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The notion of independence is central in many information processing areas, such as mul-
tiple criteria decision making, databases, or uncertain reasoning. This is especially true
in the later case, where the success of Bayesian networks is basically due to the graphical
representation of independence they provide. This paper first studies qualitative inde-
pendence relations when uncertainty is encoded by a complete pre-order between states
of the world. While a lot of work has focused on the formulation of suitable definitions
of independence in uncertainty theories our interest in this paper is rather to formulate a
general definition of independence based on purely ordinal considerations, and that ap-
plies to all weakly ordered settings. The second part of the paper investigates the impact
of the embedding of qualitative independence relations into the scale-based possibility
theory. The absolute scale used in this setting enforces the commensurateness between
local pre-orders (since they share the same scale). This leads to an easy decomposability
property of the joint distributions into more elementary relations on the basis of the
independence relations. Lastly we provide a comparative study between already known
definitions of possibilistic independence and the ones proposed here.

Keywords: Knowledge representation, possibilistic independence, weakly ordered setting.

1. Introduction

Various notions of (in)dependence are central in multiple criteria analysis®?, in rela-
tional data decomposition®®, or in uncertain reasoning based on Bayesian networks334!
or logical reasoning®®#:3%:36 There has been a considerable interest in artificial intel-
ligence, in the last few years, for discussing independence in various representation
frameworks, due to the success of Bayesian networks. Conditional independence
relations between variables play an important role in the handling of uncertain

information.
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From an operational point of view, two forms of independence can be distin-
guished:
decompositional independence which ensures the decomposition of a joint distribu-
tion pertaining to tuples of variables into local distributions on smaller subsets of
variables. The reasoning machinery can then work at the local level without losing
any information.
causal independence for expressing the lack of causality between variables. This
form of independence is always characterized in semantic terms. Roughly speaking,
a variable (or set of variables) is said to have no influence on another variable (or
set of variables) if our belief in the value of the latter does not change when learning
something about the value of the former.

Contrary to decompositional independence, causal independence relations are
not necessarily symmetric. In other words, if a variable A is independent of B, we
are not sure that B is independent of A. These two kinds of independence relations
are not necessarily mutually exclusive. Ideally, a good definition of independence
expresses both the lack of causality (so it can be easily expressed by experts), and
is useful for computations.

In the probabilistic framework, two variables A and B are said to be decom-
posably independent if the joint probability on the range of (A, B) is the prod-
uct of the probability distribution of A and the probability distribution of B, i.e.,
P(AANB)=P(A)-P(B). And A and B are said to be causally independent if the
probability of B given A is the same as the probability of B, i.e., P(B | A) = P(B).
In this framework, it can be easily checked that causal and decompositional inde-
pendence relations are equivalent for positive distributions.

In possibility theory, and more generally in weakly ordered settings, the situation
is different since causal and decompositional relations are not always equivalent. In
this paper we investigate possible definitions of independence in two settings, using
qualitative plausibility relations, or possibility distributions ranging on the scale
[0,1]. Different works have been achieved on independence relations: de Campos
and Huete®'%, Fonck?*??, Studeny**, de Cooman and Kerre'!, Vejnarovd 5.
However, this paper differs from the previous ones since the proposed independence
relations are only based on the qualitative plausibility relations induced by possi-
bility distributions.

This paper is organized as follows: The first part proposes and investigates,

independence relations in comparative possibility theory where only the plausibility
relations underlying the possibility distributions are used.
Then, we study the independence in scale-based possibility theory. Lastly we pro-
vide a comparative study between existing possibilistic independence and proposed
qualitative independence relations. Results of this article extend those of two con-
ference papers’2. The proofs of main results are given in the appendix.
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2. Notations and definitions

We first give some notations and definitions used in this article.

Let V = {4, As, ..., AN} be a set of variables. We denote by D4 the supposedly
finite domain associated with the variable A. By a; we denote any instance of A;.
X,Y, Z, ... denote subsets of variables from V, and Dx = X 4,ex D4, represents the
Cartesian product of domains of variables in X. By z we denote any instance of
X;if X ={A;, ..., A,} then z = (a1, ...,a,). Q@ = x4,evDa, denotes the universe
of discourse, which is the Cartesian product of all variable domains in V. Each
element w € Q) is called a possible world or state of Q2. Depending on the context,
we use one of the following notations: either tuples: w = (a1, ..., an) or conjunctions:
w=a; A..Aap, then w[4;] = qa;.

o, ¥, € denote the subclasses of 2 (called propositions or events) and —¢ denotes
the complementary set of ¢ i.e. =¢p = Q — ¢. d A1 (resp. ¢V ) denotes the
intersection (resp. the union) of ¢ and . Similarly, ¢x denotes a subset of Dx.

a;] = {w = (a1 A...Aay) : A; = a;} denotes the set of states whose it” component is
p

a;. Similarly, Vo € Dx,[z] = {w = (a1 A...ANay) : VA4; € X = {4, ..., A}, A; = a;}
denotes the set of states whose restrictions to variables in X is x.

When there is no ambiguity, we use z instead of [z] and x Ay (resp. z V y)
instead of [z] A [y] (resp. [z] V [y]).

In the rest of this paper, we will often refer to the following example to illustrate
different notions of independence:

Example 1 Suppose that in a cultivated field, we have information about the phys-
iological accidents that can affect the culture due to bacteria, mushrooms etc., the
maintenance (chemical fertilizers, etc.) and the land yield, then:

o We can distinguish three variables i.e., physiological accidents (Pacc), main-
tenance (Maint) and land yield (Yield) thus V = {PAcc, Maint,Yield},

o The domains associated with these variables are :
Dpy.. = {Diseasel(dl), Disease2(d2), NoDisease(nd)},
Draint = {Good(gm), Medium(mm), Weak(wm)},
Dy ie1a = {Good(gy), Weak(wy)}

Note that for the sake of simplicity, in some examples we only use binary
variables. This will be made precise in each use.

e The set of all states is @ = Dpace X Dyjaint X Dyierd-

o A possible state is that there is no disease, and that the maintenance and the
yield are good: w = nd A gm A gy. Then w[PAcc] = nd,w[Maint] = gm and
wl[Yield] = gy.

o The set [nd] = {nd A gm A gy,nd A gmAwy,nd \mm A gy,nd Amm Awy, nd A
wmAgy,nd NwmAwy} denotes the set of states where the instance nd of the
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variable PAcc holds.

The set [gm] = {d1 A gm A gy,d1 A gm Awy,d2 A gm A gy, d2 A gm A wy, nd A
gm A gy,nd A gm Awy} denotes the set of states where the instance gm of the
variable Maint holds.

The models of the event ndAgm are [ndAgm] = {ndAgmAgy,ndA\gmAwy} =
[nd] N [gm] where N is the set intersection symbol.

3. Comparative possibility theory

In the following, we give a formal description of the qualitative representation

of uncertainty we are using. The basic idea is to equip the referential ) with a

complete pre-order! also called a weak order, instead of using a totally ordered

scale. This weak order denoted >, corresponds to a plausibility relation (also

called a comparative possibility relation) on 2 and simply enables us to express that
some situations are more plausible than others. We denote =, (resp. >, <x)
the equality (resp. inequality) relation corresponding to >,. Namely the relation

w =, w' means that w is as plausible as w'. We now give some definitions regarding

to plausibility relations:

e Most plausible states: Given £ = {wy,..,wn} C , the most plausible state(s)

in the set ¢ is defined by maz (&) s.t.
maz(§) = {w; 1w; € §, Awj € £ 8.t wj > w;} (1)

Least plausible states: Given & = {wy,..,w,} C Q, the least plausible state(s)
in the set ¢ is defined by min(§) s.t.

min(§) = {w; 1 w; €&, Aw; € € s.t. w; >r wj} (2)

Given a relation >, on 2, we can lift it to another plausibility relation defined
on the subsets of 2 denoted >11 by (e.g.,'?):

¢ >n o iff Yw € 9, 3w’ € ¢ such that w’' >, w. (3)

Namely, ¢ >11 ¢ holds if a best element in ¢ is preferred to best element(s) in
¥. In other terms:

¢ >m ¢ iff Jw € max(p),w’ € maz(y) such that w >, w'.

The idea behind the relation >y is that the agent whose epistemic state
is modeled by the plausibility relation >, evaluates events by their most
plausible state considering that if ¢ occurs, then the expected situation is
among the states in maz(¢) because they are normal states.

LA relation > on Q is a complete pre-order if > is reflexive, transitive and for all wy, w2, we have
either w1 > w2 or wa > wq.
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This qualitative representation of uncertainty is also used in several non-monotonic
formalisms like Lehmann’s ranked models3”, plausibility relations®', possibility the-
ory, Spohn’s ordinal conditional functions***? and system of spheres®C.

In particular Spohn*3#2 represents plausibility orderings by means of well-ordered

partitions {¢1, ..., #p} such that:
Vie{l,.,p},Vw,w' € ¢; 1w =5,

Vi<jst i€{l,.,p},j€e{l,.,p},Yw € ¢;,Vw' € ¢ 1w >, ',

that is ¢; = maz(), ¢, = min(Q). Thus, ¢; contains the most plausible states
of the world. When ¢ = (1, the plausibility relation >, is uniform and expresses
complete ignorance.

For any subset X C V, the projection of >, on Dy is denoted by >X and is
defined by:

x >X o' iff (7] >q [2']. (4)

If the projection of >, on Dx is uniform, then the agent is ignorant about the
subset of variables X, or in other words, X is not informed, otherwise there is a
proper subset ¢% C Dx of plausible values of X, such that ¢% = maz(Dx).

The comparative possibility relations satisfies the characteristic property'?:

p2n = oVE{>n Ve
The dual necessity relation is defined by:
¢ >N ¥ iff wp >p ¢ iff max(—y) > maz(—9). (5)

¢ >n ¥ means that the agent is more certain about ¢ than about . This
relation is closely related to the one of epistemic entrenchment?®-2!,

3.1. Qualitative conditioning

Conditioning is a crucial notion when studying independence relations. In the
comparative setting, it consists in focusing a plausibility relation >, on a subclass
¢ C Q, on the basis of a new piece of sure information about a case at hand;
a plausibility relation restricted to ¢, denoted by >4 is obtained for answering
questions on the case at hand for which only ¢ is known. We denote =, (resp.
>r16> <x|g) the equality (resp. inequality) relation corresponding to >,,. Natural
postulates for qualitative conditioning are:

A;: le,u& c ¢’ w1 >g wo iff wy >,T|¢ w2,
AQZ VUJ1 € ¢,VW2 ¢ ¢,W1 >7|"¢ w2,

A3: le,OJQ € ¢, w1 :ﬂ.|¢ Wa.
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Figure 1: Qualitative conditioning

A, means that the new plausibility relation should not alter the initial order
between the elements of ¢. As confirms that each model of ¢ should be preferred to
any model not belonging to ¢. Finally, the last postulate Az says that the elements
not belonging to ¢ are irrelevant and should be in the same equivalence class.
These three postulates determine in a unique manner the new plausibility relation
>rl¢- Indeed, <4 is obtained from <, by preserving the relative ordering between
elements of ¢, forcing elements which are outside ¢ to be equally plausible, but less
plausible than any element of ¢. This construction is illustrated by the following
example.

Example 2 Let us consider two binary variables, relative to climatic conditions

(CCdt) and physiological accidents (PAcc), such that Docgr = {Good(g), Bad(b)},
Dpace = {Yes(y), No(n)} with the following plausibility relation:

gAN > bAYy=bAN>.gANy.

Consider, now that we receive a sure piece of information indicating that there is an
accident (Ty] = {bAy, gAy}), then the initial plausibility relation will be modified into
the following, unique, relation (see Figure 1): bAY >4 gAY >rjp 9AN =g DAN.
Indeed, from Az, we have bAy >r16 gAN, DAY >r6 AN, gAY >z g AN and
gAY >z bAN. Moreover, from Az, we have bAn =x4 gAn. Then, from Ay, we
have bAy >x16 9N Y.

The conditional possibility ordering >4 induces a conditional possibility or-
dering >p114 between events simply defined as follows:

a>me Biff aNe >n A9

Note that this kind of conditioning completely ignores the previous order be-
tween elements outside ¢. Viewed as a revision process, conditioning imposes that
all states in —¢ become impossible, because ¢ is learned to be absolutely true. This
is different in what is usually used in belief revision®®. Indeed, for instance nat-
ural belief revision” 4342, considers minimal change for taking ¢ into account. It
simply consists in moving the best elements in ¢ to the top level, and leaving the
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Figure 2: Natural belief revision

vl gan
24 >
ban

Figure 3: Revision in Papini’s approach

order between other states unchanged. In our example, Figure 2 illustrates natural
belief revision. Another example of belief revision is Papini’s approach*® which is
obtained from A;, A, and the following postulate:

Ay Vwr,war € ¢, w1 >qwa iff wy >qpg wa.

In our example, this revision mode corresponds to Figure 3.

3.2. Accepted beliefs

We now introduce the notion of accepted belief which will be helpful for defining
qualitative independence in Section 5, e.g.22-28,

A proposition (or an event) ¢ is said to be accepted by the agent with epistemic
state >, if and only if ¢ >xn —¢!®. In particular, the set {¢ s.t. ¢ >y -} is
deductively closed. In other words, the subclasses of 2 are shared into three families:
accepted beliefs ¢ such that ¢ > —¢, rejected beliefs ¢ such that =¢ > ¢ and
ignored beliefs ¢ such that ¢ =g —¢. This trichotomy can be encoded as follows:
Definition 1 The acceptance function associated with a plausibility relation >
denoted by Accs_(.) assigns to each ¢ a value in {—1,0,1} in the following way:

1 if o>n—¢
Accs (@) =< -1 if ~¢>n¢ (6)
0 if ¢ =m0

When Accs_(¢) =1 (resp. Accs_ (¢) = —1) we say that ¢ is accepted (resp.
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rejected). Accs_(¢) = Accs, (—¢) = 0, corresponds to the situation of total
ignorance concerning ¢, i.e., ¢ and —¢ are equally plausible.

Lemma 1 The acceptance function is equivalently defined as follows:

1 if max(Q) C ¢
Aces (¢) =q =1 if maz(Q) C—¢ (7)
0 otherwise.

Proposition 1 The properties of the acceptance function Accs_ are as follows:
1. It is monotonic i.e. ¢ C 1 = Accs_(¢) < Accs_(¥)

2. Accs_ (9 ANY) =1 iff Aces, (¢) =1 and Aces_(¢) =1
this is because the set of accepted propositions is deductively closed.

3. Accs_ (¢ AY) = min(Aces (¢), Aces () except if
Accs (¢ Ap) = —1 and Accs_(¢) = Accs_ (¥) =0.

(

(

4. Accs_ (—¢) = —Accs_ (9)

5. Acc>_ (¢ V ¢) = maz(Aces, (4), Accs_(Y)) except if
Acc>_ (¢ V) =1 and Accs_ (¢) = Aces_(¢) =0.

Property 3 of this proposition is proved in the appendix. Properties 1, 2 and 4
are obvious consequences of Lemma 1 and property 5 is trivial using properties 3
and 4.

Property 2 confirms that the logic of accepted unconditional events is classical
logic. Properties 3 and 5 point out an almost compositionality of Accs_ but, it
is not compositional, and Accx_ should not be confused with a three-valued truth
function.

The function Accs_ can be extended in order to take into account a given
context. Then a conditional belief measure denoted by Acc>_(.|.) is defined by:

1 if oAU ST —dAY
Aces (o) =< 0 if oA =n-pAY (8)
=1 if 2o AY >q dNAY.

When Acc is defined on subsets of 2, we talk about plain beliefs, while when
it is defined on conditionals we talk about conditional beliefs. In a fixed context 1,
Acc>_ (.| ¢) enjoys the same properties as function Accs .
Example 3 Let us consider two binary variables A and B with the following plau-
sibility relation a1 A by > as Aby > a1 Abs =, as Aby. Then, for instance:
Accs_ (a1) =1,Accs (a2) = -1,
Accs_ (b)) =1,Accs_ (b)) = -1,
Accs (a1 | b1) =1,Aces (a1 | b2) =0,
Acc>_ (a2 | 1) = —1,Acc> (as | b2) =0.
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Remarks:

e The plausibility relation >, determines Accs_ in a unique manner. The
converse is not true. Namely, many plausibility relations can generate the
same set of plain beliefs, i.e, we can have the same Accx, on all events
(including the states). Indeed, two plausibility relations induce the same
plain beliefs if and only if they share the same set of most plausible states,
as obviously stated by Lemma 1. The other parts of the relations may thus
differ.

o Restricting the function Accs_ to 2, we can distinguish three cases (we note
Acex, ({w}) = Acex, (w)):

— Accs_ (w) = 1: in this case, w is the unique state such that w >,
W' Vw' #w € Q. w is then called the accepted state since {w} >n {w'}
as well for any w' # w. Note that, if 3w such that, Acc>_(w) =1, then
Vw' # w,Aces (w') = —1.

— When maz(f2) contains more than one plausible instance then Accs _(w) <
0,Vw € Q. More precisely, Yw € maz(Q2), Acc> (w) =0

— Accs, (w) = —1 is equivalent to w ¢ maxz(f), i.e. w is not a plausible
state.

So, the function Accx_(w) on states only distinguish between the most plau-
sible states (i.e. Accs, (z) > 0) and the less plausible ones (Acc>_(z) = —1).
Interestingly, the restriction of Acc>_ on ) enables the function Accs_ to
be reconstructed on all subsets of (2.

Indeed, maz () = {w s.t. Aces_(w) =1} U {w s.t. Aces_ (w) = 0} (one of
the sets is empty), and then it is enough to apply Lemma 1.

So, Accx, (w) = Accx: (w),Vw € Q, if and only if, Acc> (¢) = Accx: (¢), Vo C
Q.

e However, the set of all conditional beliefs determines in a unique manner a
plausibility relation on . Indeed, the proof can be directly obtained by
defining >, in the following way:

W1 >x Wa iff 1&(:(:27r ({wl} | {wl,wQ}) =1 (9)

Example 4 Let us consider the following conditional values Acc, on some
conditionals relative to the two binary variables A and B:

Acc>_ (a1 | b1) =1,Aces_ (a1 | b2) =0,Ace>_ (a2 | b1) = —1,

Acc>_ (a2 | b2) =0,Accs_ (b1 ]| a1) =1,Aces, (b | a2) = —1,

Accs_ (b2 ]| a1) = —1,Aces (b2 | az) = 1.

Using (8), the previous conditional beliefs induce, respectively:

al/\bl >r a2/\b1, al/\bg =r a2/\b2, al/\bl > a2/\b1, 02/\b2 =r al/\bz,
a1 ANby >r a1 Aba, as ANby >r as Aby, ag Aby > a1 Abs, as Abs > as Aby.
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We can check that these relations induce the following, unique, plausibility
relation: a1 Aby >, a1 ANbs =, as Aby >, as Aby.

Proposition 2 The acceptance functions Accs_(.) and the conditional acceptance
function Accs_(.|.) are related via the following Bayesian-like equation:

Acex, (¢ A1) = min(Acex, (¢ ] ¥), Accx, () (10)

It may happen that Acc>_(¢) =1 but Ace> (¢ A9) =0or 1or-1.
In the following, we use Acc(.) (resp. Acc(.|.)) instead of Accx_(.) (resp.
Acc>_(.].) ) when there is no ambiguity.

4. Scale-based possibility theory

In scale-based settings, uncertainty is handled in a qualitative way, but it is
encoded on some linearly ordered scale (finite or infinite). Typical examples of
these frameworks are possibility theory?®:23:4® where uncertainty is represented in
the interval [0, 1] and Spohn’s ordinal functions?®*?> which use the set of integers.
In the following, we only focus on possibility theory, but results of this article are
also valid for other frameworks such as Spohn’s ordinal functions, or Lehmann’s

ranked models®”, due to their close relation to possibility theory.

4.1. Posstibility distribution and possibility measure

The basic concept in possibility theory is the notion of possibility distribution. It
is a mapping from 2 to the scale [0, 1] usually denoted by w. Possibility distributions
aim at encoding an agent’s knowledge about an ill-known world : m(w) = 1 means
that w is completely possible and 7(w) = 0 means that w can not be the real world.
A possibility distribution 7 is said to be normalized if there exists at least one state
w which is totally possible.

Given a possibility distribution 7, the uncertainty of any event ¢ C (2 is esti-
mated by means of two dual measures:

e The possibility measure of ¢:

1I{¢) = maxm(w). (11)

The measure II(¢#) evaluates at which level ¢ is consistent with our knowledge
represented by the possibility distribution 7.

e The necessity measure, associated with II by duality:

N() = 1= T1(=6) = min(1 = 7(w)). (12)
The measure N (¢) corresponds to the extent to which —¢ is impossible and
thus evaluates at which level ¢ is certainly implied by our knowledge (rep-
resented by the possibility distribution ).
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Denoting Conf(y)) = () — II(—)), it is easy to see that the Acc function
induced from 7 is such that Acc(y)) = 1 if Conf(y)) > 0, Acc(yp) = —1 if
Conf(y) < 0 and Acc(yp) = 0 if Conf(y)) = 0. Conf(y)) corresponds to the
idea of a confidence factor used in the expert systems literature.

4.2. Posstibilistic conditioning

In the possibilistic setting conditioning consists in focusing our initial knowledge,
encoded by a possibility distribution 7 on a subclass ¢ C Q due to the arrival of a
new certain piece of evidence. The initial distribution 7 is then replaced by another
one denoted by 7 = 7(. | ¢). We assume that ¢ # () and that II(¢) > 0. Natural
postulates for possibilistic conditioning are:

Cy: if 7(w) = 0 then 7 (w) = 0,

Co: Vw g ¢, (w) =0,

C;: 7 should be normalized,

Cu: Ywi,ws € ¢, m(wr) > m(ws) iff 7 (wi) > 7 (w)
Cs: if TI(¢) = 1, then Yw € ¢, 7 (w) = 7(w).

C; says that irrelevant states remain irrelevant after conditioning, Cs confirms
that ¢ is a sure piece of information and Cj says that the result should be a normal-
ized possibility distribution. Moreover, C4 says that the new possibility distribution
should not affect the possibility degrees relative to the states in ¢. Lastly, C; says
that if ¢ is already consistent with the beliefs encoded by 7, then the possibility
distribution remains unchanged on the models of ¢. This is in agreement with
the min-based combination mode which prevails in possibility theory; no further
normalization is needed since II(¢) = 1.

Contrary to the comparative framework, the postulates (C1-Cs) do not guaran-
tee a unique definition of conditioning. Minimizing change leads to preserving the
possibility degrees of elements in ¢ and assigning the degree 0 to others:

(0 I 6) = { r(w) ifweo (13)

0 otherwise.

This method may obviously result in subnormal possibility distributions. Restor-
ing the normalization, in order to satisfy Cs, can be done in two different ways (when
II(¢) > 0) depending on whether we are in a comparative setting where the scale
[0, 1] is only used for encoding an ordering between degrees (which may form a finite
set of values), or if we are in a genuine numerical setting?°:

e In an ordinal setting, we assign to the best elements of ¢, the maximal possi-
bility degree (i.e. 1), then we obtain:

1 if m(w) =1I(¢) and w € ¢

(@l ) =4 7(w) if mw) <TI($) and w € (14)
0 otherwise.
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This corresponds to the min-based conditioning.

e In a numerical setting, we proportionally shift up all elements of ¢:

i
0 otherwise.

(w) .
n<w|p¢>={ e fweo (15)

This corresponds to the product-based conditioning.

If II(¢) = 0 then, by convention 7(w |m ¢) = 7(w |, ¢) = 1.

Each of these two definitions of conditioning satisfies an equation close to the
Bayesian rule, of the form:

Vo, m(w) = m(w | ¢) @ I(¢) (16)

respectively for ® are the min (for (14)) and the product (for (15)) operators. The
min-based conditioning (14) corresponds to the least specific solution of Equation
16 first proposed by Hisdal®2.

4.3. Possibilistic framework vs Comparative framework

Each possibility distribution 7 generates a unique plausibility relation >, defined
by:
w >, W iff m(w) > 7 (w'). (17)

However, a plausibility relation corresponds to an infinity of possibility distribu-
tions on [0, 1]. It is natural to encode a weak order on 2 representing a plausibility
relation >, and corresponding to a well-ordered partition {¢1, ..., ¢, }, into a possi-
bility distribution 7 ranging on a finite, totally ordered scale, with p levels.

Note that if > is defined from 7 using (17) then:

¢ 2n ¢ iff T(¢) = II(¢)).

We now focus on the major differences between scaled possibility theory and
the comparative framework. There are at least three differences between using
possibility distributions or plausibility relations:

e Normalization: in possibility theory, fully plausible states receive the grade
1 (3w € 2 s.t. w(w) = 1) while there is no counterpart in the comparative
setting.

e FEuxistence of impossible states graded to 0 in possibility theory, while all states
are somewhat possible in the comparative setting.

o Commensurability between uncertainty levels when merging several possibility
distributions, since all rankings reflect grades in the same scale [0, 1].
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Note that these remarks are also true for any scale-based representation frame-
work and not only in possibility theory.

The normalization and the existence of impossible states explain why there are
several definitions of possibilistic conditioning while there is a unique definition in
the comparative setting. As we will show later, the commensurability property is
crucial in the decomposition of some qualitative independence relations.

5. Independence in comparative possibility theory

In this section we propose several causal and decompositional definitions of pos-
sibilistic independence which apply to a plausibility relation >, on a Cartesian
product of universes.

5.1. Causal qualitative independence

In the comparative setting, independence relations can be thought of either in
terms of qualitative plausibility relations or in terms of acceptance measures. The
two views can be related, as shown below where we present two possible definitions
of causal independence. Basically, the variable set X is independent of Y if upon
learning any instance of Y:

- the agent’s beliefs on Dx i.e. the accepted (resp. rejected and ignored) instances
of X are preserved, or
- the relative ordering between instances of X is preserved.

5.1.1. Belief-preserving independence

The first notion of causal independence in the ordinal setting is concerned with

the preservation of accepted and rejected beliefs. A set of variables X can be
considered as independent of Y in the context Z, if the accepted and rejected beliefs
pertaining to X, held in the context Z, remain unchanged when some information
about Y is obtained. Formally:
Definition 2 Let >, be a plausibility relation defined on Q@ = Dy and consider
three mutually disjoint subsets of variables X, Y and Z forming a partition of V.
X is said to be BP-independent (BP for Belief Preserving) of Y in the context Z,
denoted by IBP(X, Z, Y), ZﬁV¢X g Dx,V’(/JY g Dy,VfZ g DZ

Acc(px | by AN€z) = Acc(dx | €z). (18)

Compared with the notion of qualitative independence previously introduced by
413 only particular
events are concerned; moreover the idea was (especially in reference!®) to preserve
accepted beliefs only and not rejected ones.

the authors®!*!? this definition is stronger in two extents: in

Note that contrary to the situation in probability theory, BP-independence is
not, symmetric as shown by the counter example below.
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Counter-example 1 Consider two binary variables A and B with the following
plausibility relation: ay Aby > ay Aby > a2 Abs >, ax Aby. Table 1, shows that
Igp(A,0, B) is true since Acc(a | b) = Acc(a),Va,b. However, Igp(B,), A) is
false, for instance Acc(by) =1 # Acc(by | az) = —1.

Table 1: Lack of symmetry property for Igp
a b Acc(a|b) Acc(a) Acc(b|a) Ace(d)

ay b1 1 1 1 1
a1 bQ 1 1 -1 -1
a2 b1 -1 -1 -1 1
a2 b2 -1 -1 1 -1

It is then clear that Ipp(X,Z,Y) means that fixing any instance z of Z, the
set {z s.t. £ Ay A z is a plausible instance in Dx Ay A z} does not depend on y.
Hence, knowing some information about Y does not alter accepted beliefs about X
in context Z.

Definition 2 is stated for all events defined by X, Y and Z, respectively, since
Acc is not a decomposable function. Nevertheless, it is enough to state it with
instances of X, Y and Z only as stated by the following proposition.

Proposition 3 Let >, be a plausibility relation defined on Q = Dy and consider
three mutually disjoint subsets of variables X, Y and Z forming a partition of V.
The relation Igp(X, Z,Y) is true, iff, Vx,y, z,

Acc(z |y Az) = Acc(z | 2). (19)

We denote by Igpps the symmetrized version of BP-independence relation; i.e.
the variable set X is said to be BPS-independent of Y in the context Z if:

(i) Acc(z | y A z) = Acc(x | 2) and

(i7) Acc(y | z A z) = Acc(y | 2), Yz, y, 2. (20)

BPS-independence relation preserves the plausible instances of X given Y and Y
given X in context Z, but does not preserve the relative ordering between instances
of X (resp. Y) in the context Y (resp. X) (except when restricting to binary
variables).

Example 5 Let A and B be two BPS-independent variables with the following plau-
sibility relation >5: ay Aby >5 as Aby >r a3 Aby >r a1 Aby > as Aby =5 az Abs.
By projection, the local plausibility relation relative to A is then:a; >n as >t as.

However, in the context bs, we have a; >11 ax =11 ag, thus, the relative ordering
between instances of A is not preserved in all contexts of B since as >11 as while
as =g a3z in the context bs.
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5.1.2. Order-preserving independence

The causality-oriented definition that we propose now simply says that X is
independent of Y in the context of Z, if for all z € Dy, the local preferential
ordering between the different instances of X is preserved after the revision by any
instance y of Y. More formally:

Definition 3 Let >, be a plausibility relation defined on Q@ = Dy and consider
three mutually disjoint subsets of variables X, Y and Z forming a partition of V.
X is said to be PO-independent (PO for Preserving Ordering) of Y in the context
Z, denoted Ipo(X,Z,Y), iff V2 € Dy ,Vy € Dy:

Ve, 2 € Dx,zsANz>nzj ANz iff i AyAz >z ANy Az, (21)

Proposition 4 If X is PO-independent of Y in the context Z, then X is also
BP-independent of Y in the same context. The converse in not true.

Counter-example 2 Let us consider a ternary variable A and a binary variable
B with the following plausibility distribution:
a1 ANby > a3 ANby >r a3 ANby > a1 Aby >p as Aby =, as A bs.

We can check that A is BP-independent of B, but not PO-independent of B
since the local plausibility relation relative to A is a1 >11 as > ag. However, in
the context by, we have as =y ag, thus the relation Ipo(A, D, B) is false, since the
ordering between as and agz is not preserved in context bs.

Note that this relation is not symmetrized as shown by the following counter
example:

Counter-example 3 Let us consider two binary variables A and B with the fol-
lowing ordering relation: a; ANby >, ay Abs > as Aby >, as Aby.

e The local plausibility relation relative to A is a; > as. Moreover, in the
context by, we have a1 >11 as and in the context by, we have a; >11 as, thus,
the relation Ipo(A,0, B) is true since the ordering relative to the different
instances of A is preserved for all instances of B.

o The local plausibility relation relative to B is by > by. However, in the
context as, we have by >11 by, thus, the relation Ipo(B,0, A) is false, since
the ordering between by and by is not preserved in the context as.

We denote Ipos the symmetrized version of Ipp; i.e. X is said to be POS-
independent of Y in the context Z iff Vz € Dy,Vy € Dy ,Vz € Dx:

(i) Vi, 25 € Dx,x; ANz>naxjAzif e, AyAz >z x; Ay Az, and

(i%) Yyk,y1 € Dy, yk Az >nyiAzifx Ayp Az>r e Ay A z. (22)

The following proposition rewrites POS-independence in terms of Acc.
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Proposition 5 X is POS-independent of Y in the context Z iff:

VD'y C Dx,VD}y, C Dy such that D'y # 0 and D% # 0 and Vz,y, z
Acc(z Ay | zADx ADy) =min(Acc(z | zA DY), Acc(y | z ADY)).  (23)

From this rewriting, we deduce the following proposition:

Proposition 6 If X is POS-independent of Y in the context Z, then X is also
BPS-independent of Y in the same context. The converse in not true.

5.2. Decompositional independence

We now propose two classes of decompositional independencies, the first one
based on belief decomposition and the second on remarkable plausibility relations.

5.2.1. Belief decompositional independence

The idea of this independence relation is to consider two variable sets X and
Y as independent in context Z if for any instance z of Z, the acceptance of any
instance (z A y) of (X,Y) is fully determined by the separate acceptance of z and
of y. One way to relate the acceptance of (z A y) to the acceptance of x and the
acceptance of y is:

Definition 4 Let >, be a plausibility relation defined on Q@ = Dy and consider
three mutually disjoint subsets of variables X, Y and Z forming a partition of V.
X and Y are said to be PT-independent (PT for Preserving Top elements) in the
context Z, denoted by Ipr(X,Z,Y), iff Véx C Dx,Vy C Dy,V€; C Dy

Acc(px Ay | €z) = min(Acc(px | €z), Acc(vy | §z)). (24)

This definition is analogous to the one given in probability theory i.e. two vari-
ables A and B are independent if the probability over A and B is fully determined
by P(A) and P(B) (i.e. P(AA B) = P(A) - P(B)).

Proposition 7 X andY are PT-independent in the context Z as soon as Definition
4 holds for all instances of X,Y and Z only, that is:

Ve,y,z, Acc(z Ay | z) = min(Acc(z | 2), Acc(y | 2)). (25)

It means that the set of plausible instances of a Cartesian product of domains is
a Cartesian product. In particular, if any of the two sets maxz(Dx) and max(Dy)
contains a simple element then, obviously, X and Y are PT-independent. So PT-
independent is a very weak definition of independence (see Figure 4 in Section 8).

The preservation of accepted beliefs implicitly implies the preservation of pre-
ferred instances but the converse is not true as stated by the following proposition.
Proposition 8 If X is BPS-independent of Y in the context Z, then X and Y are
also PT-independent. The converse in not true.
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Counter-example 4 : Ipy DOES NOT IMPLY Igpg

Let us consider two binary variables A and B with the following plausibility
distribution:ar Abs >, as ANby >, a1 Aby = as A by.

We can check that A and B are PT-independent, but not BPS independent.

Using Propositions 8 and 6, we deduce that if X is POS-independent of Y in
the context Z, then X and Y are also PT-independent and that the converse is not
true.

5.2.2. Decompositional independence of remarkable plausibility relations

A natural way of defining decompositional independencies is to analyze the struc-
ture of the plausibility relation >,. A plausibility relation is said to be decompos-
able w.r.t. X and Y in the context Z, iff >, is a function of the local orderings
on (XU Z) and (Y U Z). The following introduces a well known principle, called
Pareto-principle:

Definition 5 Let >, be a comparative possibility relation and u;, v; be two in-
stances (not necessarily different) of A;. Let U = (uy,...,u,) and U = (vy,...,0y)
be two vectors. Then, W is said to be weakly Pareto-preferred to ¥, denoted by
w >p U, if and only if: Yu;,Yv;,i € {1,..,n},u; > v;. Moreover, W is said to
be strictly Pareto-preferred to 0, if and only if: % >p ¥ and i € {1,..,n} s.t.
Ui >11 V;.

In general >p is only a partial order. Since this paper deals with plausibility
relations which are complete pre-orders, the following definition introduces a general
class of plausibility relations which are compatible with the Pareto-principle:

Definition 6 Let X, Y and Z be disjoint subsets of variables. A plausibility rela-
tion >, is said to be strictly Pareto-compatible (or monotonic) along X and Y in
the context Z if
Vz € Dz, Vx;,x; € Dx,Vyg, y1 € Dy, we have:
(i Nz, ye Nz) >p (x; Nz, y1 A z) implies (x; Ay N2) >x (Tj Nyt Az)

Well known example of orderings > used in the comparative setting, which are
Pareto-compatible are the lezimin and the lezimaz orderings that we briefly present
now3?,

Definition 7 Let @ = {uy,...,u,} and ¥ = {vy,...,v,} be two vectors, and let o
and T be two permutations of indices such that Vi € {1,..,n},us(;) > Ug(i+1) and
Ur(i) > Ur(i+1)- Then,
- W is said to be leximin-preferred to U, denoted by W >iewimin U, if and only if
there exists i such that uqs(;) >n V- and Vj > i, uqj) =1 Vr(j)-
- W is said to be leximin-equal to T, denoted by & =jepimin U, if and only if Vi,
Ug (i) =M Ur(i)-

The leximin ordering is a natural extension of the minimum operator which has
been used in different areas like in handling conflicts in knowledge bases®3%, and in
flexible constraint satisfaction problems!'®:17-18,
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Definition 8 Let @ = {u1,...,un} and ¥ = {v1,...,v,} be two vectors, and let o
and T be two permutations of indices such that Vi € {1,..,n},us;) > Ug(i+1) and
Ur(i) > Ur(i+1)- Then,

- W is said to be leximaz-preferred to U, denoted by @ >iepimaz U, if and only if
there exists i such that uqs(;) >n v-;) and Vj <i,uq(j) =1 Vr(j)-

- W is said to be leximaz-equal to T, denoted by W =iewimin U, if and only if Vi,
Uo(j) =1 Ur(i)-

We now use these orderings to characterize plausibility relations:

1. A plausibility relation > is said to be Pareto-decomposable along X and
Y in the context Z, iff V2 € Dz, Vz;,x; € Dx, Yy, y1 € Dy, we have:
z; Ny ANz >7 x; ANy A z if and only if
riANz>nxjAzand yp Az >2nyi A z.

This definition is very strong, in the sense that >, is Pareto-decomposable
along X and Y if one of the groups of variables is not informed as stated by
the following proposition:

Proposition 9 A plausibility relation >, is Pareto-decomposable along X
andY iff one of the local plausibility relations on Dx or Dy should be uniform.

2. A plausibility relation > is said to be leximin-decomposable along X and
Y in the context Z, iff V2 € Dz, Vz;,x; € Dx, Yy, y1 € Dy, we have:

e z; ANy ANz >, xj Ay Az if and only if
(1) min(z; A z,yi A 2) >omin(z; A z,y1 A z) or
(ii) min(z; A z,yx A z) =n min(z; Az, y; A z) and
maz(x; Az, yr A z) >n maz(z; A\ z,y1 A z).

o T; Ay Nz =x ; ANy A z if and only if
min(z; A 2,y A 2) =n min(z; A 2,y A z) and
max(x; A2, yx A 2) =0 maz(z; Az, 51 A 2).

3. A plausibility relation > is said to be leximax-decomposable along X and
Y in the context Z, iff V2 € Dz, Vz;,x; € Dx, Yy, y1 € Dy, we have:

e z; ANy ANz >, xzj Ay Az if and only if
(i) maz(z; A z,yx A z) >n maz(z; A z,y1 A z) or
(ii) maz(z; A z,yx A 2) = maz(z; A z,y A z) and
min(z; A z,yp A 2) >nmin(z; A 2,y A z).

o T; Ay Nz =x ; ANy A z if and only if
min(z; A 2,y A 2) =n min(z; A 2,y A z) and
maz(x; A2, yx A 2) =0 maz(z; Az, 51 A 2).
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_J aifa>pb
where maz(a, b) _{ b otherwise
Definition 9 X and Y are said to be Pareto-independent (resp. leximin-
independent, leximaz-independent) in the context Z, denoted Ipgreto (resp.
Licwimin, liezimaz), of the plausibility relation >, is Pareto-decomposable (resp.

leximin-decomposable, leximaz-decomposable) along X and Y in the context Z.

Proposition 10 If X andY are Pareto-independent in the context Z, then they are
leximin-independent and leximaz-independent. The converse is false and leximax
independence is not comparable with leximin independence.

Counter-example 5 : ljcpimin AND Ijezimaz DO NOT IMPLY Ipgreto AND THEY
ARE INCOMPRABLE

Let us consider the following plausibility relations pertaining to a binary variable

A and ternary variable B:
a1 ANby >r a1 ANbs >5 as ANby >5 a1 ANbg > as Aby > as A bs,
ay A\ by >;T ay A by >;r as N by >;r as A by >;r ay A bs >;r as A bs.

With >, we can check that A and B are leximaz-independent but neither leximin-
independent since ay A by > as A by while min(az, ba) > min(a1,bs), nor Pareto-
independent since ay A bz > as A by while by >11 bs.

In addition with >! we can check that A and B are leximin-independent but nei-
ther lezimaz-independent since az Abz >! ay; Abs while max(ay, bs) > maz(az,bs),
nor Pareto-independent since az A by >! ay Abg while ay > az.

Proposition 11 Pareto, leximin and leximax independence imply POS-independence.
The converse is false.

Counter-example 6 : Ippgs DOES NOT IMPLY Ijeximin, liezimaz AND Ipgreto
Let A and B be two variables and >, >' be the plausibility relations given in

the previous counter example.

- with >, we can check that A is POS-independent of B but that these two vari-

ables are not leximin-independent since a; A bs > as A ba while min(az,bs) >

min(ay,bs). Moreover, with >! we can check that A is POS-independent of B

but these two variables are not leximaz-independent since as A by > ay A by while

max (a1, bs) > maz(asz,bs).

- with the plausibility relation: a; Aby >, a1 ANby > as A by >5 as A by, we can

check that the relation Ipos(A, D, B) is true contrary to Ipareto(A, D, B).

However, there are particular cases where the independence relations POS, lex-
imin and leximax are equivalent:

- The first one concerns binary variables:

Proposition 12 If A and B are binary variables then A is POS-independent of B
in the context of a binary variable C if and only if they are leximin-independent and
if and only if they are leximaz-independent.

- The second one concerns two-levels distributions:
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Proposition 13 If >, is a two-levels distribution, then X is POS-independent of
Y in the context of Z if and only if they are leximin-independent and if and only if
they are leximaz-independent.

6. Independence in scale-based possibility theory

In this section we recall well-known definitions of the independence relations
which apply to a possibility distribution 7919:24:25:4447  Clearly this distribution
induces a unique plausibility relation >, using (17); this will enable us to compare
the independence relations introduced in this section with the ones in the previous
sections. The comparison will be presented in Section 8.

6.1. Possibilistic causal independence

The idea in defining possibilistic causal independence relation based on the pos-
sibilistic conditioning is that X is considered as independent from Y in the context Z
if for any instance z € Dy, the possibility degree of any € Dx remains unchanged
for any value y € Dy. More formally?-1°:

H(z |y Az) =T(z | 2),Vz,y, 2. (26)

Since possibility theory has two kinds of conditioning, this leads to two defini-
tions of causal possibilistic independence:

e Min-based independence relation obtained by using the min-based condi-
tioning (14) in (26). This form of independence called Is is not symmetric i.e.
In(X,2,Y) # In(Y, Z,X) where Z denotes the context variable, as pointed
out by Fonck?® and as shown by the following counter example.

Counter-example 7 Let us consider three binary variables A, B and C with
the possibility distribution given in Table 2. We can check that w(a |bAc) =
m(a | ¢),Ya,b,c i.e. Inf(A,C,B) is true but, 7(by |ar Aer) =1#w(by | e1) =
0.7 i.e. Ing(B,C,A) is not true.

Table 2: Lack of symmetry property for I,
a b ¢ waAbAc)

a2 b2 C2 1

a2 b2 C1 0.9
a2 b1 C2 0.8
a2 b1 C1 0.7
ay - - 0.6

Let us denote Iss the symmetrized version®f Iy; suggested by Fonck?* (called
MS-independence) Vz,y, 2:

(1) O(z |m y A 2) =1I(x |m 2) and

2In what follows the suffix S is used to denote the symmetrized version of non-symmetric relations.
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(i) I(y |m A z) = 11(y |m 2)- (27)

Iys is a very strong relation since this MS-independence between two sets
of variables X and Y requires full ignorance about one of them (uniform
distribution) %19 i.e,

II(z) = 1,Vz € Dx or II(y) = 1,Yy € Dy.

¢ Product independence relation obtained by using the product-based con-
ditioning (15) in (26)°. We can rewrite this form of independence using:

Wz Ay lp2) =z [, 2) - Ty |p 2), V7,9, 2, (28)

or equivalently
Oz |, yAz) =0(z |, 2),Yz,y, 2. (29)

Let us denote Ip,,q the product based independence relation. The equiva-
lence between (28) and (29) is true only for positive distributions. Moreover,
product-based causal independence, contrary to min-based causal indepen-
dence, is symmetric. This definition can be expressed in Spohn’s ordinal
function framework?*?-4? using an appropriate transformation from integers to
the unit scale [0,1]. Indeed, this can be checked by showing that product-

based conditioning is equivalent to Spohn’s conditioning®! 1.

6.2. Possibilistic decompositional independence: non-interactivity

In the possibilistic framework, the standard decompositional independence be-
tween X and Y in the context Z is represented by the non-interactivity relation
introduced by Zadeh?”, denoted by In;(X,Z,Y) (NI for Non Interactivity) and
defined by:

U(z Ay |m 2) = min(Il(z |m 2), 1y |m 2)), V2,9, 2, (30)

or equivalently by?*:
Oz Ay Az) =min((x A 2),I(y A 2)),Vz,y, 2. (31)

The following proposition relates existing independence relations in possibility
theory.

Proposition 14 MS-independence relation implies In2® and Ip,oq. The converse

is false. However, NI and Prod independence relations are incomparable.

Counter-example 8 : Ip,.,q AND In; DO NOT IMPLY Ip;s AND THEY ARE IN-
COMPARABLE

Let us consider two binary variables A and B with the possibility distributions
given in Table 3. We can check that in m, the relation Ip,..q(A, D, B) is true contrary
to Ings(A, 0, B) and Inr(A, D, B). Moreover in o, the relation Iny(A, 0, B) is true
contrary to Ins(A, 0, B) and Iproqa(A, D, B).
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Table 3: Relation between Ip,.q, Inr and Inss

a b m(aAb)|| a b m(aAbd)
aq b1 0.6 a1 b1 1
a; b 1 ar by 0.8

a9 b1 036 a2 b1 08
a9 b2 06 a2 b2 08

7. Commensurability and the decomposition of plausibility relations

In this section we study the decomposition of possibility orderings in the sense
of some important independence relations. We will see that the commensurability
property is crucial in the recomposition of joint distributions from marginal ones.

In the comparative setting, forming a joint possibility ordering from marginal
ones is not immediate due to the absence of commensurability assumption between
the different orderings. Indeed, different rankings are not expressing grades in the
same scale and then it is impossible to compare the states, which makes it possible
to build joint possibility relations.

In the possibilistic framework all the orderings are defined on the same scale
e.g. [0, 1], which makes the composition of joint distributions from marginal ones
easy. To illustrate the composition problem we will consider the case of the non-
interactivity and leximin (resp. leximax) independence relations.

7.1. Possibilistic non-interactivity

The non-interactivity relation (see (30)) can be defined in a purely comparative
setting as it is stated by the following proposition:

Proposition 15 Let 7w be a possibility distribution. Let >, defined by
w>rw iff T(w) > 7(w). Then X and Y are Nl-independent iff:

TAyAz=nzAzorzAyAz=nyAzVry,z. (32)

However, NI-independence is not interesting in a qualitative representation since
it does not allow for the recomposition of a unique global plausibility relation from
local orders defined on independent variables (due to the non-satisfaction of the
commensurability property), as shown by the example below.

Example 6 Let us consider two variables, relative to climatic conditions (CCdt)
and physiological accidents (PAcc), such that:

Dccar = {Bad(b), Good(g)}

Dpace ={Yes(y), No(n)} with the following local orderings:

(i) b >n g and (it) y >m n.

There is no unique plausibility relation >, satisfying (i) and (ii) such that
(CCdt) and (PAcc) are NI-independent. Indeed, it is sufficient to consider the two
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plausibility relations >, and >' :
bAYy > gAy>bAn=rgAnandbAy>_ gAy=-bAn=LgAn.

However, if the local orderings are encoded in possibility theory then there is a
unique plausibility relation >, using w(ccdt Apacc) = min(mw(cedt), w(pacc)),Veedt €
Dccat, Vpace € Dp ace.

Indeed, if we encode the plausibility relation >, by the possibility distribution
given in Table J, we obtain the local distributions on the two variables (CCdt) and
(PAcc) given in Table 5. Then from w(cedt) and m(pacc) we can recover (i) and (ii)
n a unique manner using the min operator.

Table 4: Decomposition by NI-independence
cedt  pacc  w(eedt A pacc)

b y 1
g y 0.9
b n 0.8
g n 0.8

Table 5: Local distributions on CCdt and PAcc
cedt  7(eedt) || pace 7w (pace)

b 1 y 1
g 0.9 n 0.8

The importance of the commensurability assumption also appears in fuzzy set
based multicriteria aggregation, especially when defining connectives between fuzzy
sets. For instance, French?? questions the validity of the intersection definition of
two fuzzy sets (using the minimum operator to define the membership function
associated with the intersection) when no commensurability is assumed.

7.2. Decomposition by leximin and leximax independence

In the comparative setting, even if a plausibility relation is leximin or leximax
decomposable, it can not be decomposed without loss of information, again due to
the absence of commensurability assumption.

Example 7 Let us consider two variables, relative to climatic conditions (CCdt)
and maintenance (Maint), such that:

Dccar = {Bad(bc), Good(gc) }

Diraint = {Good(gm), Medium(mm), Weak(wm)} with the following plausibility
relation >, which is leximin decomposable:

bc A gm > bc Amm >, gc A gm > gc Amm >, be Awm >, gc A wm.
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We can easily check that this plausibility relation can not be recovered from the
induced local orders on (CCdt) and (Maint) given by:

(i) be > gc and (%) gm >p mm > wm.
Indeed, it is sufficient to consider the following plausibility relation:
be A gm >1ge A gm >0 be Amm >!ge Amm >! be Awm > ge A wm,

which satisfies (i) and (i) and which is also leximin-decomposable.

Such a problem can be solved when considering the scale-based setting. Indeed,
in this case the decomposition of leximin and leximax decomposable distributions
is immediate since possibility degrees allow for the comparison between different
states. In other terms, if the plausibility relation >, relative to any joint possibility
distribution 7 is leximin or leximax decomposable then we can recover 7 from local
distributions. Without a common scale, the use of the leximin or leximax does not
allow the recovering of > .

Table 6: Decomposition by leximin-independence
cedt  maint  w(cedt A maint)

be gm 1

be mm 0.9
gc gm 0.8
gc mm 0.7
be wm 0.3
gc wm 0.2

Example 8 Let m be a possibility distribution encoding the plausibility relation >
given in Example 7 (see Table 6). We can recover the plausibility relation behind
7 from the local distributions on (CCdt) and (Maint) (see Table 7) using the lex-
imin ordering. Indeed, the use of the leximin on the local distributions provides the
ordering relation relative to m i.e.

bc A gm >, be Amm >, gc A gm >, gc Amm >, be ANwm >, ge A wm.

Moreover, if we have saved the numerical scale, namely (1,.9,.8,.7,.3,.2), we can
recover the original distribution w. For instance, the state bc A gm corresponds to
the possibility degree 1, bc A mm to 0.9 etc.

Table 7: Local distributions on CCdt and Maint
cedt  7(eedt) || maint 7 (maint)

be 1 gm 1
gc 0.8 mm 0.9
wm 0.3
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8. Comparative study

In Sections 5 and 6, we have established the different links existing, on the one
hand, between scale-based possibilistic independence relations and, in the other
hand, between independence relations expressed from plausibility orderings. This
section compares all these relations. Namely, given a joint possibility distribution
m, we will relate the relations Ipgreto, Ipos, liewimin and Ijezimaz Of Section 5 to the
ones of Section 6 (i.e. Iny,Inps and Ip,oq) by considering the plausibility relation
>, induced from 7 by using (17).

Using Proposition 9, we can show the equivalence between MS and Pareto in-
dependence relations.

Proposition 16 Let 7 be a possibility distribution, and >, be its associated plau-
sibility relation. Then X and Y are MS-independent in w if and only if they are
Pareto-independent in > .

Proposition 17, shows that the M-independence implies the PO-independence.

Proposition 17 If X is M-independent of Y in the context Z, then X is also
PO-independent of Y in the same context. The converse is not true.

Counter-example 9 : Ipp DOES NOT IMPLY [y

Table 8: Relation between Iy, and Ipo

a b w(aAb)
aq b1 1

aq b2 0.8
a9 b2 0.7
a9 b1 0.5

Let us consider two binary variables A and B with the possibility distribution
given in Table 8. We can check that the relation Ipo(A, D, B) is true contrary to
In(A,0,B).

Propositions 18 and 19 relate Prod-independence to POS, leximin and leximax
independencies.

Proposition 18 If X and Y are Prod-independent in a strictly positive possibility
distribution 7, then X is POS-independent of Y in the plausibility relation induced
by w. The converse is false.

Counter-example 10 : Ippos DOES NOT IMPLY Ip,oq

Let A and B be two variables with the strictly positive possibility distribution
given in Table 9. We can check that the relation Ipos(A, D, B) is true contrary to
Iproq(A, 0, B) since w(as Abs) = 0.5 # I(as) - TI(b3) = 0.48.
Counter-example 11 Proposition 18 is false for non strictly positive possibil-
ity distributions. Indeed, let us consider two binary variables A and B with the
non strictly positive possibility distribution given in Table 10. We can check that
Iproq(A, 0, B) is true, contrary to Ipos(A, ), B).
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Table 9: Relation between Ipos and Ipyoq

a b w(aAb)
aq b1 1

aq b2 0.9
as b1 0.8
a9 b2 0.7
ajq b3 0.6
a9 b3 0.5

Table 10: Relation between Ip,.,q and Ipog

a b w(aAb)
ajq b1 1
ajq b2 0
a9 b1 0
as b2 0

Proposition 19 In the general case, the leximin and leximaz independencies are
incomparable with Prod-independence.

Counter-example 12 : Ip,,q INDEPENDENCE IMPLIES NEITHER Ijegimin NOR
Liezimaz AND VICE VERSA

Table 11: Relation between Ip,oq, liezimin and lezimaz

a b w(aAb)
aq b1 1

ajq b2 0.8
a9 b1 0.5
as b2 0.4
as b1 0.4
as b2 0.32

Let A and B be two variables,

e with the possibility distribution given in Table 11, we can check that Ip.q(A, D, B)
is satisfied while Ieyimin (A, 0, B) and liepimaz (4,0, B) are false. Note that the
product operator allows for compensation contrary to the leximin and leximaz
orderings.

For instance, if we have two pairs (II(x),1(y)) and (I(z"),I1(y")) such that
II(z) > II(z') and II(y") > II(y), then z Ay and =' Ay" will be always strictly
ranked using leximin and leximazx principle. However, they can be equally
ranked using the product operator since it may happen that II(z) - (y) =
II(z")-II(y"). This is the case in this example since (ay) = 0.5 > [I(a3) = 0.4
and II(by) = 1 > II(b2) = 0.8 and II(az) - II(b2) = II(as) - II(by) = 0.4.
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Table 12: Relation between Ipod, liezimin and lezimas

a b w(aAb)
aq b1 1

aq b2 0.9
a9 b1 0.8
ajq b3 0.5
a9 b2 0.3
a2 b3 0.2

o with the possibility distributions given in Table 12, we can check that
Tezimaz (4,0, B) is respected while Ippoq(A, 0, B) is false since w(as A by) =
0.3 # (asy) - I(by) = 0.72. Moreover, with the possibility distribution given
in Table 6, we can check that Ijezimin(A, 0, B) is respected contrary to
Iproa(A, 0, B) since w(az Abg) = 0.5 # I(az) - TI(b3) = 0.48.

Proposition 20 relates NI-independence to independence relations defined on
plausibility relations.

Proposition 20 Pareto independence implies NI-independence relation (since Pareto
independence is equivalent to MS). Moreover, NI-independence implies PT-independence.
However, this independence relation is incomparable with the other qualitative in-
dependence relations, namely the leximin, leximaz, POS and BPS independencies.
Counter-example 13 : Iy IS INCOMPARABLE WITH ljcximin, liezimaz, 1POS
AND Ipps .

In the possibility distribution mo given in Table 3, we can check that Iny(A, 0, B)
is true. However in the plausibility relation induced by wy (i.e., ay Aby >, a1 Nby =4
asANby =5 asAbs) the relations Ijepimin (A, 0, B) and Liezimaz (A, 0, B) are false since
a; A be =5 as A by while maz(ay,bs) > max(as,by). Moreover, Ipos(A, D, B) is
false since the local plausibility relation relative to A is ay >11 as while a1 =g ay in
the context of by. Lastly, Isps(A, D, B) is false since Acc(ay | b2) =0 # Acc(ay) =
1.

In Table 12, we can check that the relation Ijepimae (A, 0, B) is respected contrary
to In7(A, 0, B) since w(az A b)) = 0.3 # min(U(az), (b)) = min(0.8,0.9) = 0.8.

Lastly, in Table 9, we can check that Ljepimin(A, 0, B) is respected contrary
to Iny(A,0,B) since w(as A bs) = 0.7 # min(U(asz),(bs)) = min(0.8,0.9) =
0.8. Then we can deduce that in w the relations Ipos(A, D, B), Igps(A, 0, B) and
Ipr(A, D, B) are true contrary to NI-independence since Ijeyimin implies these three
independence relations (from Propositions 8, 6 and 10).

This counter example shows that if we start with a complete order, and map
it to a scale (e.g. [0,1]) then if X and Y are NI-independent (which implies that
the distribution is decomposable with the minimum operator), then it is always
possible to recompose the initial ordering from local ones defined on X and Y.
This is possible because we can store the total pre-order by mapping it to a totally
ordered scale. However, the case where the commensurability is crucial is when the
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expert, provides local orders on X and Y and the fact that these sets of variables are
NI-independent. Then, it is no longer possible to construct the global distribution.

(b)

O Decompositiond relations O Causal relations

Figure 4: Links between symmetric (a) and non-symmetric (b) independence rela-
tions

Figure 4 (a) illustrates the links existing between the different symmetric inde-
pendence relations. Figure 4 (b) concerns non-symmetric independence relations.
The arrows show the inclusion between them. Note that Iy and Ipgreio are the
strongest independence relations since MS (or equivalently, Pareto) independence
between two sets of variables imply a lack of information on one of them. However,
Ip7 is the weakest one, since it is sufficient to satisfy any independence relation in
order to confirm that this relation is true. Finally, we remark that I is implied by
Ins and Ipgreto and implies Ipp but it is incomparable with the other independence
relations. Unsurprisingly, there are several decompositional independence relations
according to the chosen decomposition mode. However, there is only one natural
causality-oriented independence which is POS-independence relation. Fortunately,
all of decompositional independence relations (except Iny) are also meaningful from
a causality point of view.

9. Conclusion

This paper relates notions of independence relations defined in the comparative
setting (when only a complete pre-order is used) to the basic existing ones in the
scale-based setting. Two kinds of independence have been investigated : causal and
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decompositional ones. We can observe that the independence relation which can be
used for the decomposition of a joint distribution in possibility theory is not unique,
contrary to probability theory where only the product-based independence can be
used. In possibility theory, various forms of independence can be used. Another
observation is that all of decompositional independence relations are also meaningful
from a causality point of view, as clearly appears in Figure 4. Moreover, this paper
has shown that the use of a common scale is crucial for decomposing distributions.

The notions of independence proposed in this paper extend previous works in
default reasoning?, and belief revision'® on independence between events to the case
of variables which are not necessarily binary. The notion of independence have been
only compared to basic ones studied in literature. Comparison with other notion of
numerical independence such as the ones introduced by de Campos and Huete °-1°
or Studeny**, is left for further research.

Another line for further research concerns logical counterpart to leximin and
leximax independence relations in the possibilistic setting. Indeed, procedures for
translating graph representations (defined from min-based and product-based con-
ditional independence) into stratified possibilistic logic bases have been already
proposed®. This is worth doing for leximin-based independence, which is stronger
than Nl-independence but still meaningful in a comparative setting.

Besides, the analysis of graphoid properties satisfied by the proposed indepen-
dence relations is under study.
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Appendix

For the sake of simplicity the context appearing behind the conditioning bar is
omitted in the following proofs.

Proof of Proposition 1 Let us consider the possible values of Acc>_ (¢ A):

o Accs> (pAY) =1= Accs_(¢) =1 and Accs_(¢) =1 (using property 2)
Hence, Accs_ (¢ AN) = min(Acces_(¢), Accs_(v)).

o Accs> (pANY) =0 = 3¢, ¢ st. pAY = ¢ ANY' (at least ¢' #n ¢ or
V' #n ). If we assume that ¢’ #n ¢, then Accs>_(¢) =0 and Accs_ (1) >0
= Accs (¢ Ap) = min(Accs_(4), Aces ()).

o Accs (pAp) = —1. Using Accs_ (¢ Ap) # min(Accs_ (¢), Aces_(¢)), we
deduce that (i1) Accs_ (¢) >0 and (i2) Accs_ () > 0.
If we assume that Acc>_(¢) = 1, then ¢ > —¢. Thus, we can distinguish
two cases:

— ¢ A= is more plausible than —¢p A and —¢p A —p
= Acc>_(¢) = —1 which contradicts (i2).
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— ¢ A Y is more plausible than =@ A and =¢ A —p. In this case ¢ A
is more plausible than ¢ N (since Accs_ (pAp) = —1)
= Accs_(¥) = —1 which contradicts (i2).

Proof of Proposition 2 The possible values that Acc(¢ A1) can take on are:

o Acc(pAY) =1 = ¢ Aty >n (P AY) = maz(=¢ Ah, ¢ A=, ¢ A=) and
hence ¢ A > —d A1) which implies Acc(p | ) = 1.

e Acc(pN)) ==1=dAY <p —(dAY).
= maz() C (2P AY)V (@A) V (md A 1)),
- if ¢ A C maz(Q) then Acc(o | ) = —1,
- else maz(Q) C —, ¥ <y~ which implies that Acc(y) = —1.

e Acc(pAY) =0= A =1 (¢ ANVY)
= ¢ A Cmaz(Q) and (¢ AY) V(¢ A=) V (=d A —1p) N maz(Q) # 0,
- if 7 A C max(2) = Acc(o | ) =0 (since pAY =m A1)
and Acc(y)) > 0 (since p ANy C ),
- else maz(QY) C ~¢p = Acc(d |Y) =1 (since pAY > p A1)
and Acc(yp) = 0 (since Y =m MaxX, gy W =1 ) =1 MaX, e[y ).

Proof of Proposition 3 The independence relation Igp(X, Z,Y") implies this Propo-
sition trivially by replacing ¢x by x, Yy by y and &z by z in (18). Thus it is
enough to prove that if Va,y,z,Acc(x | y A z) = Acc(z | z) then Ipp(X,Z,Y).
Since Acec on instances of X characterizes the acceptance function on subsets of
Dx, it follows that Yy,z Acc(px | y A z) =Ace(px | z). Now it is obvious that
plausibility relations ¥1 > & and ¥y > & imply 1 V v > &V & and the
same for =p. Hence, from ¢x ANy Az >ng —~ox ANy Az Yy € Yy,Vz € £z imply
Ox Ny Nz > —ox ANpy A€z, and the same with =r1. Hence, Igp(X, Z,Y") holds.

Proof of Proposition 4 We can distinguish three cases:

e Acc(z) = 1, this means that Va',x >n x'. Therefore, Va',x Ny >, ©' Ny,
Acc(z |y) =1.

o Acc(z) = —1, this means that 3z’ s.t. ' > x. Then using PO-independence
we deduce that ' s.t. ' Ny > & Ay which implies Acc(z | y) = —1

e Acc(z) =0, this means that 3z’ s.t. v =g 2’ and BAz" s.t. 2" >p
=>axAy =2 Ay and Ax" s.t. 2" Ny=rz ANy
= Acc(z |y) =0

Proof of Proposition 5 Let ¢ = D'y and ¢ = D,.

- Assume that (i) Acc(z Ay | ¢ Ap) = min(Acc(z | ¢), Acc(y | ¢))
then Yz, x' Yy, we have:

Acc(z Ay | {z,2'} Ny) = min(Acc(z | {z,2'}), Acc(y | v))
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& Acc(z | {z,2'} Ny) = Ace(z | {z,2'})

since Acc(y |y) =1, and Acc(z Ay | {z,2'} Ay) = Acc(z | {z,2'} Ay).

If Acc(z | {z,2'}) =1 (resp. 0,-1), then x > o' (resp.  =n o', 2’ > x)

= Acc(z | {z,2'} Ay) =1 (resp. 0,-1)

S o Ay>: ' ANy (resp. s ANy =2 ANy, ' Ny>rxANy).

Therefore, X is PO-independent of Y, Moreover Y is PO-independent of X since
(i) is obviously symmetric. Hence, X is POS-independent of Y.

- Let us show the converse.

Assume X and Y are POS-independent.

First suppose that Acc(z | ¢) = —1. Then 3z’ € ¢ such that 2’ > x

=z Ny > x Ay (since Ipos is true)

= Acc(z Ay | ¢ Ap) = =1 (by definition).

The same conclusion holds if Acc(y | ) = —1.

Now, we have three remaining cases (other cases, are obtained by symmetry):

e Acc(z | ¢) =1 and Acc(y | ) = 1.
Assume that Acc(x Ay | ¢ Ap) #1 (i.e. 0or-1)
= dz' € ¢,y € ¢ such that x' Ay’ >,z Ay
Moreover, x > «' (since Acc(z | ¢) =1)
=z Ay>;z' Ny (since Ipog is true)
>Ny >rreAy> 2 Ay
s>z ANy > ANy
=y’ > y(since Ipos is true). Hence contradiction with Acc(y | ) = 1.

e Acc(z | ¢) =0 and Acc(y | ) = 1.
Assume that Acc(z Ay | ¢,9) #0 (i.e. -1 or 1), then we can consider two
subcases:
-Acc(z Ay |dNAY)=—1=3T2" € g,y € such that ' ANy' > x Ay
Moreover, y >y’ (since Acc(y | ) =1)
=>axAy> ANy (since Ipogs is true)
s>z ANy >Srx Ay
= o' > (since Ipos is true). Hence contradiction with Acc(z | ¢) = 0.
-Acc(z Ay |dAY) =1 =V € pVy € pa ANy > a' Ny
>V o ANy >, ' Ay = x >’ (since Ipos is true).
Hence contradiction with Acc(x | ¢) = 0.

e Acc(z | ¢) =0 and Acc(y | ) =0.
Assume that Acc(x Ay | ¢ Ap) #0 (i.e. -1 or 1), then we can consider two
subcases:
-Acc(z Ay | pAY) =—1 = 32" € ¢,y € ¢ such that ' Ny >, x Ay
Moreover, y =1 y' (since Acc(y | ) =0)
>z Ay=rzAy (since Ipog is true)
=z ANy >Ny
=z’ > x(since Ipog is true). Hence contradiction with Acc(z | ¢) = 0.
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-Acc(z Ay |dAY) =1 =V € p Yy € o ANy >’ Ny
>V o ANy >, ' Ay = Va',x >g a’ (since Ipos is true).
Hence contradiction with Acc(x | ¢) = 0.

Proof of Proposition 6 Let D'y = Dx and D}, = {y} in (23), then we obtain:
Acc(z Ay | Dx, {y}) = min(Ace(z | Dx), Ace(y | {y}))

& Acc(z | {y}) = Acc(x) (since Acc(x Ay | Dx,{y}) = Acc(z | {y}),

Acc(z | Dx) = Acc(z) and Acc(y | {y}) =1)

which leads to case (i) of (20). The case (ii) of (20) is obtained by symmetry by
letting D'y = {z} and D\, = Dy in (23).

Proof of Proposition 7 To show this proof, note that Equation (25) does not hold
only if Acc(x Ay | z) = —1 and Acc(z | z) = Acc(y | z) = 0 due to the properties
of Acc given in Subsection 3.2.

This is equivalent to assuming that in any context z, card(max(Dx)) > 1,
card(max(Dy)) > 1, and © ANy & maz(Dx x Dy) for some x € mazx(Dx) and
some y € maz(Dy).

So (25) means that max(Dx x Dy) = maz(Dx) x maz(Dy) in any context z.
Hence, V¢ C Dyz,mazx(Dx x Dy) x Dz = maz(Dx) x maz(Dy) x Dy. However,
PT independence does not apply only if:

Acc(dx Ny | Ez) = —1,Acc(ox | £2) =0, and Acc(yy |€2) =0

which is equivalent to say that:

dx N Wy Nz =5 =px Ny Nz 27 ~opx Ay A&z > dx Nby ANz
However, it implies that max(Dx) overlaps ¢x and —¢x, max(Dy) overlaps by
and ~y, and Yz Ay € ¢x Ay A maz(Dx) x mazx(Dy), v ANy ¢ maz(Dx X
Dy). Hence, we have proved that in context &z, the equality Acc(z Ay | &z) =
min(Acc(z | £z),Acc(y | £z)) does not hold. It implies that 3z € £z, such that
(25) does not hold. So (25) implies PT-independence.

Proof of Proposition 8 Suppose that this Proposition is false i.e. X and Y are
not PT-independent. Hence 3z, 3y, such that Acc(z Ay) # min(Acc(z), Acc(y))
= min(Acc(z | y), Acc(y)) # min(Acc(z), Acc(y)) (From Proposition 2).

Hence Acc(z | y) # Acc(z).

So X andY are not PO-independent. Hence they cannot be BPS-independent.

Proof of Proposition 9 Suppose that none of the distributions on X and Y is
uniform, that is z,2',Jy,y’, s.t. x >g ' and y > y'. Then the two states x Ay’
and ' Ny are not comparable. Indeed:

-ifx Ny >r x' Ny, this relation contradicts the Pareto-ordering since y' Zn v,
-if ' ANy >r x Ny, this relation contradicts the Pareto-ordering since x' #11 x.
This result contradicts the assumption that >, encodes a complete preorder.

Let us show the converse. Assume that the distribution on Dx is uniform but > is
not Pareto-independent. This means that 3z, z', Jy,y’ such that Ay >, ' Ay’ but
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y < y'. This implies that ' Ay’ = x ANy’ > x Ay (since v = z' and y <n y').
Hence a contradiction.

Proof of Proposition 10 - PROOF THAT Ipgreto IMPLIES Ijezimin- Suppose that
X and Y are Pareto-independent but not leximin-independent, then we can distin-
guish two cases:

- Case 1: Az,y,3x',y’, s.t. x Ay >, ' Ny but

min(z,y) <g min(z',y'), or

min(x,y) =g min(z’,y") and maz(z,y) <g maz(z',y")

Since Pareto-independence is respected x Ny > x' ANy’

sz>nz andy>py

= min(z,z') >n min(y,y') and maz(z,z') >np maz(y,y').

Hence contradiction.

- Case 2: Az,y,3x',y’, s.t. x Ay =, 2’ Ny but

min(z,y) #Zn min(z',y'), or max(x,y) #n max(z',y")

Since Pareto-independence is respected v Ny =, ' ANy’

>z=nz andy=nvy

= min(z,y) =n min(z',y’), and maz(z,y) =n maz(z',y")

A contradiction again.

- PROOF THAT Ipgreto IMPLIES Ijopimaz- Lhis can be done in the same manner as
Ipareto (X7 Z: Y) = llevimaz (X7 Z: Y)

Proof of Proposition 11 - PROOF THAT Ijeyimin IMPLIES Ipos. Suppose that
not i.e. X andY are leximin but not POS-independent then we can distinguish two
possible situations (other cases, are obtained by symmetry):
- Case 1: Az,y,3x',y' st. >’ andc ANy <, x' Ay
Since leximin-independence is respected, t Ay <, ' Ay

{ min(z,y) <g min(z',y) or

min(x,y) =n min(z’,y) and maz(z,y) <g maz(z',y)

=z < z'. Hence contradiction.
- Case 2: Az,y, 32",y st. x>pga’ and x ANy <. x' Ay
Since leximin-independence is respected x Ny <. x' Ny
= min(z,y) <g min(z’,y) and maz(z,y) <g maz(z',y)
= x <y ='. Hence contradiction.

Proof of Proposition 12 - PROOF THAT Ipos IS EQUIVALENT TO Ijeyimin IN
THE BINARY CASE. [t is enough to prove that POS-independence implies leximin-
independence. Suppose that A and B are POS but not leximin-independent i.e.
Jda,a’,3b,b" s.t. (1) a ANb > a' AV but the relation a Ab >jepimin @' ANV is false.
This may happen in two cases:

- Case 1: min(a,b) <g min(a',b') = min(a,b) <g a’ and min(a,b) <g b’
Suppose that a <11 b then we have a <7 a' and a < V'

From the POS-independence, a <y a' implies:
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(i) a Ab < a Ab and (iii) a N < a AV

From (i),(ii) and (iii) we have a AD <pa' AV <paAb<,a Ab

which contradicts a <, b'.

- Case 2: min(a,b) =n min(a’,b') and maz(a,b) <g mazx(a’,bd")
Suppose that a <11 b then we have a =i min(a’,b") and b < maz(a’,b)
Suppose now that a' < b’ then we have a =1 a' and b < b'.

From the POS-independence, b <11 b’ implies:

(1) a Nb <; aAb and (iii) a' ANb<pd AV

From (i),(ii) and (iii) we have a' ANb <p a' AV <zaAb<paAl

which contradicts a = a'.

- PROOF THAT Ipos IS EQUIVALENT TO Iljepimaz IN THE BINARY CASE. This can
be done in the same manner as Ipos is equivalent to Ljcpimin -

Proof of Proposition 13 - PROOF THAT Ipps IS EQUIVALENT TO Iljepimin IF
WE HAVE TWO-LEVELS DISTRIBUTIONS.

It is enough to prove that POS-independence implies leximin-independence. Sup-
pose that A and B are POS but not leximin-independent i.e. Ja,a’,3b,b" s.t. (i)
aNb >, a Ab but the relation a Ab >iepimin @’ Ab' is false. This may happen in
two cases:

- Case 1: min(a,b) <g min(a’,b') = min(a,b) <o o’ and min(a,b) <m b’
Suppose that a < b then from Case I of Proof 12, we have

aAb <pa AV <;aAb<,a Ab which contradicts the fact that the distributions
have only two levels.

- Case 2: min(a,b) =n min(a’,b') and maz(a,b) <g mazx(a’,bd")

Suppose that a <11 b then we have a =i min(a’,b") and b < maz(a’,b)

Suppose now that a' < b' then we have a =1 a' and b < b'.

From the POS-independence, a =1 @’ and b <y b’ imply respectively:
aANb=ra ANbandaAb =, a AV

aNb<paAb andad Nb<,a AV

Moreover, from (i) we deduce that aAb is among the top elements (i.e. Acc(aNb) =
1) since we have two-levels distributions. Thus aAb =, a ANV =, a' AV,

Hence contradiction.

- PROOF THAT Ippog IS EQUIVALENT TO Ijerimaz IF WE HAVE TWO-LEVELS DIS-
TRIBUTIONS. This can be done in the same manner as Ipos s equivalent to Ijezimin -

Proof of Proposition 14 Suppose that 3z, Jy, such that (i) L(zAy) # (z) T(y).
Suppose that the distribution on X is uniform (from Proposition 16), then II(z) = 1,
thus (xz Ay) < 1 (since II(x Ay) < II(y)). Hence, (y | ) =(z A y).

Moreover II(y | ) = II(y) since X and Y are MS-independent.

Hence contradiction.

Proof of Proposition 15 The proof is immediate since X andY are NI-independent
means Il(x Ay Az) = min(Il(z Ay),II(x A 2)). Namely, II(x Ay Az) =II(z Ay) or
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M(zAyAz) =TI(yAz) which is equivalent to: xAyAz =n Ay or tAyAz =n yAz
(since if w >x ' iff m(w) > w(W') then ¢ >n ¢ iff 11(¢) > T1(¢)"))

Proof of Proposition 16 It is obvious that if X and Y are MS-independent then
they are Pareto-independent from Propositions 9 and the fact that MS-independence
implies that one of the local plausibility relations on Dx or Dy should be uniform.
We now prove that if X andY are Pareto-independent then they are MS-independent
in w. Suppose that Az, Ay, such that U(x | y) # I(z), then we can distinguish two
cases:
-Case 1: lI(z) =1=M(z|y) <1
II(x Ay) <II(y) (conditioning definition) and

{ O(x Ay) <II(z) (indeed U(z | y) =(z Ay) < 1=TI(z))
= 'y, s.t. Uz Ay) <I(z' Ay) and (z Ay) < I(z Ay')
=3,y , st x Ay <2 Ayandx Ay <z z Ay
Since the plausibility relation > is Pareto-decomposable, 3x', 3y’ , s.t. © < =’ and y <p
y' which contradicts proposition 9.
- Case 2: II(x) # 1, then the two possible situations are:

o Il(z |y)=1
= II(z Ay) =II(y) (conditioning definition)
= Vo' II(x Ay) > (2" Ay).
=>Ve',z ANy > 2 Ay.
Since the plausibility relation > is Pareto-decomposable, we have Vx' x > x'
thus x is the top element. However, from Il(z) < 1 we deduce that x is not
the top element. Hence contradiction.

« Tz | y) £ T0(z) < 1

II(z Ay) < (y) (conditioning definition) and

=< II(zAy) <(z) (indeed we have by definition II(z Ay) < (x)
moreover Il(z | y) = Il(z A y) # II(x))

= 3,3y, s.t. Uz Ay) <I(z' Ay) and T(z Ay) < (z Ay')

= dz', 3y, st. Ay < 2 Ay andz ANy <,z Ay

Since the plausibility relation >, is Pareto-decomposable, A2',Fy’', s.t. © <q

x' and y < y' which contradicts proposition 9.

Proof of Proposition 17 Suppose that this Proposition is false i.e, X andY are
not PO-independent then, we can distinguish two cases:

e dr, 2/, Jy s.t. x>px’ butz Ay <,z Ay
= (4) II(z) > T(2') but (i) (z Ay) < I(z' Ay).
Since M-independence is respected, we have Il(x Ay) = II(z) and U(z' Ay) =
II(z"). When using these two relations in (i1) we obtain M(z) < II(z') which
contradicts (7).

e dr,z' Jy st. x=pa’ butc ANy > x' ANy (orz ANy <.z' Ay)
= (i) II(z) =T(z") but () M(x Ay) > (2" Ay) (or I(z Ay) <Lz Ay)).
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Since M-independence is respected, we have Il(x Ay) = II(z) and U(z' Ay) =
I(z").

When using these two relations in (ii) we obtain (x) < I(z') which contra-
dicts (i).

Proof of Proposition 18 Suppose that this Proposition is false i.e., X and Y are
not POS-independent then, the possible situations are:

e dr, 2/, Jy s.t. x>p ' butz Ay <,z Ay
= (4) I(z) > T(z') but (i) (z Ay) < I(z' Ay).
Since Prod-independence is respected, we have:
I(z Ay) = I(z) - IL(y), and II(z' Ay) = II(2") - TL(y).
When using these two relations in (i) we obtain:
II(z) - I(y) < TI(2") - TI(y)
= I(z) < (x") which contradicts ().

e dr,z' ,Jy st. x=pa' butc ANy > x' ANy (orz ANy <.z Ay)
= (i) II(z) =T(z") but (i) M(z Ay) > (z' Ay) (or (z Ay) <I(z'Ay))
Since Prod-independence is respected, we have:
Mz Ay) =U(x) - I(y), and (z' Ay) =T (z') - T(y).
When using these two relations in (i) we obtain:
I(z) - M(y) < (') - I(y)
= I(z) < U(x") which contradicts ().

Proof of Proposition 20 Suppose X and Y are NIl-independent but not PT-
independent. More formally, 3z,3y s.t. (i) Acc(z Ay) # min(Acc(z), Acc(y)).
Hence Acc(zAy) = —1, Ace(x) = 0, Ace(y) = 0 (from Proposition 1 item 3). Hence
m(x Ay) < 1,I(z) = 1,1(y) = 1. This is impossible since NI-independence implies
that Vo € Dx,Vy € Dy, w(x Ay) = min(Il(z), 7(y))-
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