
Université de Tunis

Institut Supérieur de Gestion

Laboratoire LARODEC

Mémoire de Mastère en Modélisation

The Optimal Stopping
Knapsack Problem

Elaboré par:

Hajer Ben Romdhane

Supervisé par: Dr. Saoussen Krichen

Année Universitaire 2009-2010

To my Dear Parents,

all my Family and my Friends.

Acknowledgements

First and above all, I praise God, the almighty for providing me this opportunity

and granting me the capability to proceed successfully.

This work appears in its current form due to the assistance and guidance of several

people. I would therefore like to take this opportunity to convey my sincere thanks

to all of them.

I am deeply indebted to my supervisor Dr. Saoussen Krichen for her continuous

supervision, wise advice, and support. I greatly benefited from her guidance during

this work.

My sincere thanks go to all the people who have contributed in this search, by infor-

mation, advice, criticism or encouragement.

Contents

Glossary 8

Abstract 10

General Introduction 11

Knapsack and Optimal Stopping Problems: A review 14

1 Knapsack Problems 14

1.1 Introduction . 14

1.2 Notation . 16

1.3 Statement of the problem . 16

1.4 Variants and extensions of the knapsack problem 17

1.4.1 Static knapsack problems . 20

1.4.2 Dynamic knapsack problems 30

1.5 General comments . 39

1.6 Conclusion . 40

2 Optimal Stopping Problems 42

2.1 Introduction . 42

2.2 Notation . 44

3

CONTENTS 4

2.3 Statement of the problem . 44

2.4 Variants and extensions of the optimal stopping problem 47

2.5 Conclusion . 59

The Optimal Stopping Knapsack Problem 62

3 The Optimal Stopping Knapsack Problem 62

3.1 Introduction . 62

3.2 Statement of the problem . 64

3.3 Notation . 65

3.4 Mathematical formulation . 66

3.5 The proposed solution approach . 70

3.6 Conclusion . 79

4 Computational Experiments 80

4.1 Introduction . 80

4.2 The experimental settings . 81

4.3 Interpretation of the results . 82

4.3.1 Small instances . 82

4.3.2 Large instances . 86

4.4 Conclusion . 91

General Conclusion 92

Bibliography 97

List of Figures

2.1 Chart of the OSP . 46

3.1 Decision Process of the OSKP . 65

3.2 Chart of the OSKP . 72

3.3 A decision strategy example for n = 5 78

4.1 Progress of the number of possible collections of items in terms of

problem sizes . 84

4.2 Effectiveness of the DSA results compared by those of a static algorithm 84

4.3 Evaluation of the percentage of filling of the knapsack for different

problem sizes . 85

4.4 The CPU time behavior in terms of problem sizes 86

4.5 The CPU time progress for large n 88

4.6 The effectiveness in filling the knapsack for both utility functions . . 88

4.7 Variation of the first load stage by comparing U1 and U2 89

4.8 The LBLS behavior in terms of U1 and U2 compared to the static case 90

5

List of Tables

1.1 Some Hybrid Knapsack Problems . 19

1.2 Summary of Literature Review on Static KPs 29

1.3 Summary of Literature Review on Dynamic KPs 38

1.4 Comparison Table of Static and Dynamic KPs 40

2.1 Summary of some OSP variants . 59

3.1 Comparison of utility functions values 69

3.2 Example with n = 5 . 74

3.3 Expected utilities for n = 5 . 74

3.4 Expected utilities for n = 5 . 77

4.1 Experimental results for the DSA . 83

4.2 Overall results for the OSA . 87

6

List of Algorithms

1 The Fixed Choice Online Algorithm G(d) 31

2 Approximative KP Algorithm . 33

3 The Optimal Solution Algorithm of the OSKP 73

4 The Decision Strategy Algorithm of the OSKP 76

7

Glossary

1RB One out of the r Best

AR Average Reward

B&B Branch and Bound

BKP Bounded Knapsack Problem

BOSP Bilateral Optimal Stopping Problem

DCKP Disjunctively Constrained Knapsack Problem

DM Decision Maker

DP Dynamic Programming

DSA Decision Strategy Algorithm

DSKP Dynamic and Stochastic Knapsack Problem

FLS First Load Stage

FPTAS Fully Polynomial-Time Approximation Scheme

GA Genetic Algorithm

GIP Group Interviewed Problem

KAP Knapsack Auction Problem

KP Knapsack Problem

KP01 Binary Knapsack Problem

KSP Knapsack Secretary Problem

LBLS The percentage of Loading Before the Last Stage

8

GLOSSARY 9

MASP Multi-Attribute Secretary Problem

MinKP Minimization Knapsack Problem

MOEA Multi-Objective Evolutionary Algorithms

MOKP Multi-Objective 0-1 Knapsack Problem

NLI Number of Loaded Items

NPC Number of Possible Collections

OKP Online Knapsack Problem

OSA Optimal Solution Algorithm

OSKP Optimal Stopping Knapsack Problem

OSP Optimal Stopping Problem

PF Percentage of Filling

PTAS Polynomial-Time Approximation Scheme

SKP Stochastic Knapsack Problem

SP Secretary Problem

SSP Subset Sum Problem

UKP Unbounded Knapsack Problem

WSP Weighted Secretary Problem

Abstract

The Optimal Stopping Knapsack Problem is defined as follows. A sequence of items

arriving over time, one at a time, without any prior information. Each item is

characterized by a specific weight and an associated reward. Once arrived, an item

is evaluated to decide whether to select it immediately or to delay the decision to

a next stage. The main objective is to select the best collection of items, that

maximizes the overall reward under the capacity constraint. The selection process

can be stopped at any time, even before observing all items, if the capacity constraint

is exhausted. We propose a solution approach that decomposes the original problem

dynamically and incorporates an optimal stopping rule in order to decide whether

to load or not the currently arriving items. We illustrate the proposed approach by

a numerical experimentation and analyze the generated results.

10

General Introduction

In business world, decision makers (DM) are required to make relevant decisions

for daily opportunities. Typically, good opportunities are rare, and once encoun-

tered, we should take advantage of it. Therefore, good decisions have to consider

outcomes as well as deadlines. Making decisions became difficult as the number

of choices grows while the budget is limited. In such a case, we are in front of a

sequential resource allocation problem. In this search, we deal with the knapsack

problem.

The knapsack problem is one of the widely and extensively studied resource alloca-

tion problem. In its basic version, we are given a number of items from which we

are required to select a subset to carry it in a fixed capacity knapsack. Items differ

by their value and their required place in the knapsack. The aim is to load items

which maximize the overall reward without exceeding the capacity.

However, it is unusual to receive offers at the same time. Generally, offers appear

sequentially over time. Thus, it is more realistic to consider the dynamic knapsack

problem, in which we receive offers over periods. The major difficulty in such prob-

lem is the fact that we have no information about incoming offers, and we have to

decide on the current offer before observing the next one. The dynamic knapsack

problem was introduced by Marchetti-Spaccamela and Vercellis in 1995, and studied

since by few researchers.

11

GENERAL INTRODUCTION 12

In this search, we are concerned by a dynamic version of the knapsack, that allows

to delay the decision about incoming items for next stages. To the best of our knowl-

edge, no works was concerned before by the dynamic knapsack with delay. Indeed,

incoming offers are available for a certain time, so it is convenient to reconsider it

for a number of periods. That is, if an item is received in the current period, the

DM can postpone the decision about the item for a next stage. However, if selected,

the item cannot be taken out the knapsack. Therefore, the problem asks to the

opportune time to select a specific offer.

To solve this problem, we may appeal to the optimal stopping terminology. An

optimal stopping problem arises when we are in front of a sequence of offers, from

which we are asked to select the best one. Offers are presented to the observer one

by one, without any prior information about the following ones. Once an offer is

received, we have to decide immediately whether to accept it and quit the process,

or discard it to evaluate the next one. Note that the decision is irrevocable.

Thus, our problem can be viewed as a multiple-choice optimal stopping problem with

delay, in which we are allowed to select more than a unique offer and to reconsider

offers not selected from previous stages. Recognizing these similarities, we propose

a solution approach managed by an optimal stopping rule. Therefore, our purpose

is to derive a stopping strategy, to decide which offer to discard and on which we

shall stop the process. We develop a dynamic formulation for our problem, namely

the optimal stopping knapsack problem.

The present report is organized as follows. We review in the first part the existing

literature for both the knapsack and the optimal stopping problems. This will en-

able us to situate our contribution among existing works. The second part will be

devoted to explain our contribution. We discuss in a first part the problem and the

proposed method. We illustrate in the second chapter by a numerical investigation

to measure the effectiveness of the presented algorithm.

Knapsack and Optimal Stopping

Problems: A review

13

Chapter 1

Knapsack Problems

1.1 Introduction

The knapsack problem (KP) is a well known and widely studied combinatorial op-

timization problem. Researchers are interested in the study of KPs due to its theo-

retical and practical importance, Martello and Toth (1990). Theoretically, it has a

simple structure and the ability to solve more complex optimization problems. And

practically, the KP models a wide range of industrial situations belonging to the

domains of transportation as cargo loading (Bellman and Dreyfus, 1962), cutting

stock (Gilmore and Gomory, 1966), telecommunication, reliability, advertisement,

budget allocation, financial management (Cord, 1964; Kaplan, 1966; Hansmann,

1961) and cryptography (Diffe and Hellman, 1976).

The KP derives its name from the hiker’s problem of selecting which items, among a

given set of items, to fill his knapsack in such a way that the overall value of selected

items is maximized such that the knapsack weight capacity is not exceeded.

KP has seen several variations over the years; the difference lies in the items and

resources distribution, the objectives considered, etc. In its binary form, an item

14

1.1 Introduction 15

is either taken or left while in the fractional form, the DM can load only a frac-

tion of the item. In the bounded KP there are a number of copies from each item

type, and an unlimited number of copies in the unbounded form. In the case of the

multiple-choice KP, items are classed by group while in the multidimensional and

the multiple forms, a number of knapsacks are supposed to be filled. If the weight

and the value of each item vary depending on the knapsack it’s assigned to, the

problem is called multi-objective 0-1 KP.

Many hybrid forms of the KP have been studied also over years such as: the knapsack

auction problem, the stochastic KP, the online KP and the dynamic and stochastic

KP.

Researchers have considered other type of objectives in studying the KP: the subset

sum problem is a special case of the KP, where the objective is to load the weightiest

collection of items without exceeding the knapsack capacity. Besides, many maxi-

mization KPs could be transformed to its equivalent minimization version while the

objective is to minimize the profit of the not packed items.

KPs are applied either as stand-alone problems, where a general integer program-

ming problem is transformed into a KP (Salkin, 1975; Sysloet al., 1983), or as sub-

problems of more complex programming models (Syslo et al., 1983; Balas, 1975).

They belong to NP-hard problems (Garey and Johnson, 1979). Many solution pro-

cedures have been proposed to solve problems from the KP family, including exact

and heuristic algorithms.

Throughout this chapter, we investigate the KP. First we present the notations fol-

lowed by the problem description. In the fourth section, we are going to detail some

variants of the KP and to present their associated formulations. Section 1.5 deals

with a comparative study between discussed versions of KPs.

1.2 Notation 16

1.2 Notation

Following are the notations adopted in this chapter.

Symbols Explanations

c Weight capacity of the knapsack

cj Weight capacity of knapsack j

n Number of items

m Number of knapsacks

r A deterministic return threshold

bj Number of items of type j

wi Weight of the item i

vi Value of the item i

di Profit density of the item i

d Threshold density

xi ∈ {0, 1}, i = {1, ..., n} If item i is loaded xi = 1, otherwise xi = 0

xij ∈ {0, 1}, i = {1, ..., n}, If item i is assigned to knapsack j, xi = 1,

j = {1, ...,m} otherwise xij = 0

Z(x) The objective function

1.3 Statement of the problem

A KP holds when we are asked to select a number of items, from a given set, to be

carried in a knapsack. Each item is associated with value vi and weight wi, and the

knapsack has a limited capacity c. The KP is to fill the knapsack in such a way that

its content has maximum value under the capacity constraint.

1.4 Variants and extensions of the knapsack problem 17

The problem is stated as:

Maximize Z(x) =
n∑
i=1

vixi

Subject to
n∑
i=1

wixi ≤ c,

xi = 0 or 1; i = 1, 2, ..., n

(1.1)

The above description corresponds to the 0-1 KP (or Binary KP). Several variants

of the basic problem were studied in the literature. We dedicate the following section

to examine variants of the problem.

1.4 Variants and extensions of the knapsack prob-

lem

The KP knew several extensions and variations over years. Whatsoever the objec-

tive function type, items features distribution, the number of objectives considered

or the number of knapsacks to be filled, the knapsack family of problems asks for

beneficial ways to fill a specific amount of resource.

Nevertheless, we might distinguish between two fundamental aspects: static and

dynamic problems. In static problems, a stream of items are present simultaneously

for the selection and items types are known a priori. However, dynamic KPs sup-

pose a sequence of alternatives arriving sequentially over time, without any prior

information, so that items are packed into the knapsack one by one.

1.4 Variants and extensions of the knapsack problem 18

In what follows, we will investigate some static and dynamic variants of the KP that

are mainly related to our contribution. However, a wider list of variants exists, from

which we present a brief description for hybrid versions in Table 1.1.

Some Definitions

• ε-Approximate Algorithm

An ε-approximate algorithm is an algorithm that yields a solution with a relative

deviation from the optimum of less than the approximation ratio ε, Guntzer and

Jungnickel (2000).

• Competitive Algorithm

A competitive algorithm for an online problem has the property that its performance

on any sequence of requests is within a constant factor of the performance of any

other algorithm on the same sequence, Manasse et al. (1988).

1.4 Variants and extensions of the knapsack problem 19

T
ab

le
1.

1:
S
om

e
H

y
b
ri

d
K

n
ap

sa
ck

P
ro

b
le

m
s

K
P

V
a
r
ia
n
ts

D
e
sc

r
ip

ti
o
n

R
e
se

a
r
c
h
e
r
s

A
p
p
li
c
a
ti
o
n

D
o
m

a
in

s

C
o
ll
a
p
si
n
g

K
P

N
o
n

co
n

st
a
n
t

ca
p

a
ci

ty
k
n

a
p

sa
ck

;
th

e
k
n

a
p

sa
ck

si
ze

is
a

n
o
n

-i
n

cr
ea

si
n

g
fu

n
ct

io
n

o
f

th
e

n
u

m
b

er
o
f

it
em

s
lo

a
d

ed

G
u

ig
n

a
rd

a
n

d
P

o
sn

er
(1

9
7
8
)

F
a
y
a
rd

a
n

d
P

la
te

a
u

(1
9
9
4
)

P
fe

rs
ch

y
et

a
l.

(1
9
9
7
)

J
ig

a
n

g
a
n

d
S

ri
k
a
n
th

a
n

(2
0
0
6
)

•
S

a
te

ll
it

e
co

m
m

u
n

ic
a
ti

o
n

s

•
C

o
m

p
u

te
r

o
p

er
a
ti

o
n

in
a

ti
m

e

sh
a
ri

n
g

en
v
ir

o
n

m
en

t

Q
u
a
d
r
a
ti
c
K
P

M
a
x
im

iz
in

g
a

q
u

a
d

ra
ti

c
o
b

je
ct

iv
e

fu
n

ct
io

n
su

b
je

ct
to

a
li
n

ea
r

ca
p

a
ci

ty
co

n
st

ra
in

t

G
a
ll
o

et
a
l.

(1
9
8
0
)

M
a
rt

el
lo

a
n

d
T

o
th

(1
9
9
0
)

P
is

in
g
er

et
a
l.

(1
9
9
8
,

2
0
0
4
,

2
0
0
7
)

•
O

p
ti

m
a
l

si
te

s
fo

r
co

m
m

u
n

ic
a
ti

o
n

sa
te

ll
it

e
ea

rt
h

st
a
ti

o
n

s

•
T

h
e

lo
ca

ti
o
n

o
f

ra
il
w

a
y

st
a
ti

o
n

s

N
o
n
-l
in

e
a
r
K
P

A
n

o
n

li
n

ea
r

o
p

ti
m

iz
a
ti

o
n

p
ro

b
le

m
w

it
h

o
n

e
co

n
st

ra
in

t
H

o
ch

b
a
u

m
(1

9
9
5
)

B
re

tt
h

a
u

er
a
n

d
S

h
et

ty
(2

0
0
2
)

E
lh

ed
h

li
(2

0
0
5
)

•
P

ro
d

u
ct

io
n

a
n

d
in

v
en

to
ry

m
a
n

-

a
g
em

en
t

N
e
st
e
d

K
P

N
es

ti
n

g
is

th
a
t

so
m

e
k
n

a
p

sa
ck

s
a
re

a
ll
o
w

ed
to

b
e

su
b

-

se
ts

o
f

o
th

er
o
n

es

A
rm

st
ro

n
g

et
a
l.

(1
9
8
2
)

J
o
h

n
st

o
n

a
n

d
K

h
a
n

(1
9
9
5
)

•
C

a
ta

lo
g

p
la

n
n

in
g

•
S

a
le

s
re

so
u

rc
e

a
ll
o
ca

ti
o
n

K
.
S
h
a
r
in

g
P
.

M
a
x
im

iz
in

g
th

e
m

in
im

a
l

v
a
lu

e
o
f

a
n
u

m
b

er
o
f

li
n

ea
r

fu
n

ct
io

n
s

su
b

je
ct

to
a

si
n

g
le

li
n

ea
r

co
n

st
ra

in
t

B
ro

w
n

(1
9
7
9
)

Y
a
m

a
d

a
et

a
l.

(1
9
9
8
)

F
u

ji
m

o
to

a
n

d
Y

a
m

a
d

a
(2

0
0
6
)

B
el

g
a
ce

m
a
n

d
H

ifi
(2

0
0
7
)

•
P

ro
je

ct
se

le
ct

io
n

In
v
e
r
se

-P
a
r
a
m

e
tr
ic

K
P

A
K

P
w

it
h

a
p

a
ra

m
et

ri
c

co
st

s
a
n

d
a

v
a
lu

e
fu

n
ct

io
n

v
(t

).
F

o
r

a
g
iv

en
ta

rg
et
v
∗
,
th

e
p

ro
b

le
m

is
to

d
et

er
m

in
e

th
e

m
in

im
u

m
v
a
lu

e
o
f

th
e

p
a
ra

m
et

er
t

B
u

rk
a
rd

a
n

d
P

fe
rs

ch
y

(1
9
9
5
)
•

R
ea

l
es

ta
te

m
a
rk

et
in

g

K
P

w
it
h

S
e
tu

p
s

S
el

ec
t

a
n
u

m
b

er
o
f

it
em

s,
b

el
o
n

g
in

g
to

th
e

sa
m

e
fa

m
il
y

o
f

it
em

s,
g
iv

en
th

a
t

a
n

it
em

ca
n

o
n

ly
b

e
se

le
ct

ed
if

a
se

tu
p

ch
a
rg

e
fo

r
p

la
ci

n
g

th
e

fa
m

il
y

o
f

it
em

s
in

th
e

k
n

a
p

sa
ck

is
in

cu
rr

ed

M
ic

h
el

et
a
l.

(2
0
0
8
)

A
lt

a
y

et
a
l.

(2
0
0
8
)

•
S

ch
ed

u
li
n

g
p

ro
b

le
m

s

1.4 Variants and extensions of the knapsack problem 20

1.4.1 Static knapsack problems

The static aspect of KPs is defined as: given a collection of items, each with a certain

value and weight, and a limited capacity knapsack, which items should be packed

in the knapsack in order to maximize contents value. The common characteristics

of static KPs are:

• items available at the same time

• items values and weights are known beforehand

However, other objectives and specifications were considered, giving rise to the ap-

pearance of several variants of the problem. We focus in the rest of this section on

the most important.

We begin by explaining the binary form of the KP. Then we consider a generaliza-

tion; the bounded KP, followed by a special case; the subset sum problem. After

that we study the multi-objective KP, an extension of the binary form, as well as the

minimization version. Finally we present the stochastic variant. Table 1.1 illustrates

resolution methods and applications of studied variants.

¶ The 0-1 Knapsack Problem (KP01)

Problem aspect Static and deterministic

Available information Items features

The binary KP is the basic form of KPs. The KP01 is defined as: given a set of n

items, with different sizes and values, and a knapsack with a finite capacity c, the

objective is to select a collection of items which maximize the total value without

exceeding the knapsack capacity. The problem formulation is given in (1.1).

Bellman was the first to propose an exact algorithm to solve the KP01, based on the

dynamic programming (DP) in the fifties. Dantzig (1957) produced the first upper

1.4 Variants and extensions of the knapsack problem 21

bound using a method to resolve the solution of the continuous relaxation of the

problem. In 1967, Kolesar gave the first branch and bound (B&B) algorithm. Many

other algorithms were presented over the next years based on exact and heuristic

methods, from which we mention the most famous: Martello and Toth (1980) and

Pisinger (1997) have proposed algorithms based on B&B, Fayad and Plateau (1975),

Pisinger (1995) and Martello and Toth (1997) proposed DP algorithms. Hybrid al-

gorithms combining B&B and DP were also proposed by Plateau and Elkihel (1985)

and Martello and Toth (1984).

· The Bounded Knapsack Problem (BKP)

Problem aspect Static and deterministic

Available information Items features

The BKP is a generalization of the KP01 where from each item type there are a

single copy, bj = 1 for all j ∈ n. In the BKP, from each item type there are up to bj

items of type j that can be put in the knapsack.

The problem is then stated as:

Maximize Z(x) =
n∑
i=1

vixi

Subject to
n∑
i=1

wixi ≤ c,

xi ∈ {0, 1, 2, ..., bi}, i = 1, 2, ..., n

(1.2)

The BKP is closely related to the KP01, that’s why all mathematical and algorithmic

approaches of the KP01 could be extended to solve the BKP, and BKPs could be

1.4 Variants and extensions of the knapsack problem 22

converted to the binary model, Martello and Toth (1990). Therefore, only some

algorithms were specially developed for the BKP. We quote as example Martello

and Toth (1977), Ingargiola and Korsh (1977), Bulfin et al. (1979). Martello and

Toth (1990) demonstrate that their algorithm MT2, which is applied after conversion

of the problem at its binary equivalent, is more effective. Recently, Pferschy (1999)

developed an improved DP algorithm and Arie Tamir (2009) developed new bounds

for solving the BKP.

The bounded version of the KP can be extended to the unbounded KP (UKP),

where an unlimited number of copies of each item type is available. DP and B&B

were used for solving exactly the UKP. Cargo loading and packing are examples of

UKP industrial applications (Bellman and Dreyfus, 1962).

¸ The Subset Sum Problem (SSP)

Problem aspect Static and deterministic

Available information Items features

The SSP is a special case of the KP, arising when the weight of an item is equal to

its reward. The objective is to select the subset of items, with the largest weight,

which still fit in the knapsack. Formally, given n items, each with an associated

weight wi, and a knapsack with a finite capacity c, find the collection of items whose

total weight combination is equal or closest to c.

1.4 Variants and extensions of the knapsack problem 23

The problem can be stated as:

Maximize Z(x) =
n∑
i=1

wixi

Subject to
n∑
i=1

wixi ≤ c,

xi = 0 or 1; i = 1, 2, ..., n

(1.3)

The SSP is known to be NP-hard and it can be solved in a pseudo-polynomial time

(Garey and Johnson, 1979). The SSP can be solved simply by any method of the

KP01; this implies some specific treatments, Martello and Toth (1990). Several

exact and heuristic algorithms were proposed for the SSP since the fifties. The

first algorithm to solve exactly the problem was the MTSL of Martello and Toth

(1984), combining DP and tree-search. Pisinger (1999) and Soma and Toth (2002)

have proposed improved algorithms, having a polynomial performance equivalent

to that of the MTSL, but with better worst case behavior Soma and Toth (2002).

Approximate approaches were also proposed by a number of researchers as Ghosh

and Chakravarti (1999), which used a local search heuristic, and Wang (2003) have

presented an improved genetic algorithm (GA).

¹ The Multi-Objective 0-1 Knapsack Problem (MOKP)

Problem aspect Static and deterministic

Available information Items features

In the MOKP, a binary KP is considered with m knapsacks of capacities c1, c2, ..., cm

(i.e., m objectives and m constraints). The profit and weight of each item are vary-

1.4 Variants and extensions of the knapsack problem 24

ing according to which knapsack the item is placed; vij and wij are respectively the

profit and the weight associated with assigning item i to knapsack j.

We formulate the problem as:

Maximize Z(x) = (z1(x), z2(x), ..., zm(x))

Where zi(x) =
n∑
j=1

vijxj

Subject to
n∑
j=1

wijxj ≤ cj, j = 1, 2, ...,m,

xij = 0 or 1, for all i and j

(1.4)

This problem arises often in the problem of assigning jobs to several machines,

in loading problems, etc. DP algorithms were proposed for the MOKP to derive

the efficient set (Klamroth and Wiecek, 2000; Bazgan et al., 2009), as well as a two

phases method including a B&B algorithm (Visée et al., 1998). Captivo et al. (2003)

reduced the problem to a bi-objective shortest path problem solved by a labeling

algorithm, Bazgan et al. (2009).

Several multi-objective evolutionary algorithms (MOEA) have been proposed to

solve the MOKP because of their suitability in solving multi-objective optimization

problems, if compared with classical methods. Zitzler and Thiele have suggested

two MOEAs; SPEA (1999) and its improved version SPEA2 (2001). Knowles and

Core (2000) have proposed the M-PAES; an hybrid MOEA, and recently Alves and

Almeida (2007) have proposed a more specific MOEA called MOTGA.

1.4 Variants and extensions of the knapsack problem 25

Foued et al. (2000) proposed two metaheuristics. The first one based on GA, while

the second on tabu search.

º The Disjunctively Constrained Knapsack Problem (DCKP)

Problem aspect Static and deterministic

Available information Items features

The DCKP is an extension of the 01KP. In addition to the classical description, the

DCKP should satisfy a disjunctive constraint. The additional constraint suppose

that there are incompatible pairs of items in the input set. The DCKP is then

to carry the subset of items maximizing the profit without exceeding the knapsack

capacity, nor packing together two items from a conflict pair.

We denote by E the set of incompatible pairs such that E ⊆ {(i, j)|1 ≤ i 6= j ≤ n}.

If (i, j) ∈ E, items i and j are not allowed to be loaded in the same knapsack.

Given this description, the problem is formulated as follows:

Maximize Z(x) =
n∑
i=1

vixi

Subject to
n∑
i=1

wixi ≤ c,

xi + xj ≤ 1, ∀(i, j) ∈ E

xi = 0 or 1, i = 1, 2, ..., n

(1.5)

The DCKP may be solved by an integer programming package such as CPLEX and

LINDO, Yamada et al. (2002), to obtain optimal solution with limited size problem.

1.4 Variants and extensions of the knapsack problem 26

However, to deal with problems of up to 1000 items, Yamada et al. (2002) were the

first to develop a B&B algorithm based on lower and upper bounds obtained respec-

tively by an heuristic and a lagrangian relaxation of the conflict condition. Later, an

algorithm combining lagrangian relaxation and pegging test for ordinary KPs was

presented by the same author, Senisuka et al. (2005). Hifi and Michrafy (2006) pro-

posed a metaheuristic approach combining a reactive local search algorithm and a

tabu list, and developed in 2007 three different exact algorithms. Recently, Pferschy

and Schauer (2009) treated the problem by mean of conflict graphs to derive pseu-

dopolynomial algorithms. They assume that constraints are the edges and items

are the vertices of a conflict graph. Fully polynomial time approximation schemes

(FPTAS) were obtained from these algorithms.

» The Minimization Knapsack Problem (MinKP)

Problem aspect Static and deterministic

Available information Items features

All maximization problems have an equivalent minimization versions, which suppose

to minimize the cost (instead of the profit in the maximization version) or to mini-

mize the profit of the unloaded items. The exact algorithms of each maximization

form yield also an exact solution for the minimization version, but approximate al-

gorithms does not always work for the other version, Guntzer and Jungnickel (2000).

Here we focus into the minimization version of the binary KP.

The MinKP is a transformed version of the KP01 to a minimization problem. The

objective is to minimize the total profit of the unselected items while their combined

weight is at least equal to y =
∑n

i=1wi − c.

1.4 Variants and extensions of the knapsack problem 27

Minimize Z(x) =
n∑
i=1

viyi

Subject to
n∑
i=1

wiyi ≥ y,

yi = 0 or 1; i = 1, 2, ..., n

(1.6)

The binary variables yi indicates the not loaded items in the maximization ver-

sion. Therefore, to the maximization problem solution corresponds a solution of the

MinKP, defined as yi = 1 − xi. Guntzer and Jungnickel (2000) have presented a

number of ε-approximate greedy algorithms for the MinKP that corresponds also to

the maximization version.

¼ The Stochastic Knapsack Problem (SKP)

Problem aspect Static and stochastic

Available information The number of items

Probability distribution Known

Assuming that our knowledge about the input data is probabilistic; the set of items is

given while the reward and/or the weight coefficients are independent and identically

distributed random variables. The SKP knew several formulation, each depending

on the author description.

Morton and Wood (1998) define the SKP as: a set of n items where associated

weights are deterministic but returns are random with known distribution. The

purpose is to maximize the probability that the overall return threshold is reached

or exceeded.

1.4 Variants and extensions of the knapsack problem 28

This problem can be formulate as:

Maximize P (
n∑
i=1

uixi ≥ r)

Subject to
n∑
i=1

wixi ≤ c,

xi = 0 or 1; i = 1, 2, ..., n

(1.7)

where r is a deterministic return threshold. The authors presented a DP procedure

to solve the SKP with independent normally distributed returns, and a Monte Carlo

approximation procedure with general assumption on the random returns.

Kosuch and Lisser (2008) studied two variants of the SKP; the SKP with simple re-

course and the SKP with a probabilistic constraint. They developed an upper bound

using an B&B algorithm and solving a continuous subproblems. Besides, using a

stochastic gradient method, they solved the continuous SKP with simple recourse,

and a stochastic Arrow-Hurwicz algorithm to solve the constrained continuous SKP.

T
ab

le
1.

2:
S
u
m

m
ar

y
of

L
it

er
at

u
re

R
ev

ie
w

on
S
ta

ti
c

K
P

s

S
O
L
U
T
IO

N
A
P
P
R
O
A
C
H
E
S

E
x
a
c
t

H
e
u
r
is
t
ic

A
P
P
L
IC

A
T
IO

N
S

KNAPSACKPROBLEMS

StaticProblems
D
P

I
B

el
lm

a
n

(1
9
5
0
),

F
a
y
a
d

&
P

la
te

a
u

(1
9
7
5
),

P
is

in
g
er

(1
9
9
5
),

M
a
rt

el
lo

&

T
o
th

(1
9
9
7
)

P
T
A
S

I
C

a
p

a
ra

et
a
l.

(1
9
9
7
)

C
a
rg

o
L

o
a
d

in
g

K
P
0
1

B
&
B

I
K

o
le

sa
r

(1
9
6
7
),

M
a
rt

el
lo

&
T

o
th

(1
9
8
0
),

P
is

in
g
er

(1
9
9
7
)

F
P
T
A
S

I
L

a
w

le
r

(1
9
7
9
),

M
a
g
a
zi

n
e

&
O

g
u

z
(1

9
8
1
)

C
a
p

it
a
l

b
u

d
g
et

in
g

D
P

a
n
d

B
&
B

I
M

a
rt

el
lo

&
T

o
th

(1
9
8
4
),

P
la

te
a
u

&

E
lk

ih
el

(1
9
8
5
)

C
u

tt
in

g
st

o
ck

D
P

I
P

fe
rs

ch
y

(1
9
9
9
)

G
R
E
E
D
Y

I
M

a
rt

el
lo

&
T

o
th

(1
9
9
0
)

B
K
P

B
&
B

I
T

a
m

ir
(2

0
0
9
)

P
T
A
S

I
In

g
a
rg

io
la

&
K

o
rs

h
(1

9
7
7
),

P
is

in
g
er

(2
0
0
0
),

K
el

le
re

r
et

a
l.

(2
0
0
4
)

S
S
P

D
P

I
M

a
rt

el
lo

&
T

o
th

(1
9
8
4
),

P
is

in
g
er

(1
9
9
9
),

S
a
m

o
&

T
o
th

(2
0
0
2
)

F
P
T
A
S

L
O
C
A
L

S
E
A
R
C
H

G
A

I
K

el
le

re
r

et
a
l.
(1

9
9
7
)

I
G

h
o
sh

&
C

h
a
k
ra

v
a
rt

i
(1

9
9
9
)

I
W

a
n

g
(2

0
0
3
)

T
w

o
p
ro

ce
ss

o
r

sc
h

ed
u

li
n

g

C
a
rg

o
L

o
a
d

in
g

D
P

I
K

la
m

ro
th

&
W

ie
ce

k
(2

0
0
0
),

B
a
zg

a
n

et
a
l.

(2
0
0
9
)

M
O
E
A

I
Z

it
zl

er
&

T
h

ie
le

(1
9
9
9
)

(2
0
0
1
),

A
lv

es
&

A
lm

ei
d

a
(2

0
0
7
)

M
O
K
P

B
&
B

L
A
B
E
L
IN

G

A
L
G
.

I
V

is
ée

et
a
l.

(1
9
9
8
)

I
C

a
p

ti
v
o

et
a
l.

(2
0
0
3
)

H
Y
B
R
ID

M
O
E
A

G
A

T
A
B
U

S
E
A
R
C
H

I
K

n
o
w

le
s

&
C

o
re

(2
0
0
0
)

I
B

en
A

b
d

el
a
zi

z
et

a
l.

(2
0
0
0
)

I
B

en
A

b
d

el
a
zi

z
et

a
l.

(2
0
0
0
)

A
ss

ig
n

in
g

jo
b

s
to

se
v
er

a
l

m
a
ch

in
es

B
&
B

I
Y

a
m

a
d

a
et

a
l.

(2
0
0
2
)

L
A
G
R
A
N
G
IA

N
I

Y
a
m

a
d

a
et

a
l.

(2
0
0
2
)

D
C
K
P

I
H

ifi
a
n

d
M

ic
h

ra
fy

(2
0
0
6
)

L
O
C
A
L

S
E
A
R
C
H

a
n
d

T
A
B
U

L
IS

T

I
H

ifi
a
n

d
M

ic
h

ra
fy

(2
0
0
6
)

C
O
N
F
L
IC

T

G
R
A
P
H
S

I
P

fe
rs

ch
y

&
S

ch
a
u

er
(2

0
0
9
)

F
P
T
A
S

I
P

fe
rs

ch
y

&
S

ch
a
u

er
(2

0
0
9
)

D
P

I
M

o
rt

o
n

&
W

o
o
d

(1
9
9
8
)

M
O
N
T
E

C
A
R
L
O

I
M

o
rt

o
n

&
W

o
o
d

(1
9
9
8
)

S
K
P

B
&
B

I
K

o
su

ch
&

L
is

se
r

(2
0
0
8
)

G
R
A
D
IE

N
T

M
E
T
H
.

I
K

o
su

ch
&

L
is

se
r

(2
0
0
8
)

M
in

K
P

G
R
E
E
D
Y

I
G

ü
n
tz

er
&

J
u
n

g
n

ic
k
el

(1
9
9
9
)

1.4 Variants and extensions of the knapsack problem 30

1.4.2 Dynamic knapsack problems

Problems considered so far are static and/or deterministic KPs, since items are

considered at a point in time, and their weights and values are known beforehand.

However in such dynamically changing environment, many practical applications

arise with an evolutionary loading process; profits are not stable and supplementary

costs are supported. The static and deterministic form of the KP cannot model

suitably these problems. Therefore, it is more realistic to consider a dynamic process

instead of the static one. This kind of problems refers generally to the dynamic KP

(DKP).

A DKP occurs in such situations: offers arrive successively over time and their data

are learned as soon as items arrive. The DM observes items one by one and have to

make an immediate decision on the acceptance or the rejection of the current one.

As for the static version, researchers studied different variants of the problem. In

this section, we will review some variant of the DKP. First we focus in the basic

version of DKP. In a second subsection, we will investigate the DKP applied to

auctions field. Then we will study dynamic and stochastic KPs. This section will

be summarized by table 1.2.

¶ The Online Knapsack Problem (OKP)

Problem aspect Dynamic and stochastic

Available information The number of items

Probability distribution Unknown

As its name indicates, in the OKP, items appear online, one by one. Item’s weight

and reward become known once the item is received. We have to decide each time

whether to accept or to discard the current item, before observing the next one. If

discarded, an item cannot be recalled any more. We are asked to load items which

maximize the overall reward without exceeding a fixed capacity.

1.4 Variants and extensions of the knapsack problem 31

Internet advertising and keyword auctions for internet search engines are examples

of real-world applications of the problem.

The OKP was studied for the first time by Marchetti-Spaccamela and Vercellis

(1995). Authors proposed a greedy algorithm to solve the relaxed KP. The same

algorithm was generalized to solve the OKP (Algorithm 1).

Algorithm 1: The Fixed Choice Online Algorithm G(d)

choose a value d;

while i ≤ n do

if di ≥ d then

xi ← min(1, c/wi);

c← c− wixi;

else

xi ← 0;

end

i← i+ 1;

end

Algorithm’s idea is simple: the decision to hold an item or to reject it depends

mainly on its density value computed as follows:

di =
vi
wi
, for i = 1, ..., n (1.8)

A threshold density d is fixed at the beginning, then when an item is received, its

density is compared to the threshold value. If di ≥ d, the item is selected, and the

knapsack capacity is updated. Note that the algorithm allows to load a fraction of

an item if the entire item does not fit into the knapsack.

1.4 Variants and extensions of the knapsack problem 32

Lueker (1995) improved the algorithm of Marchetti-Spaccamela and Vercellis (1995),

by reducing the difference between the optimum and the approximate solution value.

Besides, several works were concerned with the removable OKP, in which researchers

assume that a loaded item can be removed from the knapsack to place another one.

We quote as examples: Iwama and Taketomi (2002) and Iwama and Zhang (2007)

who presented constant-competitive algorithms. Han and Makino (2009) suppose

furthermore that items are fractional and propose a greedy online algorithm.

· The Knapsack Auction Problem (KAP)

Problem aspect Dynamic and stochastic

Available information Number of bids

Probability distribution Unknown

An auction is a process in which a buyer, given a limited budget, would like to

purchase items from a given set of bids. Bidders desire to keep their items valuation

private. Items arrive in an online fashion and differentiate by quality. The buyer’s

problem is to hold a subset of maximum quality.

Auctions theory has drawn attention because of the considerable number of appli-

cations that can be modeled as an auction problem. Besides, a number of recent

research considered the application of the KP to auction design.

Using the KP terminology, the problem is stated as follows.

We consider a knapsack with a limited capacity c and n bidders. Each bidder has an

object, wishing to place it in the knapsack. The valuation of the agent i of having

his item in the knapsack is denoted vi, while wi denotes its required space in the

knapsack. Sizes are the public values, whereas items’ values are private. If bidder

i wins, his object is placed in the knapsack and he has a profit vi. Every bidder

attempts to maximize his utility, computed as the difference between his valuation

and his payment. The KAP is to maximize the knapsack contents value as much as

1.4 Variants and extensions of the knapsack problem 33

possible.

Aggarwal and Hartline (2006) studied the KAP for advertising in web page and

broadcast bandwidth and give a constant factor approximation for the unlimited

capacity knapsack. The proposed algorithm has the following structure:

Algorithm 2: Approximative KP Algorithm

1. Ignore large objects with wi > c/2;

2. List the remaining objects in the order of decreasing value per unit size,

di ← vi/wi;

3. Select the largest prefix of the object list that fits in the knapsack as the

winner set;

4. Let d∗ be the largest value per unit size of the losers;

Output Z(x)← d∗x for x ≤ c/2 and ∞ otherwise;

Recently, Ensthaler and Giebe (2009) proposed an extension of the Dantzig’s greedy

heuristic for the KP01 to solve the KAP. Their algorithm operates as follows:

• Each bidder makes an initial bid.

• The buyer asks to bidders to discount their bids by a certain decrement; be-

cause of the limited budget of the buyer, he cannot purchase all bids.

• Bidders who refuse to lower their offer are discarded.

• The algorithm iterates until the budget covers the sum of active bids.

• Once the stopping criterion is satisfied, the buyer purchase active offers and

bidders are rewarded about their final bids.

1.4 Variants and extensions of the knapsack problem 34

¸ The Knapsack Secretary Problem (KSP)

Problem aspect Dynamic and stochastic

Available information The number of candidates

Probability distribution Unknown

The KSP is a weighted form of the secretary problem. Formally the problem can

be stated as: n items (or secretaries), each with an associated weight wi and reward

vi, are presented to the DM in a uniformly random order. The weight and reward

distributions are not known a priori, and their values are learned at the arrival time.

No recall is allowed; the decision should be immediate to accept the item or to dis-

card it.

The problem was introduced by Babaioff et al. (2007), who evoked the similarities

of the DKP with the secretary problem; if all items’ weight are equal to 1, and the

knapsack capacity is equal to k, the KSP is reduced to a multiple-choice secretary

problem.

Authors proposed a 10e-competitive algorithm for arbitrary weights and an e-competitive

algorithm for the particular case where items have equal weights. For the weighted

case, the algorithm was stated as follows.

Given the input set of items U , if Q ⊆ U and c > 0, they determine the optimum

fractional packing of elements of Q into the knapsack of capacity c. That is by

solving the following problem:

1.4 Variants and extensions of the knapsack problem 35

Maximize Z(x) =
n∑
i=1

vixi

Subject to
n∑
i=1

wixi ≤ c,

xi = 0 ∀i /∈ Q

xi ∈ {0, 1} ∀i

(1.9)

The selection criteria is based on the density value (1.8) and a threshold density dQ

such that:

xi =

 1 if di > dQ, ∀i ∈ Q

0 if otherwise
(1.10)

Many real-world applications involving the allocation of resources under uncertainty

can be modeled as a KSP, such as: hiring employees and assigning job to machines.

¹ The Dynamic and Stochastic Knapsack Problem (DSKP)

Problem aspect Dynamic and stochastic

Available information The number of items

Probability distribution Known

A DSKP arises when we are in charge of allocating a limited resource for a number

of items. We receive items according to a Poisson process in time. Each item has

an associated reward and a certain weight, which are random, and unknown before

items arrival. However, the joint distribution of rewards and weights is known and

1.4 Variants and extensions of the knapsack problem 36

is independent of the arrival time and of other rewards. An item can either be

accepted, and then loaded in the knapsack, or rejected. If the item is accepted, the

associated reward is received otherwise, a penalty is incurred and the item cannot

be reconsidered later. The DM may stop the process at any time, even before the

deadline and the exhaustion of the resource capacity. Papastavrou and Kleywegt

(2001) explain this by a practical example; in many practical situations, we have

to dispatch vehicle even before attaining the deadline or the complete filling of the

vehicle. The objective is to determine a policy for accepting items and for stopping

the process which maximizes the overall reward.

The DSKP with deadlines was studied by Papastavrou et al. (1996). More recently,

they studied special cases of the DSKP, assuming that all items have identical, Pa-

pastavrou and Kleywegt (1998), and random sized weights, Papastavrou and Kley-

wegt (2001). They showed that the optimal policy for the DSKP is a threshold type

policy. Their decision rule was presented as follows:

Given a knapsack with capacity c and a sequence of items which arrive according

to a stochastic process with T discrete periods (t = {1, 2, ..., T}). There is a proba-

bility p of arrival of an object in each period, and a probability 1− p of no arrivals.

The weight wi and the reward vi of an item become known once arrived. They

are independent from other arrivals, positive, random variables, and are distributed

according to a known joint distribution FWV (w, v). Papastavrou et al. (1996) pro-

posed the following equation for the optimal expected accumulated value :

EV c
t = sup

π∈Π
{E[V c

t |π]} (1.11)

Where E[V c
t |π] denotes the expected value accumulated, c is the capacity updated

until the current period t, and Π the class of policies which recommend the loading

or the rejection of the current object and which consider only the past events.

1.4 Variants and extensions of the knapsack problem 37

Equation (1.12) shows that the expected value accumulated from period t to T , does

not depend on the complete history of the process, but only on t, c and π (π ∈ Π).

The optimal decision rule derived was:

π∗(t, c, w, v) =

accept if v + EV c−w

t+1 ≥ EV c
t+1 and w ≤ c,

reject if v + EV c−w
t+1 < EV c

t+1 or w ≤ c.

(1.12)

The incoming item is accepted if the expected value accumulated is improved when

accepting this item, if compared with the constant threshold EV c
t+1.

The optimal accumulated value can be calculated recursively from:

EV c
t =P [W ≤ c, V + EV c−W

t+1 ≥ EV c
t+1]

× E[V + EV c−W
t+1 |W ≤ c, V + EV c−W

t+1 ≥ EV c
t+1]

+ {P [V + EV c−W
t+1 < EV c

t+1,W ≤ c] + P [W > c]}EV c
t+1

(1.13)

Hence, the optimal accumulated value is equivalent to the probability-weighted sum

of the possible quantities presented in (1.12).

Several investment problems can be considered as a DSKP. It represents a suitable

design of many real applications in freight transportation, scheduling of batch pro-

cessors, selling of assets and in selection of investment projects, Papastavrou and

Kleywegt (1998).

T
ab

le
1.

3:
S
u
m

m
ar

y
of

L
it

er
at

u
re

R
ev

ie
w

on
D

y
n
am

ic
K

P
s

S
O
L
U
T
IO

N
A
P
P
R
O
A
C
H
E
S

A
P
P
L
IC

A
T
IO

N
S

KNAPSACKPROBLEMS

DynamicProblems
O
K
P

L
in
e
a
r
T
im

e
D
y
n
a
m
ic

A
lg
.

I
M

ar
ch

et
ti

-S
p

ac
ca

m
el

a
&

V
er

ce
ll

is
(1

99
5)

,

L
u

ek
er

(1
99

5)

In
te

rn
et

a
d

v
er

ti
si

n
g

D
e
te
rm

in
is
ti
c
A
lg
.

I
H

an
an

d
M

ak
in

o
(2

00
6)

K
ey

w
o
rd

a
u

ct
io

n
s

C
o
n
st
a
n
t
F
a
c
to

r
A
p
p
ro

x
im

.
I

A
gg

ar
w

al
&

H
ar

tl
in

e
(2

00
6)

K
A
P

B
ro

ad
ca

st
b

a
n

d
w

id
th

G
re

e
d
y
A
lg
.

I
E

n
st

h
al

er
&

G
ie

b
e

(2
00

9)

C
o
n
st
a
n
t-
c
o
m
p
e
ti
ti
v
e
A
lg
.

I
B

ab
ai

off
et

al
.

(2
00

7)
H

ir
in

g
em

p
lo

y
ee

s

K
S
P

e
-c
o
m
p
e
ti
ti
v
e
A
lg
.

I
B

ab
ai

off
et

al
.

(2
00

7)
A

ss
ig

n
in

g
jo

b
to

m
a
ch

in
es

F
re

ig
h
t

tr
a
n

sp
o
rt

a
ti

o
n

D
S
K
P

T
h
re

sh
o
ld

T
y
p
e
P
o
li
c
y

I
J
as

on
P

ar
as

ta
v
ro

u
et

al
.

(1
99

6,
19

98
,

20
01

)
S

ch
ed

u
li

n
g

o
f

b
a
tc

h
p

ro
ce

ss
o
rs

S
el

li
n

g
a
ss

et
s

1.5 General comments 39

1.5 General comments

The KP is one of the most renowned and extensively studied problems in the liter-

ature. We presented in the previous sections a brief review of KPs literature.

We distinguished two fundamental directions from the existing literature: static

problems and dynamic problems. This separation was adopted because of versions

differences in terms of description, applications and resolution methods.

Indeed, in the static version, items are considered in a point in time; all items are

present simultaneously to the selection, and the DM possesses all needed informa-

tion to decide on the loading. However, the dynamic family of problems has a lack

of information about incoming items, which appears one by one to the evaluation.

Generally, provided information about incoming offers is the total number. In such

case, the DM has to make decision about the current item under uncertainty.

From a resolution point of view, several exact and heuristic algorithms has been

designed over years to solve static KPs. DP and B&B are at base of the wide range

of exact methods, while heuristics were developed from greedy method, tabu search,

GA, etc. Conversely, there exist a little literature for dynamic problems. Besides no

competitive online algorithms exist, Iwama and Taketomi (2002), except for some

special cases if allowing the removability assumption. Besides, all static problems

has a known formulation whereas dynamic problems do not have.

These turned out rather obvious, if we consider versions seniority. Indeed, we found

static KPs papers in the literature since 1897, while the dynamic version was in-

troduced the first time in 1995. The dynamic field of KPs remain a new discipline,

which drawn a great deal of attention in the last years for its suitability to design

sequential resource allocation problems.

1.6 Conclusion 40

Even application domains differ from the static to the dynamic problems. As we

mentioned before, static applications belong to the transportation domain, capital

budgeting, etc. While dynamic applications are in web advertising, auctions, broad-

cast bandwidth, which are the most active and evolutionary domains nowadays.

Table 1.4 summarizes the evoked differences between static and dynamic KPs.

Table 1.4: Comparison Table of Static and Dynamic KPs
KNAPSACK PROBLEMS

Static Problems Dynamic Problems

Problems appearance Since 1897 First time in 1995

Fundamental aspect Offline problems; does not account

for the element of time

Online problems

Information about arrivals Full information Lack of information

Items reception Items are present simultaneously Items are received one by one, over

time

Formulation A known formulation No common formulation

Resolution procedures Exact and heuristic methods:

• DP

• B&B

• GA

• Greedy method

• etc.

• No constant competitive algo-

rithm were found for the basic form

(only for some special cases)

• Approximative algorithms

Application domains Transportation, capital budgeting,

processor scheduling

Web advertising, auctions, broad-

cast bandwidth

1.6 Conclusion

In this chapter we reviewed the existing literature of the KP. We underlined the

importance of the problem which showed to be suitable to model several real-world

situations. This explains the significant number of variations which knew during

years.

We noticed that the wide range of works was concerned by the static and determin-

1.6 Conclusion 41

istic variants. However, recently few researchers was interested by the stochastic

and the dynamic variants with the intention to find a more convenient description

of real situations and to respond suitably to the asked problem.

Furthermore, we found that exact algorithms for this problem are mainly based on

DP and B&B. While the field of heuristics is vaster; greedy method, GA, PTAS,

FPTAS, etc.

Chapter 2

Optimal Stopping Problems

2.1 Introduction

In practical situations, we are encountering situations requiring a rapid decision. As

decision contains risk, the problem is when and how to come to a decision. Choosing

time to take a given action is fundamental in several real-world problems such as:

the problem of purchasing an asset, selection of projects and marriage problem.

Those problems belong to the optimal stopping problems framework.

The optimal stopping problem (OSP) is a dynamic optimization problem having

many applications in several applicative domains. Special examples that have been

considered in the literature are the secretary problem, the problem of job search,

assigning a job to a single machine and the problem of purchasing an asset.

An OSP arises when a DM is faced with the problem of finding the best offer among

a known number of offers that arrives successively. The offers are evaluated one by

one, and a unique offer is selected at the end of the process. At each stage of the

process, the DM has to decide whether to accept the current offer or to discard it.

The next offer is given once a decision of rejection is made about the current one.

42

2.1 Introduction 43

If an item is rejected, it cannot be re-examined later. The DM requires a selected

offer, so that if he arrives to the last offer, he will be obliged to accept it even if

more suitable offers were observed so far.

The main objective of this problem is to maximize the probability of choosing the

best alternative among those examined.

The OSP has been extensively studied in the literature for its suitability in modeling

a wide range of sequential sampling problems. It has been extended and generalized

in many other versions by the release of some basic assumptions. These variations

concerned mainly the number of offers to select, the number of arrived item at

the same time, the probability distribution of arrivals, the number of deciders, and

others.

Morever, different objectives were considered in studying the problem: maximizing

the probability of choosing the best offer (Lindley, 1961;Dynkin, 1963; Gilbert and

Mosteller, 1966), minimizing the expected rank of the selected offer (Lindley, 1961;

Chow et al., 1964).

In this chapter we will focus on the OSP. In the first section we will detail the

problem, then we present the formulation in the following section. After that, we

study some variants and extensions of the OSP in section 2.4. We close the chapter

with an illustrative table covering current knowledge on this problem.

2.2 Notation 44

2.2 Notation

We adhere to the following notations throughout this chapter.

Symbols Explanations

n Number of offers

i Stage number

k Relative rank

k′ Absolute rank

ri Relative rank of the item i

ai Absolute rank of the item i

rji Relative rank of the ith applicant on the jth attribute

aji Absolute rank of the ith applicant on the jth attribute

πj DM’s payoff on the attribute j

mi Number of alternatives in group i

Mi The cumulative number of alternatives evaluated until the stage i

U(k′) Utility function based on the absolute rank k′

Vs(i, k) Expected utility when stopping in the ith stage with a relative rank k

Vc(i) Expected utility of continuation from stage i

V ∗(i, k) Expected utility of the ith offer having a relative rank k

2.3 Statement of the problem

The OSP is a searching process, having as purpose to identify the optimal alter-

native among a sequence of offers arriving over time. The observer, without any

prior information, evaluates the offers one by one. Once an offer is examined, the

DM have to decide immediately whether to accept the offer, and stop the searching

2.3 Statement of the problem 45

process, or discard it, in favor of a possible better offer, and continue sampling.

He has to select at most one offer among all examined, and not allowed to quit the

process without selecting an offer. If he arrives to the final offer, he has to accept it

(even if the offer is not satisfactory).

At each stage of the process, the decision to be made is based on the value of the

current offer and the possibility of finding a better alternative in a later stage.

The aim is to determine an optimal policy for stopping that maximizes the proba-

bility of choosing the best among all offers. The searching process is shown in figure

2.1.

The above description corresponds to the basic version of the OSP, known also as

the secretary problem.

To summarize, an OSP is structured through the following assumptions, Ferguson

(1989):

1. We are interested by a unique offer.

2. The number of offers is known.

3. Offers are evaluated one bye one, in a random order.

4. We can rank observed offers from the best to the worst without ties, and the

decision is only based on these ranks.

5. The decision is irrevocable; a rejected offer cannot be recalled later.

6. We will be satisfied with nothing but the best offer.

2.3 Statement of the problem 46

Figure 2.1: Chart of the OSP

Initialization

?

Offer i
appears

Evaluation

?

Rank the observed items (1→ i)

�Reject item i

-

otherwise

i← i+ 1

?�
�

�
�STOP

i is the best
or the last offer

However, this basic form was extended in different directions giving arise to sev-

eral variants of the problem. Each variant extend one or more of the classical

assumptions, depending on the nature of the problem. Indeed, the common point in

all variations formulation is that the decision is function of the ranks. We identify

two types of rank:

• The Relative rank : is that attributed by the observer for each of the observed

offers, and updated each time a new offer is received. Ranks are varying from

1 to the number of the current offer.

• The Absolute rank : is the position of an offer among all offers. This rank is

available only on the last stage.

2.4 Variants and extensions of the optimal stopping problem 47

In what follows, we will review a number of extensions and generalizations of the

OSP, present the related formulations and works.

2.4 Variants and extensions of the optimal stop-

ping problem

The OSP constitutes a suitable model for dynamic selection problems. It covered a

considerable number of applications, thanks to its flexible structure, allowing exten-

sions and generalizations. Variants of the problem studied over years are relaxing or

releasing one or more of the basic assumptions. Therefore, a number of additional

assumptions were made:

• Instead of a known number of offers, a random and an infinite number of

alternatives were considered.

• Different objectives: maximize the probability of selecting the best offer, min-

imizing the rank of the selected offer, select one of the best offers, etc.

• Different utilities has been adopted, depending on the description of the prob-

lem: nothing but the best utility, the zero sum utility, the minimum rank

utility, etc.

• Two or more DMs

• The full-information case and the no-information case based on the availability

of information on the distribution function of comers.

• etc.

In this section, we focus on some variants. First we review the basic version and

present the relative dynamic formulation. Then we present a generalized form of

2.4 Variants and extensions of the optimal stopping problem 48

the problem with the objective to select one of the most good offers. The third

variant studied the case of offers with a number of attributes. After that, we will be

concerned by the problem modeling the situation of receiving a group of items per

period. The last variant present the situation on which the decision involves more

then a unique DM.

¶ The Secretary Problem (SP)

The SP is a special case of the OSP, where a number of candidates appears for a single

secretarial position. Secretaries are interviewed one by one, and the interviewer is

required to make an irrevocable decision; to accept the current candidate and stop

accepting requests, or to refuse it in order to evaluate the next one. No additional

specification is needed, hence we proceed to the formulation.

No value function is known. The only available information are relative ranks; the

DM may rank alternatives from the best to the worst (the best offer has a relative

rank=1, the next has rank=2, etc.). Hence, the decision to accept or discard an

offer is based only on the relative ranks attributed. Since the DM’s objective is to

select the best among all offers, he wins 1 in term of utility if he selects the best

offer, and 0 otherwise.

Thus we can formulate the utility function as:

U(k′) =

 1 if k′ = 1

0 otherwise
(2.1)

Utility in (2.1) is a 0-1 payoff function, because the DM is satisfied if and only if,

he selects the best alternative. If we vary the objective, other utilities implies.

2.4 Variants and extensions of the optimal stopping problem 49

Since the problem has a dynamic aspect, we need a dynamic formulation which

includes the two parameters: the stage number i and the relative rank k of the ith

stage. The optimality equation of the DM is a recursive equation, stated as:

V ∗(i, k) =

 max{Vs(i, k), Vc(i)} if k = 1

Vc(i) otherwise
(2.2)

Equation (2.2) indicates that the observer will be in the favor of the decision which

maximizes his utility. That is the expected utility of an item is the maximum value

between Vs(i, k) and Vc(i). Now the question is how and when to compute these

values.

Stopping the search process is conditioned by the selection of the best offer, thus,

the expected utility of stopping is computed in that only case. We denote by Vs(i, k)

the expected utility to stop the process by accepting the ith offer, with a relative

rank k. The utility of stopping is expressed as:

Vs(i, k) =

i

n
if k = 1

0 otherwise

(2.3)

On the other hand, if the DM chooses to continue sampling, we derive an expected

utility of continuing.

Vc(i) denotes the expected utility if we desire to continue the process from the ith

stage:

Vc(i) =
1

i+ 1

i+1∑
k=1

V ∗(i+ 1, k) (2.4)

2.4 Variants and extensions of the optimal stopping problem 50

From the above DP formulation, we can derive the optimal strategy for the SP.

Indeed, the optimal strategy is to discard the first (i∗ − 1) offers, and accept the

first candidate thereafter satisfying:

1

i∗
+

1

i∗ + 1
+ ...+

1

n− 1
< 1 <

1

i∗ − 1
+

1

i∗
+ ...+

1

n− 1
(2.5)

The problem has been formulated alternatively using a markov chain approach

(Dynkin, 1963).

· One out of the r Best (1RB)

Gusein-Zade (1966) proposed a generalized OSP, on which only assumption 6 is

relaxed. Except for this one, the problem keeps the same assumptions (1-5) of the

basic version. Indeed the DM is interested by one of the best offers, that is, an offer

is accepted if its rank is at least equal to r.

Therefore, the utility is expressed as:

U(k′) =

 1 if k′ ≤ r

0 otherwise
(2.6)

The optimality equation is the same of that of the basic version:

V ∗(i, k) = max{Vs(i, k), Vc(i)} (2.7)

However, Vs(i, k) measures in that case the probability that the ith offer will have

an absolute rank belonging to {k, k + 1, ..., r} given that its relative rank is about

k. If the value of k overtake r, the DM loses.

2.4 Variants and extensions of the optimal stopping problem 51

Hence, we formulate the Vs(i, k) as:

Vs(i, k) =

j=k∑
r

Ck−1
j−1C

i−k
n−j

Ci
n

if k′ ≤ r

0 otherwise

(2.8)

The Vc(i) keeps the equation of the basic OSP:

Vc(i) =
1

i+ 1

i+1∑
k=1

V ∗(i+ 1, k) (2.9)

The optimal strategy is to select the current offer if Vs(i, k) ≥ Vc(i), and to continue

to the next one otherwise.

The 1RB was studied identically by Gilbert and Mosteller (1966), Sakaguchi (1976)

and Bojdecki (1978), for the full-information case, where incoming offers are from

a known continuous distribution. Porosinski (1987) studied the 1RB for a random

number of arrivals and the full-information continuous time 1RB, Porosinski (2003).

¸ The Multi-Attribute Secretary Problem (MASP)

The MASP is a generalization of the classical SP, where each offer is characterized

by more than a unique attribute. Attributes refer to comparable dimensions of

applicants. It may correspond to education, the work experience, degree of technical

proficiency, etc. To simplify, an MASP has the following features, Bearden et al.

(2005):

1. A known number of applicants for a single position. Applicants differ along k

different and uncorrelated attributes.

2. Applicants are interviewed one by one, in a random order.

2.4 Variants and extensions of the optimal stopping problem 52

3. The DM assigns relative ranks for each of the applicant k attributes.

4. Once rejected, an applicant can never be recalled and we are not allowed to

terminate the process without choose an applicant.

5. The DM earns a payoff of πj(aj) per attribute j of the selected applicant (aj

denotes the absolute rank on attribute j; 1 ≤ aj ≤ n).

Since ranks are assigned for multiple attributes, a different definition of ranks is

considered:

• The relative rank of the jth attribute of the applicant i (rji): is the number of

applicant from 1 to i whose jth attribute is at least as good as the ith

• The absolute rank of the jth’s attribute of the applicant i (aji): is the number

of applicant, among the n, whose jth attribute is at least as good as the ith’s

According to the above assumptions, the DM payoff of selecting the ith applicant is

written as:

Πi =
k∑
j=1

πj(aji) (2.10)

Given that ri = (r1
i , ..., r

k
i) and ai = (a1

i , ..., a
k
i), are respectively the set of relative

and absolute ranks of item i, the expected payoff for selecting the ith applicant is

expressed as:

E(Πi|ri) =
k∑
j=1

n∑
aji=rji

Pr(Aji = aji |R
j
i = rji)π

j(aji) (2.11)

Since at each stage, the decision is made only at base of the relative rank, the

decision policy for each stage is a set of acceptable ri of the current stage, denoted

2.4 Variants and extensions of the optimal stopping problem 53

Ri. Therefore, the global policy is the collection of stage policies R = R1, ..., Rn.

The expected payoff of following the optimal policy is given by:

V ∗i = Q(R∗i)E(Πi|R∗i) + [1−Q(R∗i)]V
∗
i+1 (2.12)

This formulation leaded to the selection of a candidate of an intermediate quality,

Bearden et al. (2005). However, other works are of interest. Gnedin (1981) studied

the problem with the intention to select the applicant who is best on at least a unique

dimension. In 1992, Ferguson extend the Gnedin’s version, assuming that attributes

can be dependent. He proved that the optimal policy has the same threshold form

as basic SP, Ferguson (1992). Chotlos (1987) studied the MASP with the objective

of minimizing the sum of two ranks for independent attributes.

¹ The Group Interview Problem (GIP)

In real-life, sequential sampling situations arise with a number of choices appearing

over time. These alternatives is received in a random way. In the basic form SP,

we assumed that offers are received one per period to simplify. However, it is more

realistic to consider the possibility to encounter two or more alternatives at the same

point in time.

The GIP is a generalization of the SP assuming that a sequence of groups of al-

ternatives is received for evaluation over time. That is a group of candidates are

inspected each time. The DM is required to select the best among all offers, the

decision is irrevocable and he is not allowed to quit the process without a selection.

Chun studied different form of the GIP. We will be concerned by the basic one, and

we adopt Chun’s formulation, Chun (2001).

Let G denote a group interview problem, in which a sequence of n groups is pre-

sented for the evaluation successively. Note that the ith group contains mi offers

2.4 Variants and extensions of the optimal stopping problem 54

(G = {m1,m2, ...,mn}). At the ith stage, the ith is evaluated. The relative rank

corresponds in this case, to the position of the offer among all evaluated so far.

To maximize the expected utility, the following recursive equation implies:

V ∗(i, k) =

 max{Vs(i, k), Vc(i)} if i = 1, 2, ..., n− 1

U(i) if i = n
(2.13)

U(i) denote the utility of choosing the choice with an absolute rank i. The expected

utilities when stopping and when continuing are given by:

Vs(i, k) =

Mn−Mi+r∑
a=k

U(a)
Ca−1
k−1C

Mn−a
Mi−k

CMn
Mi

k = 1, ...,Mi−1 + 1 (2.14)

Vc(i) =

Mi+1∑
k=1

V ∗(i+ 1, k)
C
Mi+1−k
mi+1−1

CMi+1
mi+1

i = 1, ..., n− 1 (2.15)

Mi denote the cumulative number of alternatives evaluated until the stage i, in-

cluding those arrived at the ith stage. Chun (2001) presented a boundary stage

method as the optimal selection strategy for the GIP. He demonstrate further, that

his previous works on SP, the best choice problem and the minimum rank problem,

are special cases of the discussed version. Chun (1999), studied the GIP in the full-

information case and proposed a dynamic programming technique to maximize the

probability of selecting the best choice. The proposed decision rule is to select the

best offer in the current group if its value is greater than the pre-specified decision

value for that group.

2.4 Variants and extensions of the optimal stopping problem 55

º The Weighted Secretary Problem (WSP)

Variants of the OSP discussed until now, have a common property: no information

is available about incoming offers. Therefore, the decision was based only on the

relative ranks. However, in real situations, an interviewer may collect some infor-

mation about each applicant. Different versions were studied in the literature. Here

we focus on the WSP, introduced by Chun (1996). Indeed, the author suppose that

given a prior information about applicants, the interviewer attributes a weight for

each applicant, according to its credentials. From this background the WSP was

structured.

Formally, a DM observers a sequence of offers, each with an associated weight in

order to select the best one. The objective is to determine the optimal selection

strategy, which maximizes the probability of choosing the best offer.

Let W = {w1, w2, ..., wn}, wi ≥ 0, be the set of weighted associated to applicant

before the evaluation. We distingue also the cumulative weight until the current

stage i, expressed as Wi = w1 +w2 + ...+wi. According to the above assumptions,

a dynamic formulation was proposed, Chun (1996).

Since our interest is in maximizing the probability of selecting the best offer, the

maximum winning probability earned if selecting offer i is given by:

π∗(i) = max{πs(i), πc(i)} (2.16)

The wining probability if we decide to select the ith offer is expressed by:

πs(i) =
Wj

Wn

, for i = 1, 2, ..., n (2.17)

The wining probability if we continue to the next candidate is:

πc(i) =
n∑

k=i+1

pikπ
∗(k), for i = 1, 2, ..., n− 1 (2.18)

2.4 Variants and extensions of the optimal stopping problem 56

The transition probability from stage i to stage k, pik is the following equation:

pik =
Wi

Wk−1

wk
Wk

, for 1 ≤ i < k ≤ n (2.19)

According the discussed formulation, the optimal selection strategy is to select the

current candidate if π∗(i) = πs(i).

The full information case was well studied, but in other directions. Different prob-

lems were studied assuming that offers follows a known probability distribution:

Uniform (Albright, 1977; Bruss and Ferguson, 1993); Normal (Albright, 1977; De-

Groot, 1968), Poisson (Cowan and Zabczyk, 1978; Gnedin, 1996).

» The OSP with Multiple Decision Makers

The OSP described so far involves a single DM searching through a sequence of

alternatives until a choice is made. In some real situations, the decision to take

involves more than a single DM. However, making a common decision isn’t a simple

task, within a group of DMs. Each member of the group, has his own evaluation

of a given offer, which will not correspond necessarily to the other members. This

situation gives arise to many conflicts between the different DMs. Therefore, this

version is considered as game between members, in which we ask for an equilibrium.

In the rest we will interest for the OSP with two DMs. The bilateral optimal

stopping problem (BOSP) occurs with two DMs observing a sequence of n offers,

sequentially, one at a time. Different objectives were considered, including:

• The two DMs are about selecting the same offer

• Each DM is required to select his offer independently

2.4 Variants and extensions of the optimal stopping problem 57

• Two players possessing different degrees of information; the first player knows

the value of n before seeing the first observation, while the other player knows

only the distribution of n, but not its actual value, Abdelaziz and Krichen

(2005).

Sakaguchi (1984) studied the BOSP with a no-choice option, and proposed the

following utility for player I:

1 if I accepts the best offer or II does not accept the best offer

−1 if I does not accept the best offer or II accepts the best offer

0 if no selection is made for both players

(2.20)

According to the utility in (2.20), the objective of player I is to maximize his utility,

whereas player II aims to minimize the expected payoff of player I. Moreover, this

problem is known as a zero sum game; the accumulated utilities of the two players

is equal to 0. The priority is assigned to player I, that is player I decides the first

on the current offer, and if he chooses to discard it, player II has the possibility to

accept it, or to discard it definitively.

The recursive equation of player I at stage i is given by:

V ∗(i, k) = max{V 1
s (i), V 1

c (i)} (2.21)

The expected utility of accepting the best offer is stated as:

V 1
s (i)) = 2

i

n
− 1 (2.22)

V 1
c (i) measures the expected utility of selecting the best offer in a later stage, or the

expected utility when II accepts an offer which is not the best.

2.4 Variants and extensions of the optimal stopping problem 58

The relative equation is:

V 1
c (i) = min{1− 2

i

n
,

n∑
j=i+1

i

j(j − 1)
V ∗(i, k)} (2.23)

The optimal strategy for player I, derived by Sakaguchi (1984), is: to discard the

first b∗ − 1 alternatives. Player II accepts the first alternative with a relative rank

1 thereafter, and which is before the (a∗ − 1)st offer. Player I accepts the first offer

having a relative rank of 1 after a∗, where a∗ is the smallest integer ≥ n/2 and b∗

satisfying:

∑n−1
j=b−1 j

−1 ≥ 2
∑n−1

j=a∗ j
−1− n−1

a∗−1
+ 3

2
>
∑n−1

j=b j
−1

The OSP with two DMs was studied by Abdelaziz and Krichen (2005) in no-

information case, and with the objective to derive a compromise choice for the

two DMs. Immorlica et al. (2006) studied also the OSP with two DMs and extend

their study to the multiple DMs case. They proposed an equilibria of the induced

game based on the Nash equilibrium.

Several authors interested in the problem when each DM is required to select his

own offer, as: Fushimi (1981) and Sakaguchi (1984, 1985).

¼ Other Variants

In what precedes, we detailed some variants of the well known OSP. However, OSP

literature is larger. Table 2.1 regroups several other generalizations and extensions

of the problem.

2.5 Conclusion 59

Table 2.1: Summary of some OSP variants
OSP variants Description Researchers

Multiple-choice SP A SP in which the DM is allowed to select more than

a unique offer

Preater (1994)

Assaf et al. (2000, 2002, 2004)

Kleinberg (2005)

Matroid SP The elements of a matroid appears in an online fash-

ion. The DM must decide whether to accept the cur-

rent element or to discard it taking into account that

the set of chosen elements should be an independent

set in the underlying matroid. The objective is to

maximize the combined value of the selected elements

Babaioff et al. (2007)

The Discounted SP A SP with a discount time-dependent factor d(t). The

profit of holding an offer i at time t is d(t) · v(i)

Rasmussen and Pliska (1976)

Babaioff et al. (2009)

SP with Uncertain

Employment

An OSP with probabilistic availability of offers; any

item, if accepted, has some probability of not being

available, in which case it has to be passed over and

the next item

Smith (1975)

Petrucelli (1981)

Lehtinen (1993)

Ano et al. (1996)

OSP with recall Allow the observer at any stage to go back and try

to accept an item which had been previously rejected.

If it is available it is accepted, otherwise the observer

must continue inspecting new items.

Yang (1974)

Petrucelli (1981)

OSP with unknown

number of objects

An OSP with a random number of objects Stewart (1981)

Abdel-Hamid et al. (1982)

Horiguchi and Yasuda (2009)

2.5 Conclusion

We outlined in this chapter the OSP, the common name of the sequential sampling

problems. It constitutes a field of study within mathematic-probability-optimization.

Literature in OSP is extensive, such as its variants.

2.5 Conclusion 60

We presented in this search some of the most known variations. Extensions of the

problem goes in different directions, adding new assumptions to the basic version or

removing some ones.

The Optimal Stopping Knapsack

Problem

61

Chapter 3

The Optimal Stopping Knapsack

Problem

3.1 Introduction

In dynamic environments, decision-making is a vital action to guarantee competi-

tiveness. Often decision-making is designed as a searching process aimed to identify

the better action in the best time. Since the number of possible alternatives is lim-

ited and the time constitutes also a constraint, the DM has to act as quickly as

possible.

We can cite some practical applications that require a sequential selection of alter-

natives as: the problem of adopting technological innovation, hiring an employee,

selecting projects, selling of assets and investment of funds.

These kinds of problems belong to the resource allocation problems family, where

the main objective is to dynamically assign a limited capacity to offers arriving over

time, with random sizes and random values. Here, we may appeal to the DKP.

A DKP holds when we are searching among a finite set of offers, in order to select a

satisfactory subset. Offers arrive over time without any prior information, and are

62

3.1 Introduction 63

characterized by a specific reward as well as a specific weight. The main purpose is

to model a process evolving in time, searching among a sequence of offers in order

to carry the best possible subset which: maximizes the overall value of the selected

offers and exhausts the capacity constraint.

In this search, we propose a new variant of the DKP, namely the optimal stopping

knapsack problem (OSKP), which allows the delay of items for next stages; dis-

carded items are not lost, and can be reconsidered in next stages. However, delayed

item are penalized by a decrease of utility.

The main dilemma in this problem consists in deciding whether to load a currently

observed item or delay it to next stages. We propose a dynamic strategy for the

DKP managed by an optimal stopping rule. The proposed approach controls the

loading process stage by stage, evaluates each incoming item at the arrival time

and attributes a new ranking of already observed items. Based on these ranks, we

derive the item’s utility value, required for the dynamic calculation. The stage’s

dynamic computation determines which items to load in the knapsack and those

should be delayed. At each stage of the dynamic process, items that can be packed

are inserted into a static Knapsack sub-problem solved using the simplex method.

Our approach is run on a large test bed of DKPs with sizes belonging in {10,1000}.

We also develop some metrics to show the effectiveness of our results.

This chapter is split of four sections: the first one constitute a description for the

studied problem. In a second section we listed the notations used to formulate the

problem in the third section. Finally we detail the proposed solution approach.

3.2 Statement of the problem 64

3.2 Statement of the problem

We consider a set of items, from which we have to select a subset to be packed in

a knapsack. The knapsack has a limited capacity. Items arrive randomly, over n

discrete periods, without any prior data, and it joins the evaluation process once

arrived. Each evaluation has to lead to an immediate decision; to accept the item

or to leave it. Once an item is selected, the associated reward is received and it

can not be taken out of the knapsack. The leaved items can be selected in a later

stage; if an item is not chosen at the arrival time, it joins the set of item that will

be evaluated in the next stage.

The utility of the item is discounted each time the item is rejected, until it will be

packed. Penalties is considered in this problem to enforce the DM to take a closely

decision.

We are looking for an optimal policy for accepting items and for stopping the search

process that maximizes the overall reward, under the capacity constraint. The

decision process involves a single DM.

Therefore, a DKP is considered and the decision to make at each stage is based on

the dynamic computation of the expected utilities, when accepting the item and

when delaying it. Figure 3.1 resumes the selection process.

3.3 Notation 65

Figure 3.1: Decision Process of the OSKP

3.3 Notation

A summary of notation is given in the next table.

Symbols Explanations

n Number of items

m Number of loaded items

i Item number

j Stage number

k The relative rank

3.4 Mathematical formulation 66

ka The absolute rank

C The knapsack capacity

cj The remaining knapsack capacity at the jth stage

wi Weight of item i

vi Value of item i

Ri The ranking ratio

S The set of candidate items

U i(ka) The utility function based on the absolute rank ka

EU i
s(j, k) The expected value when stopping of the item i at the jth stage when its

relative rank=k

EU i
c(j) The expected value when continuing of the item i at the jth stage

EU i(j, k) The expected value of the item i at the jth stage when its relative rank=k

f(ka|k, j) The probability of having ka given k, at the jth stage

xi ∈ {0, 1},

i = {1, ..., n}

If item i is selected xi = 1, otherwise xi = 0

3.4 Mathematical formulation

We are given n items arriving online, one at a time, for a knapsack of limited

capacity C. Each item has a specific weight wi as well as an associated value vi. No

information about arriving items is available. The only provided information is the

total number of items n.

Note that the above description has few similarities with the OSP; an agent is

receiving a number of offers arriving over time in a random order, without a prior

information, in order to select the best one.

Taking into account this resemblance, we may appeal to the OSP terminology to

formulate our problem. Therefore, the problem can be viewed as a decision process

aiming to identify the subset of the best offers among the stream of offers arriving

successively. Whenever a new offer appears for the competition, the DM updates the

awarded ranks at the previous stage with regard to the current offer. This ranking

3.4 Mathematical formulation 67

approach is aiming to states the new item among the previous one.

Our model is based on four components:

• U i(ka, j): expresses our interest in i if it has an absolute rank=ka at the jth

stage

• EU i
s: is a prediction value of the i’s utility, if we choose to stop at this item;

to nominate i for the final selection

• EU i
c: is the expected utility of i if we choose to continue to the next stage; to

delay the decision about item i for next stages

• EU i: is the best expected utility value among the EU i
s and EU i

c; decides on

the load or the delay of i

• f(ka|k, j): represents the probability that i is of ka given k, at j

In the remainder of this section, we detail our model formulation.

Unlike to the OSP, where the DM is only satisfied by the best among all offers, we

are looking for the best subset to be packed in the knapsack. Thus, we have to

adopt a different utility function.

Indeed, we will appeal to two different utility functions: U1(ka) and U2(ka).

¶ The inverse-rank utility

Proposed by Chun (2001), and expressed as:

U i
1(ka) =

1

ka
(3.1)

Hence, if the DM selects the best offer he wins 1, 1
2

if he select the second best offer,

and so on. This utility function is valid only if the selected item is just arrived.

3.4 Mathematical formulation 68

However, if the item has been rejected in an earlier stage, a penalty in term of util-

ity is supported. We assume in this case that the utility is discounted to the utility

of the next rank, each time the object is rejected. That is:

U i
1(j, ka) =

1

ka
×

j−i∏
p=1

(1− 1

ka + p
) (3.2)

According to equation (3.2), the utility of an item arriving at the second stage and

delayed to the 4th stage, is computed as: U2
1 (4, 1) = 1× (1− 1

2
)× (1− 1

3
) = 1

3
.

· The regressive fraction utility

We propose a second utility function, given by:

U i
2(ka) =

n− ka + 1

n
(3.3)

The utility function U i
2(ka) attributes a fraction of n to item i given ka, e.g. if we

have n = 5, the best item utility is 1, the second 4
5
, the third 3

5
, etc.

As for the first utility function, a penalization is incurred in case of delay. The

utility function becomes:

U i
2(j, ka) =

n− ka + 1

n
× n− (j − i)

n
(3.4)

The first ranked item, which has been delayed twice from stage 2 to stage 4, has the

utility: U2
2 (4, 1) = 1× 5−(4−2)

5
= 3

5
.

Table 3.1 shows a comparison between the utility functions outcomes for n = 5.

The experimental study goes to demonstrate later the results behavior for each of

the two equations. Now that we defined the utility functions, we proceed to the

expected utilities formulation.

3.4 Mathematical formulation 69

Table 3.1: Comparison of utility functions values

Utility Functions | ka 1 2 3 4 5

U i
1(j, ka)

New comers 1 1
2

1
3

1
4

1
5

Delayed items 1
2

1
3

1
4

1
5

1
6

U i
2(j, ka)

New comers 1 4
5

3
5

2
5

1
5

Delayed items 4
5

16
25

12
25

8
25

1
6

The expected utility of accepting an item (EUs) is calculated by taking the probability-

weighted sum of all possible outcomes under certain circumstances, that this item

may have any of the possible ranks.

EU i
s(j, k) =

n−j+k∑
ka=k

U i(j, ka)f(ka|k, j), where f(ka|k, j) =

(
ka−1
k−1

)(
n−ka
j−k

)(
n
j

) (3.5)

In equation (3.5), U i(j, ka) is replaced by either function of utility, discussed so far.

While the expected utility of rejecting an offer (EUc) is the following:

EU i
c(j) =

1

j + 1

j+1∑
k=1

EU i∗(j + 1, k) if j < n

0 otherwise

(3.6)

Equation (3.6) indicates that arriving to the last stage, no item should be delayed

more. All remaining items are nominated for the final selection.

Since we are seeking the optimal subset of items, we are satisfied by nothing but

items which maximize our utility.

3.5 The proposed solution approach 70

Therefore, the expected utility of the ith item at the next stage (j + 1) is given by:

EU i∗(j + 1, k) = max[EU i
s(j + 1, k), EU i

c(j + 1)] (3.7)

The decision rule is based on the following inequality:

EU i
s(j, k) ≥ EU i

c(j) (3.8)

If the inequality (3.8) holds, the item i is a candidate, and joins the candidate set S,

otherwise i is delayed to the next stage. Once ranked is attributed and the expected

utilities are calculate for all present item, the candidate set is formed.

At each stage, a static KP having as input the set of candidates and constrained by

the remaining capacity of the knapsack until the current stage cj, is solved.

Following is the subproblem KPj:

Maximize Z(x) =
∑
i∈S

vixi

Subject to
∑
i∈S

wixi ≤ cj
(3.9)

3.5 The proposed solution approach

The OSKP asks for the best subset of items arriving randomly over time. As we

are seeking for the optimal solution, we developed an exact algorithm to solve the

problem. Stage by stage, and based on a ranking function, we decide on the loading

and the delay of the incoming items.

3.5 The proposed solution approach 71

However, it is relevant to see the algorithm behavior for the same stream of items,

but for different ranks, i.e. if we present the same set of items to two DMs, often

they will not have the same interest in items and each of them will attribute an

order different from the other one. Therefore, we present a second algorithm, which

generates a decision strategy for each problem, that still valid for different items

valuations. In the rest of this section, we detail how our algorithms operate. We

present both algorithms accompanied by examples.

¶ The Optimal Solution Algorithm (OSP)

Initially, the algorithm receive as inputs the total number of items and the knapsack

capacity. Items are presented one per stage. Upon the arrival of a new item, the

algorithm proceed to the ranking in order to arrange items by density.

The expected utilities of available items are computed thereafter, based on the at-

tributed ranks. By means of the stopping rule, candidate items are identified. Once

all available items are evaluated and the candidate set is formed, the algorithm ap-

peal to the KPj method to solve a KP01, given the candidate set and the remaining

capacity until the current stage. Resulting items are loaded in the knapsack and the

remaining are rejected definitively.

The knapsack capacity is updated and the algorithm reiterate until the capacity is

exhausted or all items are observed.

Figure 3.2 resumes the approach progress, step by the step. The algorithm will be

drawn thereafter.

3.5 The proposed solution approach 72

Figure 3.2: Chart of the OSKP

Initialization

?

Item i
appears

Evaluation

?

vi and wi

learned

Update items ranking

?

Delayed items -Reconsider delayed items

Select candidate items

Non-candidate items

6

?

Candidate
items

KPj

� -Discard items Update cj

?

Unselected items

Selected
items

Load items

?

Check stopping criterions

�
�

�
�

?

Y
e
s

STOP

No

� i← i+ 1

3.5 The proposed solution approach 73

The OSA

Algorithm 3: The Optimal Solution Algorithm of the OSKP

Input: The number of items n

Output: The optimal subset of items

Generate randomly and uniformly n coefficients;

j ← 1;

while j ≤ n do

Rank the observed items from 1 to j;

while i ≤ j do

Compute the expected utilities of item i;

if Ei
s ≥ Ei

c then

S ∪ i /*S is the set of candidates*/;

end

i← i+ 1;

end

Solve KPj(S, cj);

Load the selected items;

Update cj

if cj = 0 then

Quit the procedure;

else

j ← j + 1;

end

end

3.5 The proposed solution approach 74

An illustrative example

In order to explain the established algorithm, we demonstrate through the following

example, how the proposed approach is applied during the selection process.

We consider, in the following table, a stream of 5 items arriving in time.

Table 3.2: Example with n = 5

Weights Values

5
it
e
m
s

O1 9 100

O2 10 150

O3 7 120

O4 13 200

O5 15 250

↪→ for a limited resource (C=40)

At the beginning, our knowledge is limited to the total number of incoming items n

and the knapsack capacity C. Items features are shown to the algorithm as soon as

the previous stage is achieved. The algorithm commence by computing the expected

utilities of the n items, each for its arrived stage and for all possible ranks. Note

that the computation of the expected utilities in this example will be provided by

the utility function U i
2 (3.4). Following are the expected utilities values:

Table 3.3: Expected utilities for n = 5

Stages

5 4 3 2 1

R
e
la
ti
v
e
ra

n
k
s 1 (1.0,0.0) (0.96,0.6) (0.9,0.72) (0.8,0.78) (0.6,0.79)

2 (0.8,0.0) (0.72,0.6) (0.6,0.72) (0.4,0.78)

3 (0.6,0.0) (0.48,0.6) (0.3,0.72)

4 (0.4,0.0) (0.24,0.6)

5 (0.2,0.0)

3.5 The proposed solution approach 75

Table 3.3 presents the EU i
s(j, k) and EU i

c(j), for all i ∈ {1, 5}, j = i and k ≤ j.

Data in table’s cells are presented according to the notation: (EU i
s(j, ka), EU

i
c(j)).

Based on these information, we decide on the load or the delay of each item at its

arriving stage. We can read from the table: item O1 appears to the process at the

first stage, its EU1
c is greater than the EU1

s , that is, the algorithm prefer to continue

to the next stage without packing it.

At the second stage, item O2 can be packed if and only if its relative rank = 1, and

so on. The above table is sufficient to learn about the current item, but not for

the delayed ones. Therefore, beside to the initial table, we calculate the expected

utilities for an delayed item.

Being in the second stage, we have delayed the item O1 from the first stage. Its

expected utilities values are written as: (EU1
s (2, ka), EU

1
c (2))).

We appealed here to the ranking ratio:

Ri =
vi
wi

(3.10)

Ri supplies the following order:

O1 O2

Rank 2 1

Given the relative ranks, the algorithm calculates the expected utilities through

equations (3.5) and (3.6), and return (EU1
s (2, 2), EU1

c (2)) = (0.32, 0.78).

According to the decision rule (inequality (3.8)), values are compared and the item

O1 is delayed for the second time. Equivalently, item O2 is considered as a candidate

for the KP2 subproblem.

KP2 allows the loading of O2 in the knapsack. At the following stage, the algorithm

receive the new item, O3, and complete the calculation with a capacity discounted

by the weight of the loaded item (c3 = 30). Evenly, the rest of stages are treated

and hence, items O3, O4, O1 are loaded respectively in the third, forth and fifth stage.

3.5 The proposed solution approach 76

At the end of the process, the knapsack contains the following items: {O2, O3, O4, O1}.

Following are the obtained results:

− Accumulated reward: 570

− Remaining capacity: 1

− Number of loaded items: 4

· The Decision Strategy Algorithm (DSA)

This second algorithm attempt to derive all possible collections of items taking into

account all possible ordering of items. Following are the algorithm and the associ-

ated example.

Algorithm 4: The Decision Strategy Algorithm of the OSKP

Input: The number of items n

Output: A decision strategy

Generate randomly and uniformly n coefficients;

j ← 1;

while j ≤ n do

for i← 1 to j do

Compute the expected utilities of item i for all possible ranks;

Identify candidates and possible sets;

Solve a KP for each set of candidates;

Load the possible collections of items;

end

j ← j + 1

end

An illustrative example

We deal with the same example in table 3.2. First, we draw the optimal stopping

table with 5 items.

3.5 The proposed solution approach 77

Table 3.4: Expected utilities for n = 5

Stages

5 4 3 2 1

R
e
la
ti
v
e
ra

n
k
s 1 (1.0,0.0) (0.9,0.45) (0.78,0.56) (0.64,0.63) (0.45,0.64)

2 (0.5,0.0) (0.43,0.45) (0.35,0.56) (0.27,0.63)

3 (0.33,0.0) (0.28,0.45) (0.22,0.56)

4 (0.25,0.0) (0.21,0.45)

5 (0.2,0.0)

Stage 1 :

Item O1 appears. We calculate the EU when stopping and when continuing. From

the table 3.4, the EU1
c > EU1

s so the decision will be to continue to the next step

without loading the item.

Stage 2 :

O2 arrives and O1 is waiting from the previous stage.

EU i
s(2, ka) EUc

ka = 1 ka = 2

O1 0.37 0.21 0.63

O2 0.64 0.27 0.63

Two cases can hold: if the object 2 is ranked the first, it is a candidate, otherwise

it is not.

If O2 is a candidate: w2 < c2 we can load item 2 ⇒ K = {O2}, c2 = 40− 10 = 30.

Otherwise no item is loaded.

Stage 3 :

O3 arrives. O1 and O2 are also present to the evaluation in this stage. Calculating

the expected utilities, we found O3 the unique candidate for the loading, if it is

ranked first.

3.5 The proposed solution approach 78

Stage 4 :

O3 and O4 are candidates if and only if they obtain the rank 1.

Stage 5 :

In the last stage, all items are already received. We do not need to calculate the

expected utilities; all items are candidate for the selection. Therefore, we solve the

KP for possible cases.

The tree in figure 3.3 resumes the decision strategy, stage by stage. At each stage,

we represent the possible loads of items.

Figure 3.3: A decision strategy example for n = 5

3.6 Conclusion 79

We marked on the tree, with the pink color, the road of the optimal solution supplied

by algorithm 3. We notice that all generated solutions are optimal; they provide the

same profit even if the collection of items is different.

3.6 Conclusion

We proposed a solution approach for the DKP that incorporates a stopping rule

at each stage of the loading process in which case the DM is able to make deci-

sions throughout the searching process, for each incoming item. This approach was

appealed to reduce resolution difficulties of the dynamic process. Using the OSP ter-

minology, we determine the stage’s stopping rule. A knapsack sub-problem is solved

thereafter, given as input the set of candidates selected by mean of the stopping

rule.

Chapter 4

Computational Experiments

4.1 Introduction

In the preceding chapter, we developed a new algorithm to solve the dynamic as-

signment of offers to a single and a constrained capacity resource. We adopted a

dynamic formulation to compute, at each stage of the selection process, our gain

if we choose the current offer and when delaying it. However, to make sure of our

approach reliability, our algorithm shall be validated by real cases.

This chapter deals with the experimental investigation. Experimentation obtained

by means of the proposed algorithm will be presented. We are looking to measure

the effectiveness and the performance of our algorithm to produce a satisfiable so-

lution. Therefore, we develop some metrics to show the effectiveness of our results.

We implemented both algorithms, discussed in the preceding chapter, in java lan-

guage on a Intel Centrino Duo processor and 2GB of RAM under Microsoft Vista.

We remind, the algorithms’ basics: the first algorithm seeks for the optimal solution

of the OSKP, while the second draws the correspondent decision strategy. Each

algorithm is built for different instance sizes. For small n, we derive a solution strat-

80

4.2 The experimental settings 81

egy for each knapsack, taking into account that each step may lead to a loading of

some candidates or not, according to the attributed ranks. With large instances,

generating a whole decision strategy is practically insignificant. Therefore, we derive

just the optimal solution. A ranking method is used here to order items from the

best to the worst, based on a computed ratio.

In both cases, we generate items coefficients randomly and uniformly within {1, 1000}.

The knapsack capacity is then fixed to 50% of the sum of items weight.

The remainder of the present chapter is organized as follows. The second section

will be concerned by the description of the experimentation’s settings. We will dif-

ferentiate thereafter between small and large instances. For each problem size, we

present results of built instances and discuss the obtained values.

4.2 The experimental settings

Experiment results for the proposed algorithms are presented below. We have con-

sidered small and large instances. For small instances, varying in {5,35}, the algo-

rithm generates a whole solution strategy considering the different manners to fill

the same knapsack with the same objects, but in different order. At each stage,

we calculate the expected utilities of the present items with all possible ranks and

then we derive a variety of solutions at the end. With large instances, we derive

optimal solutions for different problem sizes, belonging in {10,1000}. Item features

(value and weight) are positive integer variables. To conduct experimentation, we

generate those coefficients randomly and uniformly within the interval [1,1000]. The

knapsack capacity was limited at a 50% of the sum of items weight.

4.3 Interpretation of the results 82

4.3 Interpretation of the results

This section discusses the interpretation of the obtained results. We conduct two

directions of experimentation: small instances for the DSA and large instances for

the OSA. Note that both algorithm results were compared to that of a static al-

gorithm, where items are assumed to be present simultaneously to the evaluation.

Moreover, we present results comparison supplied by our OSA for different utility

functions (U1 and U2).

4.3.1 Small instances

We consider first small instances for which we derive solution strategies. Instances

were considered with n within the range {5,35} and different number of instances

were performed for each problem size.

The overall results are presented in Table 4.1, where the minimum (Min), the aver-

age (Avg) and the maximum (Max) for the DSA are displayed. Table columns refer

respectively to: the number of items (n), the number of instances (# instances),

the Number of Possible Collections of items (NPC), the Average Reward (AR), the

Percentage of Filling of the knapsack (PF)and the computational time (CPU).

4.3 Interpretation of the results 83

Table 4.1: Experimental results for the DSA
n # instances NPC AR PF(%) CPU

Min 4 544 71.72 0.00011
5 15 Avr 7 1356 84.4 0.00017

Max 8 2218 97.01 0.00025

Min 48 1895 90.43 0.00075
10 10 Avg 57 2960 95.02 0.0011

Max 68 3966 98.17 0.0021

Min 277 4447 93 0.0027
15 5 Avg 388 4989 96.23 0.0072

Max 495 6577 98.41 0.012

Min 4459 4250 96.56 0.05
20 7 Avg 6972 5792 98.33 0.1136

Max 7700 7544 99.02 0.14

Min 51144 7078 98.51 0.39
25 7 Avg 58001 7893 98.89 0.82

Max 64622 9120 99.20 1.08

Min 592571 8105 98.57 5.9
30 8 Avg 905964 9773 99.12 19.98

Max 1000045 11470 99.45 33.12

Min 2809524 7346 99.12 42.5
33 4 Avg 3562328 9450 99.26 78.2

Max 4007631 12213 99.52 101.75

Min 7161272 10576 99.27 600
35 3 Avg 3711508 11127 99.29 671

Max 7461745 10877 99.39 742.17

The Number of Possible Collections (NPC)

Our DSA generates various possibility of loading. Each possibility represent a col-

lection of different items. Evidently, the NPC is growing with the problem size as

shown in figure 4.1. However, the NPC is not equivalent to the mathematical com-

bination because our algorithm generates only optimal solutions but from different

valuation directions. Therefore, our algorithm supplied a variety of solutions and it

is for the DM to decide the convenient.

4.3 Interpretation of the results 84

Figure 4.1: Progress of the number of possible collections of items in terms of

problem sizes

The Average Reward (AR)

We present the average reward for built instances in order to compare it with static

results. Figure 4.2 is a comparison histogram of our algorithm’s AR and the AR of

the same instances obtained statically. We notice that our results are about 80% of

the optimal values.

Figure 4.2: Effectiveness of the DSA results compared by those of a static algorithm

4.3 Interpretation of the results 85

Percentage of Filling of the knapsack (PF)

Our second interest is to exhaust the capacity constraint; to fill the knapsack as

much as possible. Therefore, our resolution approach has to take into consideration

this objective too and this to avoid resources wasting.

The PF is given by:

PF =

∑m
i=1wi
C

× 100 (4.1)

Figure 4.3: Evaluation of the percentage of filling of the knapsack for different

problem sizes

Results shows that the PF is closest to 100%, especially for the greatest problem

sizes. This indicates that the capacity constraint has been well exhausted and there

are no loss of resources.

The CPU time

Figure 4.4 reports the progress of the computational time in terms of the problem

size. The CPU rises relatively to the NPC too.

4.3 Interpretation of the results 86

Figure 4.4: The CPU time behavior in terms of problem sizes

4.3.2 Large instances

Now we consider large instances, where the number of items n is within {10,1000}.

For each problem size, 10 instances were performed. Table 4.2 reports results for

the OSA in terms of a number of performance measures, which are respectively:

the number of loaded items, the average reward, the percentage of filling of the

knapsack, the first load stage, the percentage of loading before the last stage and

the computational time. All instances has been performed for both utility functions

presented in the earlier chapter.

Results showed that the NLI, AR and the CPU increase proportionally to the prob-

lem size. In what follows, we define the rest of used measures and explain this choice.

4.3 Interpretation of the results 87

Table 4.2: Overall results for the OSA
n NLI AR PF(%) FLS LBLS (%) CPU

U1 U2 U1 U2 U1 U2 U1 U2 U1 U2

Min 5 5 3507 3507 90.57 87.98 4 4 0.0 0.0 0.0001

10 Avg 6 6 3848 3825 96.05 95.49 7 7 23.14 33.57 0.0004

Max 7 7 4202 4202 99.92 99.39 10 10 33.33 66.66 0.0014

Min 30 30 17884 17884 99.53 99.35 17 14 3.032 21.87 0.001

50 Avg 32 32 20019 20019 99.74 99.74 28 23 7.38 28.29 0.017

Max 33 33 23202 23202 99.95 99.95 43 39 12.5 33.33 0.002

Min 60 60 39332 39332 99.91 99.91 33 31 1.61 18.03 0.003

100 Avg 62 62 41283 41283 99.96 99.96 68 58 3.72 23.9 0.011

Max 65 65 42311 42311 99.99 99.99 97 85 6.15 30 0.015

Min 121 121 78016 78016 99.92 99.92 93 56 0.81 24.0 0.14

200 Avg 124 124 81557 81557 99.97 99.97 143 93 3.62 26.43 0.15

Max 127 127 84735 84735 100 100 198 172 5.78 29.75 0.17

Min 183 184 118636 118636 99.98 99.98 122 88 0.0 19.78 0.514

300 Avg 190 190 123109 123110 99.994 99.993 228 169 1.9 24.11 0.74

Max 197 197 127096 127096 100 100 300 215 3.14 25.38 0.8

Min 243 243 154889 154889 99.97 99.97 133 107 0.4 21.82 1.66

400 Avg 251 251 161030 161031 99.98 99.98 260 142 2.08 24.71 2.24

Max 257 257 166775 166775 99.99 99.99 373 184 3.57 29.62 2.65

Min 309 308 191223 191223 99.98 99.98 223 138 0.63 22.72 2.11

500 Avg 314 314 202696 202696 99.99 99.99 353 268 1.78 24.84 5.08

Max 320 320 214782 214782 100 100 496 389 2.57 26.25 9.41

Min 369 369 235853 235853 99.995 99.995 210 160 1.89 21.72 4.91

600 Avg 374 374 243081 243081 99.998 99.998 324 267 2.25 24.38 9.08

Max 383 383 249203 249203 100 100 585 501 3.39 27.49 13.01

Min 427 427 271964 271964 99.992 99.992 236 201 1.15 22.95 12.77

700 Avg 436 436 282368 282368 99.997 99.997 450 320 1.83 25.65 13.95

Max 445 445 296739 296739 100 100 678 480 2.76 27.79 17.6

Min 489 489 314685 314685 99.996 99.996 267 213 1.43 22.49 13.31

800 Avg 501 501 326031 326031 99.998 99.998 476 402 1.73 24.97 22.05

Max 516 516 332545 332545 100 100 787 737 2.13 25.58 29.5

Min 552 552 358579 358579 99.996 99.996 312 244 0.9 22.82 34.22

900 Avg 563 563 366009 366009 99.998 99.998 685 605 1.27 24.59 36.93

Max 576 576 369977 369977 100 100 894 871 1.73 25.34 40.79

Min 615 615 400685 400685 99.996 99.996 340 266 0.48 24.06 47.62

1000 Avg 626 626 410631 410631 99.998 99.998 696 484 1.5 24.78 54.02

Max 639 639 421587 421587 100 100 985 809 2.19 27.69 67.44

4.3 Interpretation of the results 88

Figure 4.5: The CPU time progress for large n

Percentage of Filling of the knapsack (PF)

The PF is all the time close to 100%; the capacity constraint has been well exhausted

and the knapsack is almost full.

Figure 4.6: The effectiveness in filling the knapsack for both utility functions

The First Load Stage (FLS)

This measurement indicates at which stage of the process the algorithm began to

load items. In other words, the stage in which the DM met a satisfiable offer.

4.3 Interpretation of the results 89

Figure 4.7 draws the FLS position among the overall number of stages for each

problem size, e.g. for static algorithms, the FLS is equivalent to the last stage that

is first the load will be done at 100% of the searching process. Moreover, the figure

compare the variation of the FLS according to the utility function.

Figure 4.7: Variation of the first load stage by comparing U1 and U2

We notice that the FLS under the utility function U1 is farther than that of U2.

Therefore, the utility function U2 is more convenient for DMs who desires to make

decisions in a close time horizon, while U1 is more suitable for DMs that desires to

delay their decisions until a considerable number of items appears.

The percentage of Loading Before the Last Stage (LBLS)

Throughout the selection process, we enumerate at each stage the number of loaded

items before the last stage (before observing all items). We have considered this

measure to learn about the efficiency of the dynamic approach in minimizing the

loading process duration; thanks to the dynamic approach, we can begin to load

items as soon as they arrive, we do not need to wait until all offers are received.

LBLS is written as follows:

LBLS =
NLIBF

NLI
× 100 (4.2)

4.3 Interpretation of the results 90

NLIBF and NLI denote respectively: the number of loaded items before the final

stage and the total number of loaded items.

Figure 4.8: The LBLS behavior in terms of U1 and U2 compared to the static case

Figure 4.8 reports the LBLS behavior for each of the utility functions compared to

the static case. The LBLS, given U1, showed that while appealing to the dynamic

loading, the final stage still of a considerable importance regarding the number of

items selected at the end; the last stage monopolizes the biggest proportion of loads.

However, the LBLS is improved using U2: about 25% of items are loaded before the

last stage. We notice that both curves have similar shapes but that of U1 is lowest:

this is due to the supported penalty, in term of utility, when an item is delayed.

Indeed U1 penalizes delayed items more than make it U1.

To conclude, we can say that our algorithm has proved to be efficient in solving the

DKP. Compared with static results, we reached almost the same overall profit. Be-

sides to respecting the capacity constraint, we were able to fill at most the knapsack

and making decision in opportune time. However, the utility function U2 proved to

be more convenient in terms of FLS and LBLS. It gives more interest in newcomers

if compared with U1, which prefer to delay as much as possible and makes decision

4.4 Conclusion 91

in latest stages. In the other hand, the utility function does not contribute in the

overall reward nor in the PF; we reached all the time the same values using either

function utility.

4.4 Conclusion

We presented in this chapter the empirical study. Our results showed the optimality

in filling the knapsack for all problem sizes. This demonstrate the effectiveness

of our approach in solving dynamically the DKP. However, we notice that a large

proportion of loading is delayed to the last stage of the process. Therefore, further

improvements can be brought to our formulation in order to maintain a satisfactory

percentage of loading over stages.

General Conclusion

The OSKP is a combinatorial optimization problem that arises for numerous prac-

tical applications that involve an online scenario, and particulary for those of the

DKP and the OSP. Moreover, our search was motivated by the fact that there are

a modest number of research concerned by the DKP and that we found no research

who evoked the possibility of delaying offers with a dynamic process.

Indeed the OSKP is a DKP involving a single DM observing a sequence of incoming

offers over time, in order to select the optimal subset. No information is available

about potential items before the arrival time, except of their total number. Offers

are evaluated upon arrival and can be delayed to a subsequent stage or loaded im-

mediately. However, once inserted into the knapsack, it cannot be removed to place

another one. In order to load the best possible subset among all items, a careful

decision should be taken on the acceptance or the rejection of each observed item.

Therefore, we appealed to the OSP which provides a dynamic expectation of the

utility of the current item.

We proposed a dynamic strategy for the DKP managed by an optimal stopping rule.

The proposed approach controls the loading process stage by stage, evaluates each

incoming item at the arrival time and attributes a new ranking of already observed

items. Based on these ranks, we derived the item’s utility value, required for the

dynamic calculation. The stage’s dynamic computation determines which items to

92

GENERAL CONCLUSION 93

load in the knapsack and those should be delayed. At each stage of the dynamic

process, items that can be packed are inserted into a static knapsack sub-problem

solved using the simplex method.

We implemented the proposed approach to measure the effectiveness of the optimal

stopping rule in such a problem. We designed two algorithms of the same principal;

the first one determines the optimal filling subset while the second derives a decision

strategy. Both algorithms were validated by the experimentation. Results showed

the time savings and the optimality in filling the knapsack when using our dynamic

approach.

One aspect that we would like to explore in the future is the extend of our model

to more than a unique DM. Besides a possible generalization is to study the OSKP

for possible unavailable items, where some of the delayed items get lost during the

searching process.

Bibliography

Fouad Ben Abdelaziz and Saoussen Krichen. An interactive method for the optimal

selection problem with two decision makers. European Journal of Operational

Research, 162:602–609, 2005.

Gagan Aggarwal and Jason D. Hartline. Knapsack auctions. In SODA ’06: Pro-

ceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,

pages 1083–1092. ACM, 2006.

Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack

secretary problem with applications. In APPROX ’07/RANDOM ’07: Proceedings

of the 10th International Workshop on Approximation and the 11th International

Workshop on Randomization, and Combinatorial Optimization. Algorithms and

Techniques, pages 16–28, Berlin, Heidelberg, 2007. Springer-Verlag.

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten. Solving efficiently the

0-1 multi-objective knapsack problem. Computers and Operations Research, 36

(1):260–279, 2009.

J. Neil Bearden, Ryan O. Murphy, and Amnon Rapoport. A multi-attribute exten-

sion of the secretary problem: Theory and experiments. Journal of Mathematical

Psychology, 49:410–422, 2005.

94

BIBLIOGRAPHY 95

Young Hak Chun. Selecting the best choice in the weighted secretary problem.

European Journal of Operational Research, 92:135–147, 1996.

Young Hak Chun. Optimal partitioning of groups in selecting the best choice. Com-

puters & Operations Research, 28:1367–1386, 2001.

Ludwig Ensthaler and Thomas Giebe. Subsidies, Knapsack Auctions and Dantzig’s

Greedy Heuristic. SSRN eLibrary, 2009.

Thomas S. Ferguson. Who solved the secretary problem. Statistical Science, 4:

282–296, 1989.

Thomas S. Ferguson. Best-choice problems with dependent criteria. Contemporary

Mathematics, 125:135–151, 1992.

Ben Abdelaziz Foued, Chaouachi Jouhaina, and Krichen Saoussen. Métaheuristiques

de résolution du problème de sac à dos multiobjectif. In Actes de la première

conférence Francophone en Modélisation et Simulation des Systèmes de Produc-

tion et de Logistique MOSIM’97, pages 443–450. Editions Hermes, 2000.

Michael M. Guntzer and Dieter Jungnickel. Approximate minimization algorithms

for the 0/1 knapsack and subset-sum problem. Operations Research Letters, 26:

55–66, 2000.

Kazuo Iwama and Shiro Taketomi. Removable online knapsack problems. In ICALP

’02: Proceedings of the 29th International Colloquium on Automata, Languages

and Programming, pages 293–305. Springer-Verlag, 2002.

George S. Lueker. Average-case analysis of off-line and on-line knapsack problems.

In SODA ’95: Proceedings of the sixth annual ACM-SIAM symposium on Discrete

algorithms, pages 179–188. Society for Industrial and Applied Mathematics, 1995.

BIBLIOGRAPHY 96

Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for on-

line problems. In STOC ’88: Proceedings of the twentieth annual ACM symposium

on Theory of computing, pages 322–333. ACM, 1988.

A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.

Mathematical Programming, 68:73–104, 1995.

Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer

Implementations. John Wiley and Sons, 1990.

David P. Morton and R. Kevin Wood. On a stochastic knapsack problem and gen-

eralizations. In D.L. Woodruff, editor, Advances in Computational and Stochastic

Optimization, Logic Programming and Heuristic Search: Interfaces in Computer

Science and Operations Research, pages 149–168. Kluwer Academic Publishers,

1998.

Jason D. Papastavrou and Anton J. Kleywegt. The dynamic and stochastic knapsack

problem. Operations Research, 46:17–35, 1998.

Jason D. Papastavrou and Anton J. Kleywegt. The dynamic and stochastic knapsack

problem with random sized items. Operations Research, 49:26–41, 2001.

Jason D. Papastavrou, Srikanth Rajagopalan, and Anton J. Kleywegt. The dynamic

and stochastic knapsack problem with deadlines. Management Science, 42:1706–

1718, 1996.

Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs.

Journal of Graph Algorithms and Applications, 13:233–249, 2009.

Zdzislaw Porosinski. On optimal choosing of one of the k best objects. Statistics &

Probability Letters, 65(4):419–432, 2003.

BIBLIOGRAPHY 97

Aminto Senisuka, Byungjun You, and Takeo Yamada. Reduction and exact al-

gorithms for the disjunctively constrained knapsack problem. In International

Symposium on OR and Its Applications 2005, Japan, 2005.

Nei Yoshihiro Soma and Paolo Toth. An exact algorithm for the subset sum problem.

European Journal of Operational Research, 136:57–66, 2002.

Takeo Yamada, Seiji Kataoka, and Koutaro Watanabe. Heuristic and exact algo-

rithms for the disjunctively constrained knapsack problem. IPSJ Journal, 43:

2864–2870, 2002.

