter, we will carry experimentations to evaluate the per-
formance of our two classifiers and their versions on modified real-world
databases by artificially introducing uncertainty in the decision attribute
values and on a naturally uncertain web usage mining database.
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Chapter 6

Simulation and experimental
results

6.1 Introduction

Implementation of our classification systems based on rough sets under the
belief function framework seems imperative since it allows us to have an idea
concerning the feasibility of our solutions and its efficiency (see Appendix
A). Once the different programs are implemented, we have performed sev-
eral tests and simulations on real-world databases obtained from the U.C.I.
repository1 for checking the feasibility of our approaches, judging their qual-
ities and comparing between them. The latters were artificially modified in
order to include uncertainty in decision attribute. To further evaluate our
two belief classification techniques and their versions, we have also performed
experimentations on a naturally uncertain web usage database (Lingras &
West, 2004). This dataset was obtained from web access logs of the intro-
ductory computing science course at Saint Mary’s University. The chosen
evaluation criteria for this experimental part are the time requirement of
the construction procedure, the size of the models and the classification ac-
curacy.

Different results from these simulations have been compared and ana-
lyzed in order to evaluate our classifiers. We have also made comparisons
with the results given by a similar classifier namely, the Belief Decision Tree
(BDT) (Elouedi et al., 2001; Trabelsi et al., 2006, 2007) which is more suit-
able since it deals with the same hypotheses (see subsection 6.2.5).

1http://www.ics.uci.edu/ mlearn/MLRepository.html
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The first part of this chapter presents all preliminary notions for set-
ting experimentations like the description of the experimental databases,
the evaluation criteria, the testing strategy and finally, we give a description
of our comparative classifier: BDT. We further report the different results
obtained from the artificial uncertain databases and the naturally uncer-
tain web usage database in order to demonstrate the applicability and the
effectiveness of our classification systems based on rough sets under belief
function framework in comparison with belief decision tree.

6.2 Experimental settings

In this section, we provide all necessary parts related to the evaluation of
the belief rough set classifier approaches: BRSC, BRSC-GDT, H-BRSC,
H-BRSC-GDT, D-BRSC, D-BRSC-GDT. We start by providing a descrip-
tion of the used databases. Then, three evaluation criteria are proposed for
checking the performance of our solutions. Next, the notion of cross valida-
tion is described which is our testing strategy. Finally, we give an overview
of the belief decision tree which is the existing comparative classifiers used
to more evaluate the performance of our approaches.

6.2.1 Description of databases

U.C.I repository databases

As mentioned in the beginning of this chapter, we have performed simula-
tions on real-world databases obtained from the U.C.I repository of machine
learning databases.

A brief description of these nominal-valued databases is presented in
Table 6.1 where # instances, #attributes and #decision values denote re-
spectively the total number of instances in the database, the number of
condition attributes and the number of decision attributes values. Since
we only deal with symbolic attribute values, we have chosen the following
databases:



Chapter 6: Simulation and experimental results 113

Table 6.1: Description of databases

Database #instances #attributes #decision values

W. Breast Cancer 690 8 2

Balance Scale 625 4 3

C. Voting records 497 16 2

Zoo 101 17 7

Nursery 12960 8 3

Solar Flares 1389 10 2

Lung Cancer 32 56 3

Hayes-Roth 160 5 3

Car Evaluation 1728 6 4

Lymphography 148 18 4

Spect Heart 267 22 2

Tic-Tac-Toe Endgame 958 9 2

Despite the great interest to the field of data mining from uncertain data
these last years, real uncertain data and more specifically, with uncertain
decision attribute values represented through belief functions are not very
available. Hence, most researchers on the field of uncertain data mining and
in order to make experimentations create uncertainty in artificial way.

Data sets of the U.C.I. repository (and consequently those given in Ta-
ble 6.1) are crisp data and do not contain neither uncertain attributes nor
uncertain decision values. Thus, we should contaminate these datasets by
creating for each instance of each dataset, a belief distribution on the dif-
ferent possible decision values labels in order to get the same structure of
the training set needed in building belief rough set classifiers. Namely, each
instance will keep its original attribute values unchanged but its decision
value will be replaced by a bba.

Constructing uncertainty: The belief rough set classifiers are essen-
tially built from decision tables characterized by uncertain decision attribute
where the uncertainty is represented by a bba given on the set of the possible
decision values. So, the question is how will we construct these bba’s?

These bba’s are created artificially. They take into account three basic
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parameters:

• The real decision values of the training instances

• Degree of uncertainty

– No uncertainty (certain case): we take P = 0

– Low degree of uncertainty: we take 0 < P ≤ 0.3

– Middle degree of uncertainty: we take 0.3 < P ≤ 0.6

– High degree of uncertainty: we take 0.6 < P ≤ 1

• The number N of bba’s composing the bba on instance’s class.

For each object, we build N bba’s and combine them conjunctively using
eqn (1.37). The resulting bba is the bba describing our belief about the
actual decison value to witch the object belongs. Each bba has almost 2
focal elements:

1. The first is the actual decision value udi of the object with bba,
m({udi}) = 1− P (P is a probability generated randomly).

2. The second is a subset θ of Θ (generated randomly) such that the
actual decision value of the object under consideration belongs to θ
and every of the other decision values belongs to θ with probability P .
m(θ) = P

A larger P gives a larger degree of uncertainty.

Real web usage database

Besides of the modified U.C.I repository databases used in this chapter,
we have also performed experimentations on a real and an uncertain web
usage database (see a part in Appendix B). The uncertainty exists in the
decision attribute values and represented via the belief functions. The latter
were obtained from web access logs of the introductory computing science
course at Saint Mary’s University. The course is ’Introduction to Computing
Science and Programming’ offered in the first term of the first year. The
initial number of students in the course was 180. It is reduced over the course
of the semester to 140 students. The students in the course come from a wide
variety of backgrounds, such as computing science major hopefuls, students
taking the course as a required science course, and students taking the course
as a science or general elective. As is common in a first year course, students’
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attitudes towards the course also vary a great deal. Lingras and West (2004)
showed that visits from students attending the first course could fall into
one of the following three categories (decision values):

• Studious: These visitors download the current set of notes. Since they
download a limited/current set of notes, they probably study class-
notes on a regular basis.

• Crammers: These visitors download a large set of notes. This indicates
that they have stayed away from the class-notes for a long period of
time. They are planning for pretest cramming.

• Workers: These visitors are mostly working on class or lab assignments
or accessing the discussion board.

Data preparation: Data quality is one of the fundamental issues in
data mining. Poor data quality always leads to poor quality of results. Data
preparation is an important step before applying data mining algorithms.
The data preparation consisted of two phases: data cleaning and data trans-
formation.

1. Data cleaning involved removing hits from various search engines and
other robots. Some of the outliers with large number of hits and
document downloads were also eliminated. This reduced the data set
by 5%.

2. Data transformation required the identification of web visits (Lingras
& West, 2004). Certain areas of the web site were protected, and
the users could only access them using their IDs and passwords. The
activities in the restricted parts of the web site consisted of submitting
a user profile, changing a password, submission of assignments, viewing
the submissions, accessing the discussion board, and viewing current
class marks. The rest of the web site was public. The public portion
consisted of viewing course information, a lab manual, class-notes,
class assignments, and lab assignments. If users only accessed the
public web site, their IDs would be unknown. Therefore, web users
were identified based on their IP address. This also made sure that the
user privacy was protected. A visit from an IP address started when
the first request was made from the IP address. The visit continued as
long as the consecutive requests from the IP address had sufficiently
small delay.
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The web logs were preprocessed to create an appropriate representation
of each user, corresponding to a visit. The abstract representation of a
web user is a critical step that requires a good knowledge of the application
domain. Previous personal experience with the students in the course sug-
gested that some of the students print preliminary notes before a class and
an updated copy after the class. Some students view the notes on-line on a
regular basis. Some students print all the notes around important days such
as midterm and final examinations. In addition, there are many accesses
on Tuesdays and Thursdays, when in-laboratory assignments are due. On
and off-campus points of access can also provide some indication of a user’s
objectives for the visit. Based on some of these observations, it was decided
to use the following attributes for representing each visitor (Lingras & West,
2004):

• On campus/Off campus access.

• Day time/Night time access: 8 a.m. to 8 p.m. were considered to be
the daytime.

• Access during lab/class days or non-lab/class days: All the labs and
classes were held on Tuesdays and Thursdays. The visitors on these
days are more likely to be workers.

• Number of hits.

• Number of class-notes downloads.

The first three attributes had binary values of 0 or 1. However, the last
two variables represent the number of hits and number of class-notes were
integer values. As detailed in the previous chapters that our classification
systems handle only symbolic attributes. Hence, the two last attributes (the
number of hits and number of class-notes) are discretized using the hybrid
system called RSBR proposed in (Nguyen, 1997) (see subsection 2.3.1).

Total visits were 23754, the visits where no class-notes were downloaded
were eliminated, since these visits correspond to either casual visitors or
workers. Elimination of outliers and visits from the search engines further
reduced the sizes of the data set to 7965.

Instead of representing an object as belonging to a cluster udi (decision
value). It also associated by an expert a degree of belief (bba mj) in the
object belonging to the cluster udi with Θ = {udi|1 ≤ i ≤ k} be the set of
all the clusters (the possible decision values).
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6.2.2 Evaluation criteria

The relevant criteria used to judge the performance of our proposed classi-
fiers in both construction and classification procedures are as follows:

-To evalute the construction procedure for each classifier, we choose:

• The time requirement which represents the number of seconds
needed to construct each classifier. So, this criterion is used to find
the more fasters classifiers in building phase.

-To evalute the classification procedure for each classifier, we choose:

• The size which is characterized by the number of the decision rules
generated from each classifier. It is generally accepted that the fewer
terms in a model the better is. This criterion can also be used to find
the more fasters approaches in classification phase due to the small
size of their models.

• The classification accuracy which is determined by measuring the
number of instances it, correctly, classifies among the total number
of testing instances presented to the classifier. Hence, this criterion is
used to find the more accurate approaches for classify the new objects.

We will use the Percent of Correct Classification (PCC) as a performance
indicator. The latter represents the percent of the correct classification of
the testing instances which are classified according to the induced decision
rules. It is given by:

PCC =
number of well classified instances

total number of classified instances
∗ 100 (6.1)

The PCC is computed as follows: for each testing instance, we make com-
parison between its real decision value and the decision value given by the
classification procedure of BRSC or BRSC-GDT. Hence, the number of well
classified instances represents the number of testing instances for which the
decision value obtained by the classifier is the same as their real decision
values.

A PCC equal to 100% qualifies the belief rough set classifier as an ex-
cellent classifier, whereas a ’null’ classifier has a PCC equal to 0%.
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An equivalent criterion, also used in the literature, measure the propo-
sition of incorrectly classified instances. This is known as the error rate
(r=1-PCC). We can also mention the Kappa statistics (Siegel & Castellan,
1988) which penalizes the PCC by the percentage of instances that could be
correctly classified by chance.

6.2.3 Testing strategy

The construction of the belief rough set approaches requires a training set for
building models. We need also a testing set for evaluating the performance
of the classifiers. The data set is divided into k parts. k-1 partitions are used
as the training set to build the classifier, the last is used as the testing set
to evaluate it. The procedure is repeated k times, each time another part is
chosen as the testing set. The k results are then averaged. The advantage
of this method is that all instances are used for both training and testing,
and each instance is used for testing exactly once. This method, called a
cross-validation, permits an efficient estimation of the evaluation criteria.
10-fold cross-validation is commonly used.

6.2.4 Technique of sampling

The technique for sampling of uncertain decision table and dynamic reduct
computation in the uncertain context is similar with the technique employed
in the certain case (Bazan et al., 1994) which consists of the following steps.

• In the first step, some of samples of the uncertain decision table are
computed randomly. Next, reducts for all these subtables are calcu-
lated.

• In the second step, reducts with the stability coefficients higher than a
fixed threshold are extracted. They are considered as dynamic reducts.

In our experimentations, we take five samples of the uncertain training de-
cision table to avoid the costly calculation of the dynamic reduct:

• Sample 1 contains 10% of the training set

• sample 2 contains 20% of the training set

• Sample 3 contains 30% of the training set

• Sample 4 contains 40% of the training set

• sample 5 contains 50% of the training set
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6.2.5 Belief decision tree: comparative classifier

To more evaluate the performance of our classifiers, we compare the obtained
results with those obtained from another similar classifier. We choose the
Belief Decision Tree (BDT) approach (Denœux & Skarstein-Bjanger, 2000;
Elouedi et al., 2001; Vannoorenberghe & Denœux, 2002). BDT is a deci-
sion tree in an uncertain environment where the uncertainty is represented
through the TBM. The uncertainty appears in the actual decision attribute
values of training objects. The model generated by the BDT is belief de-
cision rules. Hence, the comparison between the two classifiers is possible.
The following parts, give us an overview about BDT.

Description

A belief decision tree is a decision tree in an uncertain environment where
the uncertainty is represented by the TBM. In our work, we focus on BDT
proposed in (Elouedi et al., 2001) where there are two approaches of building.
These latters deal with only symbolic attributes.

• The averaging approach is an extension of the classical approach de-
veloped by Quinlan and based on the gain ratio criterion (Quinlan,
1993).

• The conjunctive approach represented ideas behind the TBM itself
and based on a distance criterion.

Belief decision tree parameters

In this part, we define the major parameters leading to the construction of
the belief decision tree where objects may have uncertain decision attribute
values.

Parameter 1. Attribute selection measures: The major parame-
ter ensuring the building of a decision tree is the attribute selection measure
allowing to determine the attribute to assign to a node of the induced BDT
at each step.

Averaging Approach: Under this approach, the attribute selection
measure is based on the entropy computed from the average pignistic prob-
abilities computed from the pignistic probabilities of each instance in the
node. The following steps are proposed to choose the appropriate attribute:
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1. Compute the pignistic probability BetPj of each object oj by applying
the pignistic transformation to mj .

2. For each udi ∈ Θ, compute the average pignistic probability function
BetP{S} taken over the set of objects S.

BetP{S}({udi}) =
1
|S|

∑

oj∈S

BetPj ({udi}) (6.2)

3. Compute the entropy Info(S) of the average pignistic probabilities in
the set S. This Info(S) value is equal to:

Info(S) = −
s∑

i=1

BetP{S}({udi}) log2BetP{S}({udi}) (6.3)

4. Select an attribute c. Collect the subset Sc
v made with cases of S

having v as a value for the attribute c. Then, compute the average
pignistic probability for objects in subset Sc

v. Let the result be denoted
by BetP{Sc

v}.

5. Compute Infoc(S):

Infoc(S) =
∑

v∈D(c)

|Sc
v|
|S| Info(S

c
v) (6.4)

where D(c) is the domain of the possible values of the attribute c and
Info(Sc

v) is computed using BetP{Sc
v}.

6. Compute the information gain provided by the attribute c in the set
of objects S such that:

Gain(S, c) = Info(S)− Infoc(S) (6.5)

7. Using the Split Info, compute the gain ratio relative to attribute c:

GainRatio(S, c) =
Gain(S, c)

Split Info(S, c)
(6.6)

Where
Split Info(S, c) = −

∑

v∈D(c)

|Sc
v|
|S| log2

|Sc
v|
|S| (6.7)
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8. Repeat the same process for every attribute c belonging to the set of
attributes that can be selected. Next, choose the one that maximizes
the gain ratio.

Conjunctive Approach: It is based on an intra-group distance quan-
tifying each attribute value how strongly objects are close from each others.
The different steps upon this attribute selection measure ensuring the build-
ing of a decision tree are the following ones:

1. For each training object, compute from the bba mj :

Kj(E) = − ln qj(E) ∀E ⊆ Θ (6.8)

2. For each attribute value v of an attribute c, compute the joint K{Sc
v}

defined on Θ, the set of possible classes by:

K{Sc
v}(E) =

∑

oj∈Sc
v

Kj(E) (6.9)

3. For each attribute value, the intra-group distance SumD(Sc
v) is defined

by:

SumD(Sc
v) =

1
|Sc

v|
∑

oj∈Sc
v

∑

E⊆Θ

(Kj(E)− 1
|Sc

v|
K{Sc

v}(E))2 (6.10)

4. Compute SumDc(S) representing the weighted sum of the different
SumD(Sc

v) relative to each value v of the attribute c:

SumDc(S) =
∑

v∈D(c)

|Sc
v|
|S|

SumD(Sc
v) (6.11)

5. By analogy to our averaging approach, we may also computeDiff(S, c)
defined as the difference between SumD(S) and SumDc(S) :

Diff(S, c) = SumD(S)− SumDc(S) (6.12)

Where

SumD(S) =
1
|S|

∑

oj∈S

∑

E⊆Θ

(KΘ{oi}(E)− 1
|S|K

Θ{S}(E))2 (6.13)
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6. Using the Split Info (see eqn. (6.7)), compute the diff ratio relative to
the attribute c:

Diff Ratio(S, c) =
Diff(S, c)

Split Info(S, c)
(6.14)

7. For every attribute repeat the same process, and choose the one that
maximizes the diff ratio.

Parameter 2. Partitioning strategy: The partitioning strategy for
the construction of a belief decision tree is similar to the partitioning strat-
egy used in the standard tree. Since we deal with only symbolic attributes,
we create an edge for each value of the attribute chosen as a decision node.

Parameter 3. Stopping criteria: Four strategies are proposed as
stopping criteria:

1. If the treated node includes only one instance.

2. If the treated node includes only instances for which themj ’s are equal.

3. If all the attributes are split.

4. If the value of the applied attribute selection measure (using either the
gain ratio or the diff ratio) for the remaining attributes is less or equal
than zero.

Parameter 4. Structure of leaves: Each leaf in the induced tree will
be characterized by a bba. Using the averaging approach, the leaf’s bba is
equal to the average of the bba’s of the objects belonging to this leaf. How-
ever, in the conjunctive approach, the leaf’s bba is the result of combination
of the bba’s of objects belonging to this leaf using the conjunctive rule.

Belief decision trees procedures

The BDT is composed of two principal procedures: the building of the tree
from training objects with uncertain classes and the classification of new
instances.

1. Building procedure: Building a decision tree in this context of
uncertainty will follow the same steps presented in C4.5 algorithm.
Furthermore, this algorithm is generic since it offers two possibilities
for selecting attributes by using either the averaging approach or the
conjunctive one.
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2. Classification procedure: Once the belief decision tree is con-
structed, it is able to classify an object described by an exact value
for each one of its attributes, we have to start from the root of the
belief decision tree, and repeat to test the attribute at each node by
taking into account the attribute value until reaching a leaf. As a leaf
is characterized by a bba on classes, the pignistic transformation is
applied to get the pignistic probability on the classes of the object to
classify in order to decide its class. For instance, one can choose the
class having the highest pignistic probability.

Belief decision trees also deal with the classification of new instances
characterized by uncertainty in the values of their attributes. The
idea to classify such objects is to look for the leaves that the given
instance may belong to by tracing out possible paths induced by the
different attribute values of the object to classify. The new instance
may belong to many leaves where each one is characterized by a basic
belief assignment. These bba’s are combined using disjunctive rule of
combination in order to get beliefs on the instance’s classes.

Pruning belief decision tree

Inducing a BDT may lead in most cases to very large trees with bad classi-
fication accuracy and difficult comprehension. As in standard decision trees
within belief decision trees, pre-pruning and post-pruning methods have
been proposed to cope with this problem.

Pre-pruning method has been developed in (Elouedi et al., 2002) by im-
proving the stopping criteria concerning the value of the selection measure in
BDT using a discounting factor and in (Denœux & Skarstein-Bjanger, 2000)
where impurity measure, based on evidence-theoretic uncertainty measure,
is used to grow the tree and has the advantage to define simultaneously
the pruning strategy. It allows to control the complexity of the tree, thus
avoiding overtraining.
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In (Trabelsi et al., 2007), one of standard post-pruning methods, namely
the minimal cost-complexity pruning has been adapted in averaging and con-
junctive approaches in order to simplify the belief decision tree and improve
its classification accuracy.

6.3 Results and analysis

The objectives to carry experimentations on the chosen real-world databases
are:

1. Evaluate our two proposed approaches Belief Rough Set Classifier
(BRSC) and Belief Rough Set Classifier based on Generalization Dis-
tribution Table (BRSC-GDT).

2. Check the performance of our heuristic feature selection method for
reducing the time requirement of the construction procedure relative
to BRSC and BRSC-GDT by testing their versions namely H-BRSC
and H-BRSC-GDT.

3. Check the performance of our dynamic reduct approach for improv-
ing the quality of classification relative to BRSC and BRSC-GDT by
testing their versions namely D-BRSC and D-BRSC-GDT.

4. Compare the obtained results with those given by another similar clas-
sifier, namely the Belief Decision Tree (BDT) approach developed in
(Elouedi et al., 2001).

Note that pruning step is indispensable to improve the size and the
accuracy of the BDT. In (Trabelsi et al., 2007), we have concluded that
the post-pruning is better than pre-pruning (Elouedi et al., 2002) in terms
of size and accuracy. For these reasons, we focus in our experimentations
only on the post-pruned belief decision tree in averaging and conjunctive
approaches. We took best results between the two approaches related to
BDT.
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6.3.1 Experimental results from U.C.I repositry databases

In this part, we report the experimental results from U.C.I repositry databases
shown in Table 6.1 by applying all classification approaches (pruned BDT,
BRSC, BRSC-GDT, H-BRSC, H-BRSC-GDT, D-BRSC, D-BRSC-GDT)
based on three evaluation criteria: time requirement, size of models and
classification accuracy. To more illustrate the idea, we give for each evalua-
tion criteria three figures relative to three databases.

Time requirement criterion

We start by the first evaluation criterion representing the time requirement
needed to build our classification approaches. Table 6.2 gives the different
results obtained from all databases where the different classifiers are sorted
from the best to the worst. Note that the time requirement is almost the
same for the different degrees of uncertainty. In Table 6.2, we only report
the mean of the different degrees of uncertainty (no uncertainty, low uncer-
tainty, middle uncertainty and high uncertainty).

Table 6.2: Experimental results for the time requirement (seconds)(mean)

H- D-

Bases BRSC- H- BRSC- BRSC Pruned BRSC- D-

GDT BRSC GDT BDT GDT BRSC

W. Breast Cancer 41 66 136 154 156 381 393

Balance Scale 35 42 126 129 139 282 297

C. Voting records 27 68 106 110 117 224 235

Zoo 34 39 96 101 103 207 221

Nursery 127 191 356 380 386 867 1106

Solar Flares 104 108 146 157 160 391 412

Lung Cancer 15 29 42 48 56 174 187

Hayes-Roth 28 34 82 91 93 198 205

Car Evaluation 105 133 156 178 189 418 426

Lymphography 43 65 97 102 108 209 217

Spect Heart 52 71 89 109 111 226 233

Tic-Tac-Toe 98 107 127 139 149 293 312

From this table, we find that the H-BRSC-GDT is faster to construct
than all approaches in all databases. For example, the time requirement for
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C. V oting records database is only 27s. This positive result is due to the
heuristic feature selection step which can compute sufficient solution with-
out costly calculation and to the hybrid system GDT-RS which can avoid
many iterations by eliminating some unnecessary decision rules in the dis-
covery process like the contradictory decision rules.

The table also shows that our heuristic feature selection method has a
very good effect on reducing the time requirement to build both the classi-
fiers: BRSC and BRSC-GDT. So, the H-BRSC and H-BRSC-GDT become
very faster than BRSC and BRSC-GDT. For example, the time requirement
for Nursery database goes from 380s with BRSC to 191s with H-BRSC.

However, the application of the notion of dynamic reduct increase the
time requirement to construct both the classifiers: BRSC and BRSC-GDT.
So, the D-BRSC and the D-BRSC-GDT need more cost calculation than
the BRSC and the BRSC-GDT. For example, the time requirement for Zoo
database goes from 101s with BRSC to 221s with D-BRSC. Hence, we can
see that D-BRSC-GDT and D-BRSC are the worst. This negative result is
due to the dynamic reduct method which compute the more stable reduct
from many subtables obtained from the uncertain decision table.

The table also shows that the Generalization Distribution Table (GDT)
methodology has a very good effect on reducing the time requirement. So,
the BRSC-GDT, the H-BRSC-GDT and the D-BRSC-GDT are respectively
faster than the BRSC, the H-BRSC and the D-BRSC. For example, the time
requirement for Spect Heart database goes from 109s with BRSC to 89s with
BRSC-GDT.

Besides, we also find that our classification systems based on rough sets
namely H-BRSC-GDT, H-BRSC, BRSC-GDT, BRSC are more fast than
the post-pruned BDT. This result is also explicable where the step of prun-
ing increases the time requirement needed to build the BDT.

To illustrate the results, Figures 6.1, 6.2 and 6.3 give a graphical presen-
tation for the time requirement for all approaches relative to some databases
namely W. Breast Cancer, C. V oting records and Lung Cancer.
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Figure 6.1: Time requirement for W. Breast Cancer database

Figure 6.2: Time requirement for C. Voting records database

Figure 6.3: Time requirement for Lung Cancer database
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Size criterion

We move to the second evaluation criterion representing the number of the
learned decision rules generated from BDT, BRSC, BRSC-GDT, H-BRSC,
H-BRSC-GDT, D-BRSC, D-BRSC-GDT. From Table 6.3 to Table 6.6, we
detail the different results relative to the chosen databases for the differ-
ent degree of uncertainty where the different classifiers are sorted from the
best to the worst. Table 6.3 gives the results relative to the certain case
(no uncertainty). Tables 6.4, 6.5 and 6.6 present the results relative to the
uncertain case (low uncertainty, middle uncertainty and high uncertainty).
Table 6.7 summarizes the mean size for the different degrees of uncertainty
from all databases relative to our classifiers.

Table 6.3: Experimental results for the size (certain case)

H- D-

Bases BRSC- BRSC- BRSC- Pruned BRSC H- D-

GDT GDT GDT BDT BRSC BRSC

W. Breast Cancer 35 36 38 40 48 50 51

Balance Scale 40 43 43 45 59 60 62

C. Voting records 32 32 34 35 47 49 51

Zoo 22 22 22 26 35 35 35

Nursery 178 180 183 191 210 214 219

Solar Flares 94 104 108 109 110 125 128

Lung Cancer 19 19 19 21 22 22 22

Hayes-Roth 27 27 29 30 37 39 40

Car Evaluation 150 152 158 166 171 174 176

Lymphography 33 35 35 44 56 58 59

Spect Heart 37 39 39 41 49 52 52

Tic-Tac-Toe 98 101 103 105 120 121 121
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Table 6.4: Experimental results for the size (low uncertainty)

H- D-

Bases BRSC- BRSC- BRSC- Pruned BRSC H- D-

GDT GDT GDT BDT BRSC BRSC

W. Breast Cancer 37 38 40 43 49 50 51

Balance Scale 48 49 50 50 57 61 62

C. Voting records 35 36 36 38 50 52 53

Zoo 25 27 28 28 36 43 44

Nursery 182 186 187 197 223 225 228

Solar Flares 96 109 116 117 127 127 128

Lung Cancer 21 22 22 23 26 28 28

Hayes-Roth 28 29 30 33 38 39 41

Car Evaluation 151 157 160 170 174 177 179

Lymphography 38 40 41 48 57 60 57

Spect Heart 38 40 41 43 51 52 52

Tic-Tac-Toe 102 104 104 109 122 122 125

Table 6.5: Experimental results for the size (middle uncertainty)

H- D-

Bases BRSC- BRSC- BRSC- Pruned BRSC H- D-

GDT GDT GDT BDT BRSC BRSC

W. Breast Cancer 39 40 42 47 50 52 53

Balance Scale 52 53 53 55 59 61 63

C. Voting records 40 41 42 43 51 54 55

Zoo 28 29 33 34 39 44 45

Nursery 185 188 189 199 229 232 234

Solar Flares 101 114 119 120 122 127 129

Lung Cancer 22 23 25 25 29 30 30

Hayes-Roth 28 29 30 33 38 39 41

Car Evaluation 156 159 164 170 175 178 179

Lymphography 43 44 45 50 58 60 61

Spect Heart 43 44 45 47 55 55 56

Tic-Tac-Toe 107 111 112 124 125 126 126
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Table 6.6: Experimental results for the size (high uncertainty)

H- D-

Bases BRSC- BRSC- BRSC- Pruned BRSC H- D-

GDT GDT GDT BDT BRSC BRSC

W. Breast Cancer 43 44 46 52 53 54 55

Balance Scale 53 55 56 56 61 62 64

C. Voting records 48 49 49 52 56 57 59

Zoo 31 32 35 40 42 46 47

Nursery 207 211 219 222 246 248 251

Solar Flares 113 123 127 128 130 130 132

Lung Cancer 22 25 27 29 30 31 31

Hayes-Roth 31 33 36 37 42 46 49

Car Evaluation 159 161 165 173 175 181 182

Lymphography 52 52 56 57 58 59 61

Spect Heart 44 44 45 51 57 58 58

Tic-Tac-Toe 118 119 119 127 127 127 127

Table 6.7: Experimental results for the size (mean)

H- D-

Bases BRSC- BRSC- BRSC- Pruned BRSC H- D-

GDT GDT GDT BDT BRSC BRSC

W. Breast Cancer 38 39 41 45 50 51 52

Balance Scale 48 50 51 51 59 61 63

C. Voting records 39 40 40 42 51 53 54

Zoo 26 28 30 32 38 42 44

Nursery 188 191 194 202 227 229 233

Solar Flares 101 112 117 121 110 127 129

Lung Cancer 21 22 24 24 27 28 28

Hayes-Roth 29 30 32 33 39 42 44

Car Evaluation 154 157 161 170 174 177 179

Lymphography 41 43 44 49 57 59 59

Spect Heart 40 41 42 45 53 54 54

Tic-Tac-Toe 106 109 110 115 123 124 125
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These tables show that the belief rough set classifier based on general-
ization distribution table (BRSC-GDT) with their versions (H-BRSC-GDT,
D-BRSC-GDT) give more combined decision rules for all databases and for
all degrees of uncertainty than the belief rough set classifier (BRSC) with
their versions (H-BRSC, D-BRSC). To understand that, let us remember
that the BRSC-GDT which is based on the hyprid system GDT-RS selects
only the not contradictory decision rules having best strength. For example,
the mean size of the decision rules induced from Balance Scale database is
48 using BRSC-GDT and 59 using BRSC.

These tables also show that the belief rough set classifier based on gen-
eralization distribution table (BRSC-GDT) with their versions (H-BRSC-
GDT, D-BRSC-GDT) give more combined decision rules for all databases
and for all degrees of uncertainty than the pruned BDT. For example, the
mean size of the decision rules induced from Solar F lares database is 101
using BRSC-GDT and 121 using pruned BDT.

From these tables, we can also see that the pruned BDT takes the middle
place. The latter gives more combined belief decision rules for all databases
and for all degrees of uncertainty than the standard belief rough set classi-
fier (BRSC) with their versions (H-BRSC, D-BRSC). For example, the mean
size of the belief decision rules induced from W. Breast Cancer database
is 45 using pruned BDT and 50 using BRSC. This result is also explicable
since the pruning step reduce the size of the overfitting decision tree.

From these tables, we found that our heuristic feature selection method
and our dynamic reduct method used in a pre-processing stage of the BRSC
and the BRSC-GDT increase slightly the size of the generated models for
all databases. For example, the mean size of the decision rules induced from
Lung Cancer database is 27 using BRSC and 28 using H-BRSC. The mean
size of the decision rules induced from Spect Heart database is 40 using
BRSC-GDT and 41 using H-BRSC-GDT.

Finally, we can also conclude that the size increases when the uncertainty
increases. It is true for all databases and for all classifiers.

To illustrate the results, Figures 6.4, 6.5 and 6.6 give a graphical pre-
sentation for the mean size for all approaches relative to some databases
namely Nursery, Car Evaluation and Tic− Tac− Toe.
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Figure 6.4: Mean size for Nursery database

Figure 6.5: Mean size for Car Evaluation database

Figure 6.6: Mean size for Tic-Tac-Toe database
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Classification accuracy criterion

Finally, we move to the most important evaluation criterion representing the
classification accuracy of the learned decision rules generated from BDT,
BRSC, BRSC-GDT, H-BRSC, H-BRSC-GDT, D-BRSC, D-BRSC-GDT.
From Table 6.8 to Table 6.11, we detail the different results relative to the
chosen databases for the certain and the uncertain cases where the different
classifiers are sorted from the best to the worst. Table 6.12 summarizes the
mean PCC for the different degrees of uncertainty from all databases rela-
tive to our classifiers.

Table 6.8: Experimental results for the PCC (%) (certain case)

D- H-

Bases D- BRSC- BRSC BRSC- H- BRSC- Pruned

BRSC GDT GDT BRSC GDT BDT

W. Breast Cancer 90.51 87.62 86.51 85.03 84.87 83.61 83.53

Balance Scale 87.96 86.83 85.7 84.53 83.85 81.78 79

C. Voting records 98.94 98.94 98.71 98.06 97.98 97.57 98.53

Zoo 96.97 96.86 95.28 94.92 94.53 93.71 92.08

Nursery 98.92 98.78 97.89 97.66 96.84 96.79 96.07

Solar Flares 92.81 91.93 90.9 89.83 87.95 86.87 86.13

Lung Cancer 81.94 80.27 79.63 78.74 77.64 76.72 74.98

Hayes-Roth 98.97 98.73 98.70 97.74 95.82 94.78 84.04

Car Evaluation 85.83 85.94 84.11 83.72 82.95 81.77 73.62

Lymphography 86.56 86.16 85.78 84.98 84.78 84.57 79.59

Spect Heart 89.63 88.91 87.67 86.93 86.74 85.67 84.02

Tic-Tac-Toe 88.58 87.76 87.59 86.74 86.01 85.68 83.94
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Table 6.9: Experimental results for the PCC (%) (low uncertainty)

D- H-

Bases D- BRSC- BRSC BRSC- H- BRSC- Pruned

BRSC GDT GDT BRSC GDT BDT

W. Breast Cancer 89.87 86.98 86.41 84.74 84.41 83.77 83.46

Balance Scale 87.47 86.75 85.3 84.45 83.77 81.46 78.15

C. Voting records 98.94 98.76 98.69 97.98 97.58 97.44 98.28

Zoo 96.52 96.47 95.22 94.75 94.25 93.52 91.94

Nursery 98.68 98.49 97.44 97.43 96.34 96.06 95.84

Solar Flares 92.67 91.86 90.82 89.74 87.68 86.64 85.78

Lung Cancer 81.77 80.18 79.51 78.58 77.56 76.50 74.63

Hayes-Roth 98.96 89.62 98.53 97.65 95.65 94.46 83.66

Car Evaluation 85.46 84.71 83.91 83.44 82.79 81.46 73.49

Lymphography 86.35 86.14 85.22 84.76 84.75 84.24 79.25

Spect Heart 89.37 88.41 87.34 86.80 86.56 85.34 83.46

Tic-Tac-Toe 88.36 87.65 87.52 86.26 85.98 85.43 83.91

Table 6.10: Experimental results for the PCC (%)(middle uncertainty)

D- H-

Bases D- BRSC- BRSC BRSC- H- BRSC- Pruned

BRSC GDT GDT BRSC GDT BDT

W. Breast Cancer 89.58 86.64 86.33 84.38 84.01 83.48 83.01

Balance Scale 87.32 86.29 85.23 84.16 83.56 80.21 77.83

C. Voting records 98.76 98.47 98.36 97.67 97.27 97.16 97.76

Zoo 96.47 96.24 95.16 94.38 94.13 93.47 91.36

Nursery 98.21 98.18 97.24 97.23 96.03 95.81 95.13

Solar Flares 92.61 91.75 90.73 89.53 87.64 86.61 85.61

Lung Cancer 81.50 80.11 79.43 78.49 77.25 76.50 74.36

Hayes-Roth 98.15 98.51 98.38 97.43 95.32 94.11 83.31

Car Evaluation 85.17 84.33 83.83 83.34 82.71 81.17 73.11

Lymphography 86.13 86.05 84.96 84.53 84.50 84.03 78.97

Spect Heart 89.29 88.12 87.23 86.52 86.33 85.28 83.01

Tic-Tac-Toe 88.24 87.36 87.27 86.21 85.85 85.23 83.75
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Table 6.11: Experimental results for the PCC (%)(high uncertainty)

D- H-

Bases D- BRSC- BRSC BRSC- H- BRSC- Pruned

BRSC GDT GDT BRSC GDT BDT

W. Breast Cancer 89.18 86.21 86.06 84.25 83.67 83.05 82.17

Balance Scale 87.13 86.12 84.92 84.02 83.47 80.03 77.76

C. Voting records 98.47 98.23 98.11 97.54 97.01 96.92 97.71

Zoo 95.87 95.68 95.03 94.17 94.01 92.87 91.41

Nursery 98.07 98.02 97.14 97.12 95.72 95.27 95.11

Solar Flares 92.56 91.59 90.54 89.42 87.66 86.44 85.46

Lung Cancer 81.33 80.03 79.16 78.28 77.35 76.33 74.07

Hayes-Roth 97.75 97.28 97.24 97.29 95.11 94.05 82.14

Car Evaluation 85.01 84.29 83.75 83.08 82.09 81.10 72.97

Lymphography 85.76 85.96 84.73 84.37 84.04 83.67 78.94

Spect Heart 89.14 88.07 87.06 86.45 86.12 85.07 82.17

Tic-Tac-Toe 88.19 87.22 87.21 86.18 85.26 85.06 83.42

Table 6.12: Experimental results for the PCC (%)(mean)

D- H-

Bases D- BRSC- BRSC BRSC- H- BRSC- Pruned

BRSC GDT GDT BRSC GDT BDT

W. Breast Cancer 89.78 86.68 86.32 84.60 84.24 83.47 83.04

Balance Scale 87.47 86.49 85.28 84.29 83.66 80.54 78.18

C. Voting records 98.77 98.60 98.46 97.81 97.46 97.27 98.07

Zoo 96.45 96.31 95.17 94.55 94.23 93.39 91.69

Nursery 98.47 98.36 97.42 97.36 96.23 95.98 95.53

Solar Flares 92.66 91.78 90.75 89.63 87.73 86.64 85.74

Lung Cancer 81.63 80.14 79.43 78.52 77.45 76.51 74.51

Hayes-Roth 98.45 98.28 98.21 97.52 95.47 94.35 83.28

Car Evaluation 85.36 84.56 83.90 83.39 82.63 81.37 73.29

Lymphography 86.20 86.07 85.18 84.66 84.51 84.12 79.17

Spect Heart 89.35 88.37 87.32 86.67 86.43 85.34 83.16

Tic-Tac-Toe 88.34 87.49 87.39 86.34 85.77 85.35 83.75
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From these tables, we find that D-BRSC and D-BRSC-GDT are the
more accurate approaches. This positive result is due to the dynamic reduct
method which produces more stable and accurate decision rules from the
uncertain decision table. So, our dynamic reduct method used in a pre-
processing stage to the BRSC and the BRSC-GDT increases the classifica-
tion accuracy of the generated models. For example, the mean PCC of the
decision rules induced from Lung Cancer database is 79.43% using BRSC
and 81.63% using D-BRSC. The mean PCC of the decision rules induced
from Lung Cancer database is 78.52% using BRSC-GDT and 80.14% using
D-BRSC-GDT.

However, we also find that H-BRSC and H-BRSC-GDT are the worst
classification approaches based on rough sets. This negative result is due to
the heuristic feature selection method which try to give quick result and not
an optimal solution. Hence, our heuristic feature selection method used in
a pre-processing stage to the BRSC and the BRSC-GDT decreases the clas-
sification accuracy of the generated models. For example, the mean PCC
of the decision rules induced from Solar F lares database is 90.75% using
BRSC and 87.73% using H-BRSC. The mean PCC of the decision rules in-
duced from Solar F lares database is 89.63% using BRSC-GDT and 86.64%
using H-BRSC-GDT.

These tables show that the models generated from BRSC are more ac-
curate than those obtained from BRSC-GDT for all databases and for all
degrees of uncertainty. For example, the mean PCC of the decision rules in-
duced from C. V oting records database is 98.46% using BRSC and 97.81%
using BRSC-GDT. It also true for the D-BRSC which is more accurate
than the D-BRSC-GDT. For example, the mean PCC of the decision rules
induced from Zoo database is 96.45% using D-BRSC and 96.31% using D-
BRSC-GDT. The same thing for the H-BRSC which is more accurate than
the H-BRSC-GDT. For example, the mean PCC of the decision rules in-
duced from Nursery database is 96.23% using H-BRSC and 95.98% using
H-BRSC-GDT. The reason for these results is that the BRSC is based on
an exhaustive recherche to obtain the best set of decision rules.

Besides, these tables also show that all our approaches based on rough
sets are more accurate than the pruned BDT. This positive result is due to
the concept of rough sets which try to produce a minimal and optimal set
of decision rules without affecting the classification power. Finally, we can
also conclude that the PCC slitly decreases when the uncertainty increases.
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It is true for all databases and for all classifiers. For example the PCC for
the Car Evaluation database is equal to 84.11% in certain case and equal
to 83.75% in high uncertain case using BRSC.

To illustrate the obtained results, Figures 6.7, 6.8 and 6.9 give a graphical
presentation for the mean PCC for all approaches relative to some databases
namely Balance Scale, Solar F lares and Hayes− Roth.

Figure 6.7: Mean PCC for Balance Scale database

Figure 6.8: Mean PCC for Solar Flares database
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Figure 6.9: Mean PCC for Hayes-Roth database

6.3.2 Experimental results from real web usage database

In this subsection, we apply our classification approaches based on rough
sets under belief functions (BRSC, BRSC-GDT, H-BRSC, H-BRSC-GDT,
D-BRSC, D-BRSC-GDT) on our real web usage mining database. We com-
pare the results with those obtained from the pruned BDT. Table 6.13 sum-
marizes the results based on the three chosen evaluation criteria (time re-
quirement, size of models and PCC) and relative to the certain case (using
the crisp assignment of a visit to one of three clusters) and uncertain case
(using the bba associated to each decision attribute).

Table 6.13: Experimental results relative to the web usage database

Approaches Time requirement Size PCC (%)
(seconds) certain case uncer case certain case uncer case

Pruned BDT 188 37 39 84.07 85.12
BRSC 157 41 46 85.16 89.63

BRSC-GDT 143 32 35 84.92 88.46
H-BRSC 127 43 47 84.91 87.84

H-BRSC-GDT 113 35 37 84.65 87.26
D-BRSC 332 43 47 86.24 91.63

D-BRSC-GDT 308 35 37 85.24 90.53
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• For the time requirement criterion, we note that it is almost the same
for the certain and the uncertain case. At first, we conclude that
H-BRSC-GDT is the most fast approach relative to this web mining
database. We also find that the classification approaches based on
rough sets H-BRSC-GDT, H-BRSC, BRSC-GDT and BRSC are faster
than the pruned BDT. The time requirement for the H-BRSC-GDT is
equal to 113 seconds. However, the time requirement for the pruned
BDT is 188 seconds. Figure 6.10 gives a graphical presentation for
the time requirement needed for the building of each classification
approach relative to the web usage database.

Figure 6.10: Time requirement for web usage database

• For the size criterion, we find that the size of the generated models
relative to the all approaches based on the certain cluster assigns to
each object is less than the size of the generated models based on the
degree of beliefs associated to each cluster. For example, the size of
the BRSC-GDT goes from 32 with certain case to 35 with uncertain
case. We also conclude that the size of the model generated from the
BRSC-GDT is the smallest one comparing with those obtained from
the others. The number of the decision rules obtained from BRSC-
GDT is equal to 35. Figure 6.11 gives a graphical presentation for the
size of models for the all approaches relative to the web usage database
according to the certain and the uncertain case.
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Figure 6.11: Size for web usage database

• For the classification accuracy criterion, we find that the PCC relative
to the all approaches based on the certain cluster assigns to each object
is less than the PCC based on the degree of beliefs associated to each
cluster. For example, the PCC of the BRSC is equal to 85.24% with
certain case. However, the PCC becomes 89.63% with uncertain case.
We also conclude that the more accurate approach is D-BRSC. The
PCC is equal to 91.63%. Figure 6.12 gives a graphical presentation
for the classification accuracy criterion for the all approaches relative
to the web usage database according to the certain and the uncertain
case.

Figure 6.12: PCC for web usage database

From this experimental analysis, we deduce that the results relative to
the web usage mining database are similar to those obtained from the U.C.I
repository databases. This positive obtained results encourage interesting
users to apply our classification approaches based on rough sets to web
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mining databases characterized by uncertain decision values by the means
of belief functions.

6.3.3 Experimental conclusions

From the experimental results relative to our classification approaches de-
tailed in the previous subsections, we can summarize by saying to the future
user:

1. Use H-BRSC-GDT for quick model building which has the best time
requirement for the construction procedure relative to the all databases.

2. Use BRSC-GDT for quick decision making which has the smallest
model from the all classifiers relative to the all databases.

3. Use D-BRSC for more accurate decision making which has the best
classification accuracy relative to the all databases.

However, we can advice the future user to use only the D-BRSC. First,
because in the classification and the decision making problems the classifi-
cation accuracy is in general the more important criterion. Second, the time
requirement and the size of models relative to this classifier are not very
bad.

6.4 Conclusion

In this chapter, we have performed experiments on real-world databases to
judge the quality and the performance of our proposed classification systems
based on rough sets according to three evaluation criterion: time require-
ment, size and classification accuracy. First, we have tested our belief clas-
sification approaches from modified U.C.I. repository databases where the
uncertainty in decision attribute is created artificially using four degrees of
uncertainty (no uncertainty, low uncertainty, middle uncertainty and high
uncertainty). Then, we have tested them from a naturally uncertain web
usage database. We have compared the results with those obtained from a
similar classifier, denoted belief decision tree after the step of post-pruning.

We obtain interesting and positive results for all chosen databases and
for all degrees of uncertainty regarding our new approaches based on rough
sets comparing with those given by the pruned belief decision tree.
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Conclusion

We have proposed in this thesis two new classification approaches based on
rough sets that try to produce as possible a minimal and an optimal set
of decision rules from an uncertain training decision table to classify new
objects. We handle only symbolic condition and decision attribute values.
The uncertainty appears only in decision attribute values and is represented
by the Transferable Belief Model (TBM), one interpretation of the belief
function theory.

In the first step of our thesis, we have generalized the basic concepts of
rough sets under the belief function framework such as uncertain decision
table, tolerance relation, set approximation, positive region, dependency of
attributes, reduct and core. Besides, we have redefined the hybrid induc-
tion system GDT-RS for discovering classification decision rules in the new
context to be called belief GDT-RS. These new definitions of the basic con-
cepts of rough sets and the hybrid system, which are originally proposed in
(Trabelsi & Elouedi, 2008, 2009), are useful to build our new classification
systems based on rough sets.

The first proposed classification technique based on rough sets under be-
lief functions is called Belief Rough Set Classifier (BRSC) (Trabelsi et al.,
2009a) which is based on the new definition of the basic concepts of rough
sets under belief function framework. The second classification technique is
more sophisticated and is called Belief Rough Set Classifier based on Gen-
eralization Distribution Table (BRSC-GDT) (Trabelsi et al., 2010c) which is
derived from the hybrid system named belief GDT-RS. The latter is a com-
bination of Generalization Distribution Table (GDT) and Rough Sets (RS)
under the belief function framework. Our classification techniques aim at
generating a minimal and a significant set of decision rules that are suitable
to classify new objects.

143
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For both the classification techniques, we have detailed the same main
phases relative to their building procedure such as the creation of the un-
certain training decision table, the simplification of this uncertain training
decision table and the generation of the decision rules. Note that the simpli-
fication of the decision table is the most important phase in the construction
procedure relative to both the classifiers. This phase is different from each
classification technique with different steps. Moreover, we have provided
the classification procedure for the two approaches which is the same as the
one used with standard rough set classifier except that we provide belief
predictions rather than exact predictions.

Next, we have also proposed in this thesis two ideas to improve the
construction procedure relative to the BRSC and the BRSC-GDT. The ob-
jective of the first idea is to improve the time requirement needed to build
our models by applying in a pre-processing stage a heuristic feature selec-
tion method based on rough sets under the uncertain context (Trabelsi &
Elouedi, 2010). This heuristic method can produce a sufficient solution
without costly calculation. By applying it in the pre-processing stage of
the BRSC and the BRSC-GDT, we obtain two other versions denoted by
H-BRSC and H-BRSC-GDT.

On the other hand, to improve the classification power of the decision
rules generated from our two classifiers, we have proposed as a second idea
the notion of dynamic reduct under the belief function framework which
yields more stable and accurate results (Trabelsi et al., 2009b, 2010b, 2011).
By applying it in the pre-processing stage of the BRSC and the BRSC-GDT,
we obtain two other versions denoted by D-BRSC and D-BRSC-GDT.

To evaluate the performance of our two classification techniques based
on rough sets under uncertainty and their versions, we have implemented
them with Matlab V6.5. Then, we have carried several experimentations on
some U.C.I repository databases. The latters are artificially contaminated
to include the uncertainty in the decision attribute values because of the
lack of availability of real belief data sets. To further evaluate the quality
of our two belief classification approaches and their versions, we have also
performed experimentations (Trabelsi et al., 2010a) on a naturally uncertain
web usage database where the uncertainty was not created artificially like
U.C.I repository databases. This dataset was obtained from web access logs
of the introductory computing science course at Saint Mary’s University.
Instead of using crisp assignment of a visit to one of the three clusters, a
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study patterns associated a basic belief assignment (bba). The resulting
uncertain clustering was characterized using belief functions.

The more significant performance criteria used in the experimental phase
are: the time requirement of learning, the size of models and the classifica-
tion accuracy. Besides, we have compared the different results obtained from
each classification system based on rough sets and also compared them with
those given by a similar classifier, named the Belief Decision Tree (BDT).
The latter is a decision tree built from uncertain dataset where the uncer-
tainty appears also in decision attributes values and is represented through
the TBM.

Experiments have shown the feasibility and the quality of the different
proposed approaches. The results have shown that no approach has out-
performed all others but each approach has shown its strengths in some
particular situations. For the classification accuracy which is in general the
first evaluation criterion considered for the most classification and decision
making problems, we have found that the D-BRSC is the more accurate
approach and the pruned BDT is the least one. Besides, we have also found
interesting experimental results for the web usage mining database that may
encourage users or experts in web domain to use our approaches to handle
uncertainty in the decision attribute (Trabelsi et al., 2010a).

Some interesting future works have to be mentioned like Distributed Data
Mining (DDM) which has evolved into an important and active area of re-
search because of theoretical challenges and practical applications associated
with the problem of extracting, interesting and previously unknown knowl-
edge from very large real-world databases. Furthermore, some extensions of
rough set theory (rough mereology) have brought new methods of decompo-
sition of large data sets, data mining in distributed and multi-agent based
environments (Polkowski & Skowron, 2001, 1999). Hence, we suggest as a
future work, proposing new classification systems based on rough sets from
uncertain databases to be applied for a lot of modern applications that fall
into the category of systems that need DDM supporting distributed deci-
sion making. Real-world applications can be of different natures and from
different scopes, for example, data and information fusion for situational
awareness; scientific data mining in order to compose the results of diverse
experiments and design a model of a phenomenon, intrusion detection, anal-
ysis, prognosis and handling of natural and man-caused disaster to prevent
their catastrophic development, web mining, etc.
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As a second future work, we also suggest handling another kind of un-
certainty in the decision table like partially uncertain condition attribute
values, in addition to uncertain decision attribute values. This uncertainty
exists in real-world databases. For example, some condition or decision at-
tribute values in a client’s database, used by the bank to plan a loan policy,
are missing or partially uncertain. This uncertainty can be also represented
by belief function theory due to its advantages.

Finally, we also propose new classification approaches based on rough
sets from decision tables characterized by uncertain quantitative condition
or decision attributes. This uncertainty can be represented via the contin-
uous belief functions. The objective is to create new classification systems
based on rough sets from many kinds of databases.
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Implementation

A.1 Introduction

In order to test our two new classification approaches, namely ’Belief rough
set classifier’ and ’Belief rough set classifier based on generalization distri-
bution table’, we have developed programs in Matlab V6.5. Obviously, we
have implemented the basic concepts of rough sets under uncertainty, the
building and the classification procedures of the two classifiers and the two
ideas of improvement: the heuristic feature selection method and the dy-
namic reduct method.

As detailed in the previous chapters, these programs are developed to
handle symbolic attributes. They have as input data sets with objects hav-
ing certain condition attribute values but uncertain decision attribute values
represented by basic belief assignments.

The output of our programs are basically:

1. A set of minimal decision rules induced from the two classifiers.

2. Results from the classification phase, especially the Percent of Correct
Classification, denoted PCC.

This appendix is divided in two parts. The first one presents the major
variables used in the different programs. The second part describes the
different algorithms used to create our two classification approaches with
their versions.
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A.2 Major variables

In this section, we present the list of the major variables that are used in
our developed algorithms:

• training set includes the condition attribute values of all instances and
the beliefs on their decision values.

• number training objects is the number of instances in the training set.

• number cond attributes is the number of condition attributes relative
to the given classification problem.

• number-decision-values is the number of decision values relative to the
given classification problem.

• equivalence classes includes partitions of the training set objects hav-
ing the same condition attribute values.

• tolerance classes includes partitions of the training set objects having
the same or similar decision attribute values.

• threshold is the threshold value needed to have flexible results.

• lower set includes training set objects having positive outcome.

• upper set includes training set objects having possible outcome.

• positive set includes training set objects having positive outcome for
every decision attribute values.

• k degree is the dependency degree of our training set.

• test reduct if a part of training set is a reduct the variable will be true
else it will be false.

• core set includes the set of all indispensable attribute in the given
classification problem.

• reduct value set includes the set of all indispensable attribute in the
given classification problem.

• decision rules BRSC includes the set of the decision rules generated
by the BRSC.
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• decision rules BRSC-GDT includes the set of the decision rules gen-
erated by the BRSC-GDT.

• size model is the number of the decision rules generated from the clas-
sifiers.

• PCC is the percent of correct classification relative to a testing set.

• heuristic reduct includes one of the possible reduct without exhaustive
research.

• dynamic reduct includes the more stable reduct for the given classifi-
cation problem.

A.3 Major programs

In this section, we present the different programs that we have developed in
order to build and to test our classification approaches based on rough sets,
namely the BRSC and the BRSC-GDT. The different programs are divided
into three parts:

1. The programs relative to the basic concepts of rough sets under un-
certainty.

2. The programs relative to the construction and the classification of
BRSC and BRSC-GDT.

3. The programs relative to the two ideas of improvement of the BRSC
and the BRSC-GDT, namely heuristic feature selection method and
dynamic reduct method.

A.3.1 Programs relative to the basic concepts of rough sets
under uncertainty

In this subsection, we present the different algorithms relative to the basic
concepts of rough sets under uncertainty:

• Indiscernibility relation computes the indiscernibility classes based
on the condition attributes of the given classification problem.

Algorithm: Indiscernibility relation
Input: training set
Output: equivalence classes
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1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. number cond attributes ← number attributes-1
5. for i ← 1 to number objects do
6. object1 ← training set(i,1:number cond attributes)
7. occ ← 0
8. for j ← 1 to number training objects do
9. object2 ← training set(j,1:number cond attributes)
10. if object1=object2
11. then occ ← occ +1
12. equivalence classes(i,occ) ← j
13. end if
14. end for
15. end for
16. equivalence classes ← Distinct(equivalence classes)
17.end

• Tolerance relation computes the tolerance classes based on the de-
cision attribute of the uncertain decision table where ’Distance’ is a
function which computes the distance between two bba’s.

Algorithm: Tolerance relation
Input: training set, number decision values, threshold
Output: tolerance classes
1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. size power set ← 2number−decision−values

5. for i ← 1 to number decision values do
6. bba certain ← zeros(1, size power set)
7. bba certain(1,i+1)← 1
8. occ ← 0
9. for j ← 1 to number training objects do
10. bba←training set(j, number attributes)
11. if Distance(bba,bba certain)< 1-threshold
12. then occ ← occ +1
13. tolerance classes(i,occ) ← j
14. end if
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15. end for
16. end for
17. end

• Lower approximation computes the set of objects having positive
outcome for a decision attribute value of the uncertain decision table.
The function ’Average’ combines two bba’s using the mean operator.

Algorithm: Lower approximation
Input: training set, number decision values, threshold
Output: lower set
1. begin
2. number training objects ← length(training set(:,1))
3. size power set=2number decision values

4. equivalence classes ← Indiscernibility relation(training set)
5. nb equivalence classes ← length(equivalence classes(:,1))
6. tolerance classes ← Tolerance relation (training set,

number decision values, threshold)
7. for i ← 1 to number decision values do
8. bba certain=zeros(1,size power set)
9. bba certain(1,i+1)← 1
10. pos ← 1
11. for j ← 1 to nb equivalence classes do
12. equivalence class ← equivalence classes(j,:)
13. size equivalence class ← length(equivalence class)
14. bba equivalence class ← Extraire bba(base,equivalence class)
15. bba combined ← Average(bba equivalence class)
16. if Inclu (equivalence class, tolerance class) = true and

Distance(bba certain, bba combined)< threshold
17. then lower-set (i, pos:pos + size equivalence class - 1)←

equivalence class)
18. pos ← pos + size equivalence class
19. end if
20. end for
21. end for
22. end

• Upper approximation computes the set of objects having possible
outcome for each decision attribute value of the given classification
problem.
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Algorithm: Upper approximation
Input: training set, number decision values, threshold
Output: upper set
1. begin
2. number training objects ← length(training set(:,1))
3. size power set=2number decision values

4. equivalence classes ← Indiscernibility relation(training set)
5. nb equivalence classes ← length(equivalence classes(:,1))
6. tolerance classes ← Tolerance relation (training set,

number decision values, threshold)
7. for i ← 1 to number decision values do
8. pos ← 1
9. for j ← 1 to nb equivalence classes do
10. equivalence-class ← equivalence-classes(j,:)
11. size-equivalence-class ← length(equivalence class)
12. if Intersection(equivalence class, tolerance class) = true
13. then upper set (i, pos:pos+ size equivalence class - 1)←

equivalence class)
14. pos ← pos + size equivalence class
15. end if
16. end for
17. end for
18. end

• Positive region computes the set of objects having positive outcome
for all decision attribute value of the given classification problem.

Algorithm: Positive region
Input: training set, number decision values, threshold
Output: positive set
1. begin
2. positive set ← ∅
3. lower set ← Lower approximation(training set,

number decision values, threshold)
4. for i ← 1 to number decision values do
5. positive set ← Concat (positive set ,lower set(i,:))
6. end for
7. end

• Dependency degree computes the degree of dependency between
condition and decision attributes of the uncertain decision table.
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Algorithm: Dependency degree
Input: training set, number decision values, threshold
Output: k degree
1. begin
2. number training objects ← length(training set(:,1))
3. size positive set ← length(positive region(training set,

number decision values, threshold))
4. k degree ← size positive set/number trainingobjects
5. end

• Test reduct checks that a part of the training set is a reduct of the
given classification problem.

Algorithm: Test reduct
Input: training set, part training set, number decision values,
threshold
Output: test reduct
1. begin
2. if Dependency degree(training set, number decision values,
threshold) = Dependency degree (part training-set,
number decision values, threshold)
3. then test reduct← true
4. else test reduct← false
5. end if
6. end

• Relative core computes the indispensable condition attributes of the
given classification problem.

Algorithm: Relative core
Input: training set, number decision-values, threshold
Output: core set
1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. number cond attributes ← number attributes - 1
5. part training set← zeros(number training objects,

number cond attribute, number cond attribute)
6. part training set(:,1:number cond attributes-1,1)← training set(:,

2:number cond attributes-1)
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7. part training set(:,number cond attributes, 1) ← training set(:,
number attributes)

8. for i ← 2 to number cond attributes do
9. part training set(:,1 :i-1,i) ← training set(:,1:i-1)
10. part training set(:,i :number cond attribute-1,i)←

training set(:,i+1:number cond attribute)
11. part training set(:,number cond attribute,i)←

training set(:,number attribute)
12. end for
13. for i ← 1 to number cond attribute do
14. if Dependency degree(training set,number decision-values,

threshold) <> Dependency degree (part training set(:,:,i),
number decision-values, threshold)

15. then core set ← concat(core set, training set(:,i))
16. end if
17. end for
18. end

• Reduct value computes the reduct values for the object j in the train-
ing set of the given classification problem.

Algorithm: Reduct value
Input: training set, j, number decision values, threshold
Output: reduct value set
1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. number cond attributes ← length(training set(1,:))-1
5. object j ← training set(j,:)
6. bba object j ← object j(number attributes)
7. for i ← 1 to number cond attributes do
8. for k ← 1 to number training objects do
9. bba object k ← training set(k,number attributes)
10. if reducts value set (i)= training set(k,i) and

Distance(bba object k, bba object j ) > threshold
11. then object j(i) ← ’vide’
12. end if
13. end for
14. end for
15. reducts value set ← object j
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16. end

A.3.2 Programs relative to the construction and the classi-
fication of BRSC and BRSC-GDT

In this subsection, we present the different major programs for the building
and the classification phases relative to the BRSC and the BRSC-GDT:

• Elimination superfluous attributes eliminates the superfluous at-
tributes for the training set of the given classification problem by com-
puting the reduct.

Algorithm: Elimination superfluous attributes
Input: training set, number decision values, threshold
Output: reduct
1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. reduct ← base
5. parts training set ← zeros (number training objects,

number attributes-1, number attributes - 1)
6. parts training set (:,1:number attributes - 2,1) ←

base(:,2:number attributes - 1)
7. parts training set(:,number attributes-1,1)←

base(:,number attributes)
8. for i ← 2 to number attributes -1 do
9. parts training set(:,1 :i-1,i)← base(:,1:i-1);
10. parts training set(:,i:number attributes-2,i)←

base(:,i+1:number attributes - 1)
11. parts training set(:,number attributes - 1,i) ←

base(:,number attributes)
12. end for
13. for i ← 1 to number attributes - 1 do
14. if Test reduct(base,parts training set(:,:,i)) = true
15. then Elimination superfluous attributes
(parts training set(:,:,i), number decision values, threshold);
16. end if
17. end for
18. end

• Elimination redundant objects eliminates the duplicate rows by
combined them.
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Algorithm: Elimination redundant objects
Input: training set, number decision values, threshold
Output: training set
1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. for i ← 1 to number training objects do
5. object i ← training set (i,:)
6. bba i ← training set (i,number attributes)
7. for j ← 1 to number training objects do
8. object j ← training set (j,:)
9. bba i ← training set (j,number attributes)
10. if object i = object j and i <> j
11. then training set(j,condi training)← Delete (training set,
i)
12. end if
13. end for
14.end for
15. end

• Elimination superfluous attribute values eliminates some super-
fluous condition attribute values from our uncertain training set.

Algorithm: Elimination superfluous attribute values
Input: training set, position, number decision values, threshold)
Output: training set
1. begin
2. number training objects ← length(training set(:,1))
3. number attributes ← length(training set(1,:))
4. reduct ← base
8. for i← 1 to number training objects do
9. object ← Value reduct (training set, i, number decision values,
threshold)
10. training set (i,:) ← object
11.end for
12. end

• BRSC construction procedure generates using BRSC a set of sig-
nificant decision rules from our uncertain training set.

Algorithm: BRSC construction procedure
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Input: training set, number decision values, threshold
Output: decision rules BRSC
1. begin
2. tic
3. reduct ← Elimination superfluous attributes (training set,
number decision values, threshold)
4. simplified reduct ← Elimination redundant objects (training set,
number decision values, threshold)
5. value reduct ← Elimination superfluous attribute values
(training set, number decision values, threshold)
6. decision rules BRSC ← Elimination redundant objects
(Value reduct, number decision values, threshold)
7. toc
8. end

• BRSC classification procedure computes the PCC obtained from
our set of decision rules BRSC relative the chosen testing set.

Algorithm: BRSC classification procedure
Input: testing set, decision rules BRSC,
number decision values,threshold
Output: PCC, size model
1. begin
2. size model ← length(decision rules BRSC (:,1))
3. size testing set ← length(testing set (:,1)
4. number attribute ← length(testing set (1,:)
5. for i ← 1 to size testing set do
6. object ← testing set(i,:)
7. decision1 ← Max(pignistic (object(number attribute)))
8. bba results ← Corresponding rules (decision rules BRSC, object)
9. bba combined ← Averaging (bba combined)
10. decision2 ← Max(pignistic (bba combined))
11. if decision1=decision2
12. then number well classified ← number well classified +1
13. end if
14. end for
15. PCC ← (number well classified / size testing set)*100
16. end

• BRSC-GDT construction procedure generates using BRSC a set
of significant decision rules from our uncertain training set.
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Algorithm: BRSC GDT construction procedure
Input: training set, number decision values, threshold
Output: decision rules BRSC-GDT
1. begin
2. tic
3. Compound objects ← Elimination redundant objects

(training set, number decision values, threshold)
4. Compound objects ← Delete contradictory objects (training set,

number decision values, threshold
5. size Compound objects ← length (Compound objects)
6. for i ← to size Compound objects do
7. value reduct set ← Value reduct (training set,i,

number decision values, threshold)
8. best rule ← Max strength(training set, value reduct set)
9. decision rules BRSC-GDT (i,:) ← best rule
10. end for
11. toc
12. end

• BRSC GDT classification procedure computes the PCC obtained
from our set of decision rules BRSC-GDT relative the chosen test-
ing set.

Algorithm: BRSC GDT classification procedure
Input: training set, decision rules BRSC-GDT,
number decision values, threshold
Output: PCC, size model
1. begin
2. size model ← length(decision rules BRSC-GDT (:,1))
3. size testing set ← length (testing set (:,1)
4. number attribute ← length (testing set (1,:)
5. for i ← 1 to size testing set do
6. object ← testing set (i,:)
7. decision1 ← object (number attribute)
8. decision2 ← Corresponding rules BRSC-GDT
(decision rules BRSC-GDT, object)
9. if decision1=decision2
10. then number well classified ← number well classified +1
11. end if
12. end for
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13. PCC ← (number well classified/size testing set)*100
14. end

A.3.3 Programs relative to the two ideas of improvement of
the BRSC and the BRSC-GDT

In this subsection, we give the algorithms relative to the feature selection
method and to the dynamic reduct method which are developed in Chapter
5.

• Heuristic feature selection method computes the reduct from our
uncertain training set without exhaustive research and costly calcula-
tion.

Algorithm: Heuristic feature selection method
Input: training set, number decision values, threshold,
heuristic threshold
Output: heuristic reduct
1. begin
2. heuristic reduct ← Relative core (training set,

number decision values, threshold)
3. remaining training set ← Delete part training set( training set,

heuristic reduct)
4. while (Dependency degree (heuristic reduct,

number decision values, threshold) < heuristic threshold) do
5. positive set ← Positive region (heuristic reduct,

number decision values, threshold)
6. heuristic reduct ← Delete consistent object (heuristic reduct,

positive set)
7. number cond remaining att ← length

(remaining training set(1,:))-1
8. for i ← 1 to number cond remaining att do
9. heuristic reduct1 ← heuristic reduct
10. value v ← length(Positive region(heuristic reduct,

number decision values, threshold))
11. value m ← length (Positive region(heuristic reduct,

number decision values, threshold))
12. value x ← length (Positive region(heuristic reduct,

number decision values, threshold))
13. heuristic cond ← value v *value m * value x
14. end for
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15. end while
16. end

• Dynamic reduct method computes the more stable reduct from
our uncertain training set. This algorithm need some subprograms
such as ’Sampling’ which can produce a part of our training set accord-
ing to our sampling strategy (see subsection 6.2.4) and the ’More ap-
pearing reduct’ subprogram computes the occurrence of each reduct
and gives the best.

Algorithm: Dynamic reduct method
Input: training set, number decision values, threshold
Output: dynamic reduct
1. begin
2. for i ← 1 to 5 do
3. part training set ← Sampling (training set, i)
4. reduct ← Elimination superfluous attributes (training set,

number decision values, threshold)
5. possible reduct ← Concat (possible reduct, reduct)
6. end for
7. dynamic reduct ← More appearing reduct (possible reduct)
8. end

A.4 Conclusion

In this appendix, we have presented the list of the major variables that
are used in our developed programs and we have detailed the main algo-
rithms relative to our new classification approaches based on rough sets
from uncertain training set. These implementations are necessary to check
the feasibility and the qualities of our solutions.



Appendix B

Web usage database

B.1 Introduction

This appendix gives a part (containing 210 objects) from the real web us-
age database (containing 7965 objects) described in the Chapter 6. Let us
remember that the latter was obtained from web access logs of the intro-
ductory computing science course at Saint Mary’s University. The course is
’Introduction to Computing Science and Programming’ offered in the first
term of the first year.

B.2 Web usage database structure

The table C.1 represents a part of the real web usage database. The different
columns are described as follows:

• On/Off: to mean On campus/Off campus access.

• Day/Night: to mean Day time/Night time access.

• Class day: to mean Access during lab/class days or non-lab/class days.

• Hits: represents the number of hits.

• Notes: represents the number of class-notes downloads.

• Cluster: the visits fall into one of the following three clusters: Studious,
Crammers, and Workers.

• m(cluster) and m(theta): represent the bba on the cluster.
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Table B.1: Web usage database
N On/ Day/ Class Hits Notes Cluster m m

Off Night day (cluster) (theta)
1 0 1 0 2 1 1 0.71 0.29
2 1 1 0 14 1 1 0.84 0.16
3 1 0 0 2 1 1 0.71 0.29
4 1 1 1 40 6 0 0.9 0.1
5 0 0 1 45 1 0 0.58 0.42
6 1 0 0 28 2 1 0.49 0.51
7 0 1 0 1 1 1 0.7 0.3
8 0 1 0 9 1 1 0.82 0.18
9 0 1 0 39 5 0 0.8 0.2
10 0 1 1 1 1 1 0.7 0.3
11 0 0 0 1 1 1 0.7 0.3
12 0 1 0 1 1 1 0.7 0.3
13 0 0 0 41 1 0 0.56 0.44
14 0 1 0 1 1 1 0.7 0.3
15 0 0 0 31 1 1 0.45 0.55
16 0 1 0 1 1 1 0.7 0.3
17 0 1 1 1 1 1 0.7 0.3
18 0 0 0 1 1 1 0.7 0.3
19 0 1 0 1 1 1 0.7 0.3
20 0 0 0 22 1 1 0.65 0.35
21 0 0 0 2 2 1 0.72 0.28
22 0 1 0 1 1 1 0.7 0.3
23 0 0 0 61 3 0 0.56 0.44
24 0 0 0 22 1 1 0.65 0.35
25 0 0 0 1 1 1 0.7 0.3
26 0 1 1 1 1 1 0.7 0.3
27 0 0 0 16 1 1 0.81 0.19
28 1 0 0 14 1 1 0.84 0.16
29 1 1 1 15 4 1 0.77 0.23
30 1 1 1 42 1 0 0.57 0.43
31 1 1 1 17 1 1 0.78 0.22
32 0 1 1 60 1 0 0.54 0.46
33 1 1 1 29 1 1 0.49 0.51
34 1 1 1 21 1 1 0.68 0.32
35 1 1 1 18 2 1 0.79 0.21
36 1 1 1 23 3 1 0.61 0.39
37 1 1 1 50 5 0 0.72 0.28
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N On/ Day/ Class Hits Notes Cluster m m
Off Night day (cluster) (theta)

38 1 1 1 66 41 2 0.5 0.5
39 1 1 1 11 1 1 0.84 0.16
40 1 1 1 21 1 1 0.68 0.32
41 1 1 1 15 2 1 0.9 0.1
42 1 1 1 15 2 1 0.9 0.1
43 0 1 1 32 1 0 0.45 0.55
44 0 0 1 55 4 0 0.63 0.37
45 1 0 1 36 2 0 0.55 0.45
46 1 0 1 32 2 0 0.48 0.52
47 1 0 1 16 2 1 0.86 0.14
48 0 0 1 15 1 1 0.83 0.17
49 1 1 0 12 5 1 0.72 0.28
50 0 1 0 56 1 0 0.55 0.45
51 1 1 0 58 8 0 0.58 0.42
52 1 1 0 23 1 1 0.63 0.37
53 1 1 0 18 2 1 0.79 0.21
54 1 1 0 15 2 1 0.9 0.1
55 0 1 0 31 3 0 0.49 0.51
56 1 1 0 21 1 1 0.68 0.32
57 1 1 0 41 5 0 0.85 0.15
58 1 1 0 58 7 0 0.6 0.4
59 1 1 0 21 1 1 0.68 0.32
60 1 1 0 18 1 1 0.76 0.24
61 0 1 0 51 6 0 0.71 0.29
62 0 1 0 30 2 1 0.45 0.55
63 0 1 0 11 1 1 0.84 0.16
64 0 1 0 21 1 1 0.68 0.32
65 0 1 0 10 1 1 0.83 0.17
66 1 0 0 52 3 0 0.63 0.37
67 0 0 0 28 5 0 0.48 0.52
68 0 0 0 31 4 0 0.53 0.47
69 0 0 0 15 1 1 0.83 0.17
70 0 0 0 13 3 1 0.91 0.09
71 0 0 0 27 2 1 0.52 0.48
72 1 1 0 29 1 1 0.49 0.51
73 1 1 0 15 4 1 0.77 0.23
74 1 1 0 18 2 1 0.79 0.21
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N On/ Day/ Class Hits Notes Cluster m m
Off Night day (cluster) (theta)

75 0 1 0 19 3 1 0.74 0.26
76 1 1 0 60 4 0 0.58 0.42
77 1 1 0 67 6 0 0.52 0.48
78 0 0 0 46 3 0 0.68 0.32
79 0 0 0 34 3 0 0.56 0.44
80 0 1 0 29 3 0 0.45 0.55
81 0 1 0 7 2 1 0.81 0.19
82 1 1 0 12 3 1 0.91 0.09
83 1 1 0 18 1 1 0.76 0.24
84 1 0 0 65 14 2 0.44 0.56
85 1 0 0 83 8 0 0.42 0.58
86 0 0 0 20 3 1 0.7 0.3
87 0 0 0 18 1 1 0.76 0.24
88 0 0 0 9 1 1 0.82 0.18
89 0 1 0 47 6 0 0.81 0.19
90 0 1 0 9 2 1 0.86 0.14
91 0 1 0 37 3 0 0.62 0.38
92 1 1 0 16 1 1 0.81 0.19
93 1 1 0 11 2 1 0.92 0.08
94 1 1 0 76 8 0 0.45 0.55
95 1 1 0 12 1 1 0.85 0.15
96 0 0 0 13 3 1 0.91 0.09
97 0 0 0 26 3 1 0.52 0.48
98 0 0 0 50 2 0 0.61 0.39
99 0 0 0 15 1 1 0.83 0.17
100 0 0 0 13 4 1 0.8 0.2
101 0 0 0 22 4 1 0.6 0.4
102 1 0 0 51 7 0 0.7 0.3
103 0 0 1 14 1 1 0.84 0.16
104 1 1 1 10 2 1 0.89 0.11
105 1 1 1 73 11 0 0.42 0.58
106 1 1 1 22 5 1 0.55 0.45
107 1 1 1 26 2 1 0.54 0.46
108 1 1 1 50 4 0 0.69 0.31
109 1 1 1 36 7 0 0.73 0.27
110 1 1 1 29 2 1 0.47 0.53
111 1 1 1 18 4 1 0.71 0.29
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N On/ Day/ Class Hits Notes Cluster m m
Off Night day (cluster) (theta)

112 1 1 1 34 1 0 0.48 0.52
113 1 1 1 100 9 0 0.38 0.62
114 0 1 1 20 1 1 0.71 0.29
115 1 1 1 29 3 0 0.45 0.55
116 1 1 1 65 1 0 0.51 0.49
117 1 1 1 31 2 0 0.46 0.54
118 1 1 1 36 2 0 0.55 0.45
119 1 1 1 30 3 0 0.47 0.53
120 1 1 1 15 2 1 0.9 0.1
121 1 1 1 53 1 0 0.57 0.43
122 1 1 1 15 2 1 0.9 0.1
123 1 1 1 85 19 2 0.53 0.47
124 1 1 1 57 7 0 0.61 0.39
125 1 1 1 55 7 0 0.64 0.36
126 1 1 1 17 1 1 0.78 0.22
127 1 1 1 27 3 1 0.49 0.51
128 1 1 1 16 1 1 0.81 0.19
129 1 1 1 10 1 1 0.83 0.17
130 1 1 1 40 5 0 0.83 0.17
131 1 1 1 33 6 0 0.64 0.36
132 1 1 1 8 3 1 0.82 0.18
133 1 1 1 12 1 1 0.85 0.15
134 1 1 1 30 3 0 0.47 0.53
135 1 1 1 24 1 1 0.6 0.4
136 1 1 1 16 1 1 0.81 0.19
137 1 1 1 39 4 0 0.72 0.28
138 1 1 1 25 1 1 0.58 0.42
139 1 1 1 56 6 0 0.63 0.37
140 1 1 1 14 2 1 0.93 0.07
141 1 1 1 46 5 0 0.8 0.2
142 1 1 1 5 1 1 0.76 0.24
143 1 1 1 18 1 1 0.76 0.24
144 1 1 1 11 3 1 0.89 0.11
145 1 1 1 38 4 0 0.7 0.3
146 1 1 1 22 3 1 0.64 0.36
147 1 1 1 11 2 1 0.92 0.08
148 1 1 1 18 4 1 0.71 0.29
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N On/ Day/ Class Hits Notes Cluster m m
Off Night day (cluster) (theta)

149 1 1 1 36 5 0 0.71 0.29
150 0 1 1 35 5 0 0.68 0.32
151 0 1 1 29 3 0 0.45 0.55
152 1 1 1 17 2 1 0.82 0.18
153 1 1 1 21 3 1 0.67 0.33
154 1 1 1 9 1 1 0.82 0.18
156 1 1 1 75 2 0 0.48 0.52
167 1 1 1 34 1 0 0.48 0.52
158 1 1 1 36 2 0 0.55 0.45
159 1 1 1 45 2 0 0.62 0.38
160 1 1 1 15 1 1 0.83 0.17
161 1 1 1 59 2 0 0.56 0.44
162 1 1 1 28 1 1 0.51 0.49
163 1 1 1 25 2 1 0.57 0.43
164 1 1 1 26 1 1 0.55 0.45
165 1 1 1 20 1 1 0.71 0.29
166 1 1 1 29 3 0 0.45 0.55
167 1 1 1 36 3 0 0.6 0.4
168 1 1 1 39 1 0 0.54 0.46
169 1 1 1 17 2 1 0.82 0.18
170 1 1 1 19 2 1 0.75 0.25
171 0 1 0 19 3 1 0.74 0.26
172 1 1 0 60 4 0 0.58 0.42
173 1 1 0 67 6 0 0.52 0.48
174 0 0 0 46 3 0 0.68 0.32
175 0 0 0 34 3 0 0.56 0.44
176 0 1 0 29 3 0 0.45 0.55
177 0 1 0 7 2 1 0.81 0.19
178 1 1 0 12 3 1 0.91 0.09
179 1 1 0 18 1 1 0.76 0.24
180 1 0 0 65 14 2 0.44 0.56
181 1 1 0 12 3 1 0.91 0.09
182 1 1 0 18 1 1 0.76 0.24
183 1 0 0 65 14 2 0.44 0.56
184 1 1 1 25 2 1 0.57 0.43
185 1 1 1 26 1 1 0.55 0.45
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N On/ Day/ Class Hits Notes Cluster m m
Off Night day (cluster) (theta)

186 1 1 1 36 5 0 0.71 0.29
187 0 1 1 35 5 0 0.68 0.32
188 0 1 1 29 3 0 0.45 0.55
189 1 1 1 17 2 1 0.82 0.18
190 1 1 1 21 3 1 0.67 0.33
191 1 1 1 9 1 1 0.82 0.18
192 1 1 1 75 2 0 0.48 0.52
193 1 1 1 34 1 0 0.48 0.52
194 1 1 1 36 2 0 0.55 0.45
195 1 1 1 45 2 0 0.62 0.38
196 1 1 1 15 1 1 0.83 0.17
197 1 1 1 59 2 0 0.56 0.44
198 1 1 1 28 1 1 0.51 0.49
199 1 1 1 25 2 1 0.57 0.43
200 1 1 1 26 1 1 0.55 0.45
201 1 1 1 20 1 1 0.71 0.29
202 1 1 1 29 3 0 0.45 0.55
203 1 1 1 36 3 0 0.6 0.4
204 1 1 1 39 1 0 0.54 0.46
205 1 1 1 17 2 1 0.82 0.18
206 1 1 1 19 2 1 0.75 0.25
207 1 1 1 29 3 0 0.45 0.55
208 1 1 1 36 3 0 0.6 0.4
209 1 1 1 39 1 0 0.54 0.46
210 1 1 1 26 1 1 0.55 0.45

B.3 Conclusion

In this appendix, we have presented a part of the web usage database char-
acterized by uncertain decision attribute. The uncertainty is handled by
belief functions. This real web mining database is needed to more judge the
performance of our approaches.
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Résumé

Cette thèse propose deux approches de classification basées sur la théorie des ensembles approximatifs qui 
permettent de produire un ensemble de règles de décision à partir d’un ensemble d’apprentissage incertain. 
L’incertitude existe dans les valeurs de l’attribut décision et elle est représentée via le modèle des croyances 
transférables, une interprétation de la théorie des fonctions de croyance. La première technique de classification est
nommée classifieur crédibiliste des ensembles approximatifs. Elle est basée sur une nouvelle définition des concepts 
de base de la théorie des ensembles approximatifs basée sur la théorie des fonctions de croyance. La deuxième
technique de classification est plus complexe et elle est nommée classifieur crédibiliste des ensembles approximatifs 
basé sur le tableau de distribution généralisée. Cette technique est dérivée à partir d’un système hybride. Ce dernier 
est une combinaison entre le tableau de distribution généralisée et les ensembles approximatifs. Nos solutions ont 
pour objectif de générer un ensemble minimal et significatif de règles de décision pour la classification des nouveaux 
objets. Nous avons aussi proposé deux idées pour améliorer la procédure de construction relative à chaque technique 
de classification. L’objectif de la première idée est de réduire le temps nécessaire pour construire nos modèles en 
appliquant dans un premier niveau une heuristique pour la sélection d’attribut basée sur la théorie des ensembles 
approximatifs dans un contexte incertain. Afin d’améliorer la qualité de classification des règles de décision générées 
par les deux classifieurs, nous avons proposé comme deuxième idée la notion de reduct dynamique dans un 
environnement incertain pour avoir des résultats plus stables. Finalement, pour évaluer la performance de nos 
techniques de classification, nous avons effectué des expérimentations sur des bases de données réelles mais 
modifiées pour introduire l’incertitude et sur une base web naturellement incertaine. Nos expérimentations sont 
basées sur trois critères d’évaluation: le temps de construction, la taille des modèles et l’exactitude de classification. 
Nous avons aussi comparé les résultats avec ceux obtenus par un classifieur similaire nommé arbre de décision
crédibiliste.

Mots clés : classification, incertitude, théorie des ensembles approximatifs, théorie des fonctions de croyance.

Abstract

This thesis proposes two classification approaches based on rough sets that are able to produce a set of decision rules 
from uncertain training decision table. The uncertainty only appears in decision attribute values and is handled 
through the Transferable Belief Model, one interpretation of the belief function theory. The first classification 
technique is called belief rough set classifier which is based on the new definition of the basic concepts of rough sets 
under belief function framework. The second is more sophisticated and is called belief rough set classifier based on 
generalization distribution table which is derived from an hybrid system. The latter is a combination of 
generalization distribution table and rough sets. Our solutions aim at generating a minimal and a significant set of 
classification decision rules. Next, we have also proposed in this thesis two ideas to improve the construction 
procedure relative to each classification technique. The objective of the first idea is to improve the time requirement 
needed to build our models by applying, in a pre-processing stage, a heuristic feature selection method based on 
rough sets under the uncertain context. In order to improve the classification power of the decision rules generated 
from our two classifiers, we have proposed, as a second idea, the dynamic reduct method under the belief function 
framework which yields more stable results. Finally, to evaluate the performance our classification techniques, we 
have carried experimentations on modified real-world databases under our uncertain context and on a naturally 
uncertain web usage database. Three evaluation criteria are chosen: the time requirement of learning, the size of 
models and the classification accuracy. Then, we have compared the results with those given by a similar classifier 
named the belief decision tree. 

Keywords: classification, uncertainty, rough set theory, belief function theory.


