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Introduction

Context

Nowadays, belief functions are widely used in several domains of research where incertitude
and imprecision dominates. They provide many tools for managing and processing the existing
pieces of evidence in order to extract knowledge and make better decision. They allow experts
to have a more clear vision about their problems, which is helpful for finding better solutions.
Belief functions theory presents a more flexible way to model uncertainty and imprecise data
than probability theory. In addition, it allows expert to model conflict and ignorance. Also, it
offers many tools with a higher ability to combine a great number of pieces of evidence. Finally,
the theory of belief functions is more general than probability and possibility theory.

Recently, (Ramasso and al, 2007; Ramasso, 2009) present a new way for application of belief
functions which is the Belief Hidden Markov Model. The belief HMM extends the probabilistic
HMM to belief function theory.

In this research, we seek to use belief functions theory and the belief HMM in the speech pro-
cessing especially in the speech segmentation process. Speech segmentation involves two classes
of methods which are: speech segmentation with linguistic constraint (often called speech seg-
mentation) and speech segmentation without linguistic constraint (called speech recognition).
The first one is supervised; in fact, it has as inputs the speech signal and its corresponding
text (the phonetic transcription). The goal is to find boundary of each acoustic unit (phoneme)
in the speech signal. Speech segments are widely used especially in the speech synthesis by
concatenation that concatenates these segments in order to generate the speech realization of
the input text. The second one is unsupervised; it has the speech signal as input and it searches
the corresponding text as output.

Speech recognition merges many disciplines and technologies (Rabiner and Juang, 1993)
which include the following:

6
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• Signal processing : Allows us to study and analyze the speech signal characteristics in
order to extract useful information and interesting properties.

• Physics (acoustics): Allows us to understand the relationship between the physical
speech signal and its production and perception mechanisms which are called physiological
mechanisms.

• Pattern recognition : In this discipline, a set of algorithms are used to create a pro-
totypical pattern (a model) that better describes the data (speech signal), this pattern
is then used to recognize new speech signal. This research can be classified under the
pattern recognition discipline.

• Communication and information theory : In this discipline we found procedures of
parameter estimations, methods that recognise a particular speech pattern and algorithms
of coding and decoding which are used to recognize the best sequence of words that
corresponds to the speech signal.

• Linguistics: Includes the syntactic, semantic and pragmatic levels.

• Computer science : Algorithms implementation (software or hardware) and practical
methods used in speech recognition system.

Contribution

HMMs are widely used in the speech segmentation and recognition processes. HMM based
speech recognizer is an efficient method that allows us to recognize about 80% of a given
speech signal. But this recognition rate still not yet satisfying. Recently, (Ramasso and al,
2007; Ramasso, 2009) presented a new version of HMM based on belief functions. Belief HMM
gives a better classification rate than the ordinary HMM, when it is applied in a classification
problem. Consequently, we propose the new Belief HMM isolated word recognizer, which is a
speech recognizer based on belief HMM and used for recognizing isolated words.

Document organization

This document is composed by four chapters:

• Chapter 1: an overview of the Transferable Belief Model will be presented. Then we
will talk about belief functions, the principle of minimal commitment, combination rules,
frame of discernment operations, the generalized Bayesian theorem, the deconditionaliza-
tion rule and some transformations used for making decision.

• Chapter 2: we will present about speech production and perception mechanisms, some
methods used for extracting features from the speech signal. Then, we will present the
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phonetic and the phonology. Finally, a literature review of some speech processing meth-
ods will be presented.

• Chapter 3: in which we will present the probabilistic HMM, the belief HMM and finally,
we will introduce our belief HMM based speech recognizer.

• Chapter 4: will be dedicated to experiments and results.



1
Transferable Belief Model

1.1 Introduction

The Transferable Belief Model (TBM) (Smets and Kennes, 1994) is a variant of belief functions
theories. It is a more general system than the Bayesian model. “It is a model for representing
the quantified beliefs held by an agent at a given time on a given frame of discernment” (Smets
and Kennes, 1994). As shown in Figure 1.1, the TBM is a two-levels model which are:

• Credal level : This level models our belief and quantifies it by belief functions (static
part). Also, it allows many processing to update our model including combination rules
(dynamic part).

• Pignistic level : Which is used for making decision, it is preceeded by the credal level. To
make decision, we proceed in this level with the conversion of the existing belief functions
to probability functions using the pignistic transformation.

According to this process, we will present TBM tools all over this chapter. We will talk about
the basic functions which are used in the static part of the credal level and allow as modeling
our belief in many forms. Then we will present the principle of minimal commitment, some
combination rules, operations that can be made on frames of discernment and the generalized
Bayesian theorem which generalizes the Bayes’ theorem to belief functions. All these tools are
used in the dynamic part of the credal level. Finally, we will present some operation for the
pignistic level in the section called making decision.

1.2 Basic functions

1.2.1 Basic Belief Assignment

Let Ω = {d1, d2, ..., dn} called frame of discernment , is a set of all possible decisions that
can be made in a particular problem, for example, in a classification problem, Ω contains all
possible classes that an object can have, in a similar case, we search to predict the real class d0

of a given object. Decisions di have to be mutually exclusive but not necessary exhaustive. In

9
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Figure 1.1: Transferable belief model mechanism
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the case where Ω is exhaustive, i.e. Ω contains all possible decision, then we say that we work
under a closed world assumption (Shafer, 1976). Otherwise, i.e Ω is not exhaustive, we say
that we work under an open world assumption (Smets, 1990).

The agent belief on Ω is represented by the basic belief assignment1 (BBA) mΩ, defined as:

2Ω → [0, 1]

A 7→ mΩ (A) (1.1)

where 2Ω = {∅, {d1} , {d2} , {d1, d2} , ..., {d1, d2, ..., dn}}is the set of all subsets of Ω, it is called
power set . mΩ (A) is the mass value assigned to the proposition A ⊆ Ω and it must respect:∑

A⊆Ω

mΩ (A) = 1 (1.2)

If we have mΩ(A) > 0 then A is called focal set of mΩ.

Example 1.1 We consider the example of the murder of Mr. Jones presented in (Smets and
Kennes, 1994). Our goal is to help the judge to know who the killer was. The judge knows
that:

• Mr. Jones has been killed by one member of the team of Big Boss.

• The team of Big Boss includes three people: Peter, Paul and Mary.

• Big Boss selected the killer by a throw of a dice: if he has got an even number so the
killer will be female, else, the killer will be male.

There is no information about the choice between Peter and Paul in the case where the killer
is male.

First of all, we define our frame of discernment Ω = {Peter (P ) , Paul (Pa) , Mary (M)},
then our power set will be 2Ω = {∅, {P} , {Pa} , {P, Pa} , {M} , {P,M} , {Pa,M} , {P, Pa,M}},
finally, our BBA:

mΩ ({P, Pa}) = 0.5

mΩ ({M}) = 0.5

�

1.2.1.1 Particular BBA

There are some particular BBA from which we note the following (Denoeux, 2007):

• Normal BBA: a BBA is called normal when we havemΩ (∅) = 0. If we have a BBA with
mΩ (∅) 6= 0, named subnormal BBA, it can be normalized by applying these formulas:

mΩ
∗ (A) =

mΩ (A)

1−mΩ (∅)
∀A ⊆ Ω; A 6= ∅

mΩ
∗ (∅) = 0 (1.3)

1Notation: we will use the following notation throughout this document for all belief functions: mdomain (subset),
where domain represents our frame of discernment Ω and subset is any subset of Ω.
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Table 1.1: BBA examples
A ⊆ Ω Nor Subn Dogm Vac Sple Categ Bay Con

∅ 0 0.3 0 0 0 0 0 0

{d1} 0.2 0 0.4 0 0 0 0.2 0

{d2} 0 0 0.2 0 0 0 0.4 0.2

{d1, d2} 0.1 0.5 0.1 0 0.4 0 0 0.4

{d3} 0 0 0.1 0 0 0 0.4 0

{d1, d3} 0 0.1 0 0 0 1 0 0

{d2, d3} 0.4 0.1 0.2 0 0 0 0 0

{d1, d2, d3} 0.3 0 0 1 0.6 0 0 0.4

Table 1.1 shows an example of a normal BBA (column Nor) and a subnormal BBA (column
Subn).

• Dogmatic BBA: in this BBA, the proposition Ω is not a focal set, i.e. mΩ (Ω) = 0. As
an example, see the column titled Dogm in the Table 1.1.

• Vacuous BBA: we have only one focal set which is Ω, i.e. mΩ (Ω) = 1. Such a BBA is
used in the case of total ignorance, i.e. we have no information about the actual state of
our system. Example is given in the Table 1.1 in column five.

• Simple BBA: it has at most two focal sets (see example in column six of the Table 1.1).
When it has two, Ω is one of those, i.e. for α ∈ [0..1] we have:mΩ (A) = 1− α, A ⊆ Ω

mΩ (Ω) = α
(1.4)

• Categorical BBA: it has only one focal set, i.e.mΩ (A) = 1, A ⊆ Ω

mΩ (B) = 0, ∀B ⊆ Ω andB 6= A
(1.5)

An example of a categorical BBA is given in column Categ of the Table 1.1.

• Bayesian BBA: in the case of a Bayesian BBA, focal sets are singletons, i.e. mΩ ({di}) ≥
0, di ∈ Ω for example see the column titled Bay of the Table 1.1.

• Consonant BBA: a BBA is called consonant if its focal sets are nested, i.e. A ⊆ B ⊆ C...
Consequently, it has the same characteristics as a possibility distribution, for example see
the last column of the Table 1.1 .
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1.2.1.2 BBA discounting

Discounting is used in the case where we have a doubt about the pieces of evidence that we
have got. Then we can take into account the reliability of our sources of information. In
many applications, it is possible to quantify our reliability by a coefficient α ∈ [0, 1], then the
discounting rate is 1− α. Our discounted BBA is given by the use of this formula:mΩ

α (A) = αmΩ (A) , ∀A ⊂ Ω

mΩ
α (Ω) = (1− α) + αmΩ (Ω)

(1.6)

1.2.1.3 Canonical decomposition

Canonical conjunctive decomposition: Before defining the canonical conjunctive decom-
position of a non dogmatic BBA, it is necessary to introduce the concept of separability .
This concept was firstly introduced by Shafer as: “a separable support function is appropriate
whenever the evidence can be decomposed into components that are homogeneous with respect
to one’s frame of discernment” (Shafer, 1976). Then a BBA function is said separable if and
only if it can be decomposed into simple BBAs. If our function is a non dogmatic BBA then
the decomposition will be unique and it called the canonical conjunctive decomposition.

We define the canonical conjunctive decomposition of a BBA m (Smets, 1995; Denoeux,
2007) as:

mΩ =
⋂
A⊂Ω

Aω(A) (1.7)

where:

• Aω(A) is a simple BBA defined by:mΩ
A (A) = 1− ω (A) , if A 6= Ω

mΩ
A (Ω) = ω (A)

(1.8)

• ω (A) is a value in [0..1] which represents the weights of the canonical conjunctive decom-
position (WCD) and it can be obtained via this formula:

ω (A) =
∏
B⊆A

q (B)
(−1)|B|−|A|+1

(1.9)

Table 1.2 shows an example of the canonical conjunctive decomposition calculation.

Canonical disjunctive decomposition: It is used to decompose subnormal BBAs (De-
noeux, 2007). Let mΩ be a subnormal BBA, then mΩ (its complement) is non dogmatic BBA
and it is decomposed as described in subsubsection 1.2.1.3, we will have mΩ =

⋂
A⊂ΩA

ω(A).
Assume that ν

(
A
)

= ω (A), the canonical disjunctive decomposition will be defined as:

mΩ =
⋃
A6=∅

Aν(A) (1.10)
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Table 1.2: Canonical conjunctive decomposition example
A ⊆ Ω ∅ {d1} {d2} {d1, d2} {d3} {d1, d3} {d2, d3} {d1, d2, d3}

m(A) 0 0.2 0.15 0 0.1 0.05 0.2 0.2

ω (A) 1.5125 0.5556 0.7273 1 0.9091 0.8 0.5 1

Table 1.3: Canonical disjunctive decomposition example
A ⊆ Ω ∅ {d1} {d2} {d1, d2} {d3} {d1, d3} {d2, d3} {d1, d2, d3}

m(A) 0.1 0 0 0.3 0 0 0.6 0

m(A) 0 0.6 0 0 0.3 0 0 0.1

ω (A) 2.8 0.1429 1 1 0.25 1 1 1

ν (A) 1 1 1 0.25 1 1 0.1429 2.8

For more detail, the reader can see (Denoeux, 2007). Table 1.3 presents an example of the
canonical disjunctive decomposition calculation.

1.2.2 BBA conversions

Basic belief assignment can be converted into other functions. They represent the same infor-
mation under other forms. What’s more, they are in one to one correspondence and they are
defined from 2Ω to [0, 1]. We will use functions described above:

• Belief (bel): belΩ (A) is the degree of belief of A. To obtain belΩ (A) we sum all BBAs
given to subsets of A, such that mΩ (∅) should not be included in belΩ (A). This function
quantifies the total belief that the actual state d0 belongs to A (Shafer, 1976).

belΩ (∅) = 0 and belΩ (A) =
∑
∅6=B⊆A

mΩ (B) , ∀A ⊆ ∅, A 6= ∅ (1.11)

mΩ (A) =
∑
B⊆A

(−1)
|A|−|B|

belΩ (B) , ∀A ⊆ Ω (1.12)

• Plausibility (pl): it is the dual of the belief function. pl (A) measures the maximum
belief that could given to the fact that the actual state d0 belongs to A (Smets, 2000).

plΩ (A) = belΩ (Ω)− belΩ
(
Ā
)
, ∀A ⊆ Ω (1.13)

plΩ (A) =
∑

B∩A=∅

mΩ (B) , ∀A ⊆ Ω (1.14)

mΩ (A) =
∑
B⊆A

(−1)
|A|−|B|−1

plΩ
(
B̄
)
, ∀A ⊆ Ω (1.15)
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Table 1.4: BBA conversions example
A ⊆ Ω m pl bel b q

∅ 0.15 0 0 0.15 1

{d1} 0.1 0.44 0.1176 0.25 0.44

{d2} 0.05 0.59 0.0588 0.2 0.59

{d1, d2} 0.2 0.73 0.4118 0.5 0.3

{d3} 0.12 0.5 0.1412 0.27 0.5

{d1, d3} 0.04 0.8 0.3059 0.41 0.14

{d2, d3} 0.24 0.75 0.4824 0.56 0.34

{d1, d2, d3} 0.1 0.85 1 1 0.1

• Commonality (q): qΩ (A) is the sum of BBAs allocated to under-sets of A.

qΩ (A) =
∑
B⊇A

mΩ (B) , ∀A ⊆ Ω (1.16)

mΩ (A) =
∑
A⊆B

(−1)
|B|−|A|

qΩ (B) , ∀A ⊆ Ω (1.17)

• Implicability (b): bΩ (A) is the sum BBAs given to sub-sets of A.

bΩ (A) =
∑
B⊆A

mΩ (B) , ∀A ⊆ Ω (1.18)

bΩ (A) = belΩ (A) + belΩ (∅) , ∀A ⊆ Ω (1.19)

mΩ (A) =
∑
B⊆A

(−1)
|A|−|B|

bΩ (B) , ∀A ⊆ Ω (1.20)

Table 1.4 shows an example of BBA conversions.

1.3 Principle of minimal commitment

The Principle of minimal commitment (PMC) is used when we have to choose a BBA
distribution from a set of all possible BBAs. This principle “is really at the core of the TBM,
where degrees of belief are degrees of justified supports” (Smets, 2000). As an example, imagine
that we have to choose a belief function over Ω = {a, b, c}, suppose we know that bel ({a}) = 0.2

and bel ({b, c}) = 0.5, suppose also, we have no other information on our frame of discernment
Ω. How can we adopt a BBA distribution given these partial constraints? There are many
BBAs that can satisfy them. To resolve a similar problem, we can use the PMC by choosing
the least committed BBA. It “formalizes the idea that one should never give more support than
justified to any subset of Ω” (Smets, 2000). The PMC is a variant of the principle of minimum
specificity introduced by Dubois and Prade in (Dubois and Prade, 1986), it is presented in
detail by Hsia in (Hsia, 1991).
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To choose the least committed BBA we can use the specificity measure proposed by
(Dubois and Prade, 1986).

S
(
mΩ
)

=
∑
∅6=A⊆Ω

mΩ (A) . log2 (|A|) (1.21)

This measure gives values in [0, log2 (|Ω|)]. Then the least committed BBA is the BBA that
maximizes the specificity measure. Also, we can choose a BBA by the mean of a comparison
between plausibility functions or belief functions (Smets, 2000). Then consider the case in
which we have two BBAs m1 and m2, and must choose the least committed one. First of all, we
transform BBAs into plausibility or belief functions, then we say thatm2 is not more committed
than m1 if we have pl1 (A) ≤ pl2 (A) , ∀A ⊆ Ω or bel1 (A)+m1 (∅) ≥ bel1 (A)+m1 (∅) , ∀A ⊆ Ω.
m2 is less committed than m1 if there is one strict inequality.

1.4 Combination rules

To combine bodies of evidence, first of all, we have to know if their sources are distinct or
not. Then we can use the appropriate combination rule. In this section, we present the most
known rules of combination of distinct body of evidence. We also, introduce some rules used
to combine those obtained from non distinct sources.

1.4.1 Distinct bodies of evidence

In this section, we introduce conjunctive and disjunctive combination rules that are useful to
combine distinct pieces of evidence.

1.4.1.1 Conjunctive combination rule

TBM conjunctive rule Consider two distinct BBA mΩ
1 and mΩ

2 defined on Ω, we can
obtain mΩ

1∩2 through the TBM conjunctive rule (also called conjunctive rule of combination
CRC) (Smets, 1993) as follows:

mΩ
1∩2 (A) =

∑
B∩C=A

mΩ
1 (B)mΩ

2 (C) , ∀A ⊆ Ω (1.22)

Equivalently, we can calculate the CRC via a more simple expression defined with the com-
monality function as:

qΩ
1∩2 (A) = qΩ

1 (A) qΩ
2 (A) , ∀A ⊆ Ω (1.23)

We can combine m1 with m2 and obtain the same result of the CRC, via their weight functions
ω1 and ω2 respectively (Denoeux, 2007). Then

mΩ
1∩2 =

⋂
A⊂Ω

Aω1(A)ω2(A) (1.24)
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Table 1.5: Combination rules example
A ⊆ Ω mΩ

1 mΩ
2 mΩ

1∩2 mΩ
1⊕2 mΩ

1∪2

∅ 0 0 0.355 0 0

{d1} 0.1 0.1 0.09 0.1395 0.01

{d2} 0.25 0.15 0.2175 0.3372 0.0375

{d1, d2} 0.2 0.1 0.045 0.0698 0.145

{d3} 0.2 0.35 0.2375 0.3682 0.07

{d1, d3} 0.1 0.05 0.0175 0.0271 0.12

{d2, d3} 0.1 0.15 0.0325 0.0504 0.25

{d1, d2, d3} 0.05 0.1 0.005 0.0078 0.3675

Properties

• Commutativity : mΩ
1 ∩mΩ

2 = mΩ
2 ∩mΩ

1

• Associativity : mΩ
1 ∩

(
mΩ

2 ∩mΩ
3

)
=
(
mΩ

1 ∩mΩ
2

)
∩mΩ

3

• Neutral element : the vacuous BBA (see subsection 1.2.1.1) is the neutral element of
the CRC.

Dempster’s rule It was firstly defined in (Dempster, 1967), it allows us to combine two
distinct BBAs and obtain a normalized one. Consider two distinct BBA mΩ

1 and mΩ
2 defined

on Ω, Dempster’s rule of combination is then:

mΩ
1⊕2 (A) =


∑

B∩C=Am
Ω
1 (B)mΩ

2 (C)

1−
∑

B∩C=∅m
Ω
1 (B)mΩ

2 (C)
, ∀A ⊆ Ω, A 6= ∅

0 if A = ∅
(1.25)

As we can see, if we apply the normalization rule to the result of the CRC we can obtain
the same result of the Dempster’s rule.

Example 1.2 Let mΩ
1 and mΩ

2 be two BBA functions defined on Ω. Table 1.5 gives a calcu-
lation example of the CRC, the Dempster’s rule of combination and the DRC.

�

1.4.1.2 Disjunctive combination rule

Consider two distinct BBAs mΩ
1 and mΩ

2 defined on Ω, we can obtain mΩ
1∪2 by the use of the

disjunctive rule of combination DRC (Smets, 1993; Denoeux, 2007) as follows:

mΩ
1∪2 (A) =

∑
B∪C=A

mΩ
1 (B)mΩ

2 (C) , ∀A ⊆ Ω (1.26)

The DRC has also, a simple expression defined by the implicability function as:

bΩ1∪2 (A) = bΩ1 (A) bΩ2 (A) , ∀A ⊆ Ω (1.27)
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1.4.2 Non distinct body of evidence

Rules defined above are used in the case where all sources are distinct and there is no relation
between them, i.e. every source defines his degree of belief on Ω independently of others. In
the case where there is some dependency between sources, combination rules defined here after
cannot be used. Then, there is a necessity to use appropriate rules. Denoeux introduces some
rules in (Denoeux, 2007) which are used to combine beliefs obtained from dependent sources.

1.4.2.1 Cautious conjunctive rule

(Denoeux, 2007) presents another rule for conjunctive combination called the cautious con-
junctive rule (CCRC) used to combine non distinct bodies of evidence. Let mΩ

1 and mΩ
2 be

two non dogmatic BBAs defined on Ω, then the resulting BBA mΩ
1∧2 obtained after the use of

CCRC will be defined by its corresponding weight function as:

ω1∧2 (A) = min (ω1 (A) , ω2 (A)) , ∀A ⊂ Ω (1.28)

mΩ
1∧2 (A) =

⋂
A⊂Ω

Aω1∧2 (1.29)

As in the case of distinct functions, there exists a normalized version of the CCRC called
normalized cautious rule (Denoeux, 2007). Furthermore, we obtain a normal BBA by the
use of this formula: 

mΩ
1∧∗2 (A) = k ∗mΩ

1∧2 (A) , ∀A ⊂ Ω, A 6= ∅

mΩ
1∧∗2 (∅) = 0

k =
(
1−mΩ

1∧2 (∅)
)−1

(1.30)

Properties

• Commutativity : mΩ
1 ∧mΩ

2 = mΩ
2 ∧mΩ

1

• Associativity : mΩ
1 ∧

(
mΩ

2 ∧mΩ
3

)
=
(
mΩ

1 ∧mΩ
2

)
∧mΩ

3

• Idempotence : mΩ ∧mΩ = mΩ

• Distributivity of
⋂

with respect to
∧
: mΩ

1 ∩
(
mΩ

2 ∧mΩ
3

)
=
(
mΩ

1 ∩mΩ
2

)
∧
(
mΩ

1 ∩mΩ
3

)
(Denoeux, 2007), also, generalized these rules by using positive t-norms/t-conorms. Then we
can replace the minimum operator by a positive t-norm/t-conorm. A positive triangular norm
or conorms (t-norm or t-conorm) is a binary operator (Klement and al, 2000). This offers the
possibility to use many t-norm (>) and t-conorm (⊥) operators. We give some examples of
these operators in the Table 1.6.

Example 1.3 Let mΩ
1 and mΩ

2 be two BBA functions defined on Ω. Table 1.7 gives a calcu-
lation example of the CCRC.

�
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Table 1.6: Triangular norm/conorm (Klement and al, 2000)
t-norms

Minimum t-norm x>Miny = min (x, y)

Lukasiewicz t-norm x>Ly = max (x+ y − 1, 0)

Drastic product x>Dy =

0 if (x, y) ∈ [0, 1]
2

min (x, y) otherwise

Frank t-norm x>sy =


min (x, y) if s = 0

x ∗ y if s = 1

logs

(
1 + (sx−1)∗(sy−1)

(s−1)

)
otherwise

t-conorms
Maximum t-conorm x⊥Maxy = max (x, y)

Lukasiewicz t-conorm x⊥Ly = max (x+ y, 1)

Drastic sum x⊥Dy =

1 if (x, y) ∈ ]0, 1]
2

max (x, y) otherwise

Probabilistic sum x⊥P y = x+ y − x.y

Table 1.7: CCRC example
A ⊆ Ω mΩ

1 mΩ
2 mΩ

1∧2

∅ 0 0 0.5478

{d1} 0.1 0.1 0.1246

{d2} 0.25 0.15 0.0949

{d1, d2} 0.2 0.1 0.0475

{d3} 0.2 0.35 0.1258

{d1, d3} 0.1 0.05 0.0237

{d2, d3} 0.1 0.15 0.0237

{d1, d2, d3} 0.05 0.1 0.012
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1.4.2.2 Bold disjunctive rule

Let mΩ
1 and mΩ

2 be two subnormal BBAs (Denoeux, 2007), then the resulting BBA mΩ
1∨2

obtained after the use of the bold disjunctive rule of combination (BDRC) will be defined
by its disjunctive weight function (see paragraph 1.2.1.3) as:

ν1∨2 (A) = min (ν1 (A) , ν2 (A)) ∀A ⊆ Ω, A 6= ∅ (1.31)

mΩ
1∨2 (A) =

⋃
A 6=∅

Aν1∨2(A) (1.32)

Properties

• Commutativity : mΩ
1 ∨mΩ

2 = mΩ
2 ∨mΩ

1

• Associativity : mΩ
1 ∨

(
mΩ

2 ∨mΩ
3

)
=
(
mΩ

1 ∨mΩ
2

)
∨mΩ

3

• Idempotence : mΩ ∨mΩ = mΩ

• Distributivity of
⋃

with respect to
∨
: mΩ

1 ∪
(
mΩ

2 ∨mΩ
3

)
=
(
mΩ

1 ∪mΩ
2

)
∨
(
mΩ

1 ∪mΩ
3

)
1.4.3 Conditioning rule

Suppose we learn thatA ⊆ Ω is true, then we should update our system through the conditioning
rule. It is a particular case of the conjunctive rule of combination, using the CRC between the
given BBA mΩ

1 defined on Ω, and a second BBA mΩ
2 defined as:

mΩ
2 (B) =

1 ifB = A

0 otherwise
(1.33)

Hence, we obtain the conditional BBA through the Dempster’s conditioning rule

mΩ [B] (A) =
∑
C⊆B

mΩ
1 (A ∪ C) , ∀A ⊆ B (1.34)

belΩ [A] (B) , ∀B ⊆ Ω which is the belief of B given A (Smets, 1993), as follows:

belΩ [A] (B) = belΩ
(
B ∪A

)
− belΩ

(
A
)
, ∀B ⊆ Ω (1.35)

1.5 Frame of discernment operations

In real word applications, we have pieces of evidence defined on many frame of discernment. To
work flexibly under this case, TBM provides many tools that allow us to redefine these pieces
under a common space. In this section we present the well known operations which are the
refinement, the vacuous extension, the coarsening and the marginalization.
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1.5.1 Refinement, coarsening and vacuous extension

Let Ω = {d1, d2, ..., dn} and Θ = {o1, o2, . . . , om} be two distinct frames of discernment, we said
that there is a refinement between Ω and Θ if there exists an application < defined as follows:

< : 2Ω → 2Θ

A 7→ < (A) (1.36)

Hence, the refinement is a mapping between two frames of discernment (Shafer, 1976; Smets,
1993; Denoeux and Ben Yaghlane 2002), i.e. in our case from Ω to Θ, so every element A of
Ω has an image < (A) on Θ, this image can be a subset of Θ. The refinement is used to refine
hypothesis (decisions) included in Ω by those in Θ.

The coarsening is the dual operation of the refinement (Denoeux and Ben Yaghlane 2002),
then we said that Θ is a coarsening of Ω if there exists a refinement that maps Ω to Θ.

In addition, if we have a BBA mΩ
1 defined on Ω we can obtain a BBA mΘ

2 defined on Θ by
the mean of an operation called vacuous extension (Shafer, 1976; Smets, 1993), noted ↑, as:

2Ω → 2Θ

mΩ
1 (A) 7→ mΘ

2 (< (A)) = mΩ↑Θ
1 (< (A)) (1.37)

Example 1.4 Consider the example 1.1, we have Ω = {P, Pa,M} and the killer was a male
or a female, then we can define a second frame of discernment which is Θ = {male, female}.
Then Θ is a caorsening of Ω, its corresponding refinement < is defined from 2Θ to 2Ω as:

• < ({male}) = {P, Pa}

• < ({female}) = {M}

We define also a BBA function on Θ by the mean of the vacuous extension as:

• mΘ ({male}) = mΩ ({P, Pa}) = 0.5

• mΘ ({female}) = mΩ ({M}) = 0.5

�

Extension on the product space: First, we define the product space Ω × Θ (Smets,
1993), which is the set of couples defined by {(di, oj) , ∀di ∈ Ω, ∀oj ∈ Θ}. Then, if we would
like to combine the two BBAs mΩ

1 and mΘ
2 , we should define them onto the same space which

is Ω × Θ. This can be made by the use of the vacuous extension operator, hence, to obtain
mΩ↑Ω×Θ

1 , mass value initially allocated to A ⊆ Ω will be reallocated to A × Θ, i.e. to the set
{(di, oj) , ∀di ∈ A, ∀oj ∈ Θ}, so:

mΩ↑Ω×Θ
1 (B) =

mΩ
1 (A) if B = A×Θ, A ⊆ Ω

0 otherwise
(1.38)
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By a same manner, we obtain mΘ↑Ω×Θ
2 . Then we can combine the BBAs obtained by the mean

of an appropriate combination rule as the CRC (see paragraph 1.4.1.1) if our BBAs are distinct.
The resultant BBA is given by

mΩ×Θ
1∩2 (C) =

(
mΩ↑Ω×Θ

1 ∩mΘ↑Ω×Θ
2

)
(C) (1.39)

=

mΩ
1 (A) .mΘ

2 (B) if C = A×B, A ⊆ Ω, B ⊆ Θ

0 otherwise
(1.40)

Example 1.5 Suppose that we have two frames of discernment Ω = {E,F} and Θ =

{A,B,C}, and we have two BBAs mΩ and mΘ defined respectively on Ω and Θ:

• mΩ ({E}) = 0.2, mΩ ({F}) = 0.5 and mΩ ({E,F}) = 0.3

• mΘ ({A}) = 0.8, mΘ ({B,C}) = 0.1 and mΘ ({A,B,C}) = 0.1

We want to combine these two BBAs. We first define the product space
Ω×Θ = {(E,A) , (E,B) , (E,C) , (F,A) , (F,B) , (F,C)}, then we obtain mΩ×Θ

1∩2 by applying the
CRC:

mΩ×Θ
1∩2 ({(E,A)}) = 0.16

mΩ×Θ
1∩2 ({(F,A)}) = 0.40

mΩ×Θ
1∩2 ({(E,A) , (F,A)}) = 0.24

mΩ×Θ
1∩2 ({(E,B) , (E,C)}) = 0.02

mΩ×Θ
1∩2 ({(E,A) , (E,B) , (E,C)}) = 0.02 (1.41)

mΩ×Θ
1∩2 ({(F,B) (F,C)}) = 0.05

mΩ×Θ
1∩2 ({(F,A) , (F,B) , (F,C)}) = 0.05

mΩ×Θ
1∩2 ({(E,B) , (E,C) , (F,B) , (F,C)}) = 0.03

mΩ×Θ
1∩2 ({(E,A) , (E,B) , (E,C) , (F,A) , (F,B) , (F,C)}) = 0.03

�

1.5.2 Marginalization

The marginalization, noted ↓, is a particular case of the coarsening (Smets, 1993). This operator
is used when we have a BBA function defined on the product space Ω×Θ and we want to redefine
it on Ω as:

mΩ×Θ↓Ω (A) =
∑

B⊆Ω×Θ, B↓Ω=A

mΩ×Θ (C) , ∀A ⊆ Ω (1.42)

such that B ↓ Ω is the projection of B on Ω.
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1.6 Generalized Bayesian theorem

Generalized Bayesian Theorem (GBT), proposed by (Smets, 1993), is a generalization
of the Bayes’ theorem to belief functions under the TBM. GBT uses belief functions instead
of probability functions. Hence, it performs a more flexible modeling of uncertainty, imprecise
and conflictual pieces of information.

In this section, we present the generalized likelihood principle which is in the heart of the
GBT. After that, we talk about the GBT and its duality with the DRC (see subsection 1.4.1.2).

1.6.1 Generalized likelihood principle

Smets generalizes the likelihood principle, defined under the probability theory, in order to
derive the GBT and the DRC. The new principle is called generalized likelihood principle .
“It simply postulates that the belief function induced by the disjunction of two pieces of evidence
is only a function of the belief function induced by each piece of evidence” (Smets, 1993). It is
applied to plausibility function as:

∀A ⊆ Θ, ∀d ⊆ Ω, plΩ [A] (d) depends only on
{
plΩ [ai] (d) , plΩ [ai]

(
d̄
)

: ai ∈ A
}

(1.43)

Hence, if we have a set of plausibility distributions conditioned to singletons w can obtain
the plausibility distribution conditioned to the union of singletons by the mean of the DRC as:

plΩ [A] (d) = 1−
∏
ai∈A

(
1− plΩ [ai] (d)

)
(1.44)

1.6.2 Generalized Bayesian theorem and disjunctive rule of combina-
tion

The GBT has the advantage of taking many forms thanks to belief functions. What’s more,
Smets presents several expressions (Smets, 1993) used to generate many forms of distributions
of belief functions by the mean of the GBT. In this document, we present those based on the
conditional plausibility. Let Ω and Θ be two frames of discernment, ω ∈ Ω and θ ∈ Θ:

plΘ [ω] (θ) = 1−
∏
θi∈θ

(
1− plΩ [θi] (ω)

)
(1.45)

qΘ [ω] (θ) =
∏
θi∈θ

plΩ [θi] (ω) (1.46)

mΘ [ω] (θ) =
∏
θi∈θ

plΩ [θi] (ω) .
∏
θi∈θ̄

(
1− plΩ [θi] (ω)

)
(1.47)

Duality between the GBT and the DRC: This duality comes from the fact that
plΩ [θ] (ω) = plΩ×Θ (ω × θ), hence we can write:

plΩ [θ] (ω) = plΘ [ω] (θ) (1.48)

Then, functions 1.44 and 1.48 allow as to derive function 1.45.
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1.7 Deconditionalization

Deconditionalization (Smets, 1993) is the inverse operation of conditioning. It aims to
transform the conditional belief distribution in order to return to the original distribution, i.e.
before conditioning. But, in the majority of cases we cannot obtain the original distribution.
That’s why Smets (Smets, 1993) proposed to choose the least committed distribution given via
this function:

mΩ⇑ (A ∪ B̄) = mΩ [B] (A) , ∀C ⊆ B (1.49)

This operation can be used to merge a set of BBA mΩ [θi] defined on Ω conditionally to single-
tons θi ⊆ Θ. In this case the resultant BBA is defined on the product space.

mΩ×Θ (S) =
∏
θi∈Θ

mΩ [θi] (υ) , ∀S ⊆ Ω×Θ (1.50)

qΩ×Θ (S) =
∏
θi∈Θ

qΩ [θi] (υ) , ∀S ⊆ Ω×Θ (1.51)

where υ = ((θi × Ω) ∩ S)
↓Ω, this operation is derived by Smets from the GBT and the decon-

ditionalization operation.

1.8 Making decision

The main purpose of the TBM is to make the optimal decision in a world dominated by
uncertainty, imprecision and conflict. Making a decision is to choose one hypothesis among
those belonging to our frame of discernment and it can be made automatically or by an expert
of the domain where TBM is used. As mentioned in (Smets and Kennes, 1994), we can make a
coherent decision if our model (system) can be described by a probability distribution defined on
our power set

(
2Ω
)
. As shown in Figure 1.1, pignistic level is used to transform belief functions,

resulting from the credal level, to a probability distribution via the pignistic transformation.

Pignistic probability Pignistic probability can be used to make decision, it transforms be-
lief function to a classical probability function defined on same frame of discernment Ω. This
transformation is called the pignistic transformation (Smets, 2005).

Let mΩ be a BBA function defined on Ω, mΩ can be transformed into a probability distri-
bution via the pignistic transformation (Smets, 2005) using this formula:

BetP
{
mΩ
}

(di) =
1

(1−mΩ (∅))
∑

A⊂Ω,di∈A

mΩ (A)

|A|
(1.52)

where |A| is the number of elements belonging to A. We choose generally the hypothesis that
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maximizes the pignistic probability:

d0 = arg max
di∈Ω

BetP
{
mΩ
}

(di) (1.53)

Plausibility criteria We can use other criteria to make a decision such as the plausibility
criteria. Therefore, if we consider the plausibility as a criteria for making decision, we choose
the decision d0 that maximizes the plausibility distribution.

d0 = arg max
di∈Ω

pl (di) (1.54)

1.9 Conclusion

The Transferable Belief Model (TBM) allows us to represent our belief under many formats
via belief functions. Also, it offers many tools which are use to extract new information. From
these tools we mention the combination rules that enable the fusion of several pieces of evidence
which can be defined on the same frame of discernment or on different frames. We mention
also the generalized Bayesian theorem that performs many tools used in inference processes.

These tools will be used after in this document to present and explain the belief hidden
Markov model.



2
Speech processing

2.1 Introduction

We use speech very often in our everyday life; it is our common form of communication. How-
ever, we hardly ever ask about speech production and perception mechanisms. Then to give to
the computer the ability to understand and produce speech sounds, we must begin by under-
standing the natural production and perception mechanisms.

Speech processing is widely used and it covers many categories, as:

• Speech synthesis: its goal is to produce an artificial speech. The input of speech
synthesis system is the text that we want it to be read, and its output is the speech signal
that corresponds to our text.

• Speech segmentation : is the process of identifying boundaries between acoustic units
(phonemes, diphones, triphones, syllables, words,...) in the spoken speech signal. It can
be divided into two subcategories:

– With linguistic constraint : The output of this discipline will be used in the process
of speech synthesis. Its entry will be a text with his corresponding speech signal and
its output will be signal by acoustic unit.

– Without linguistic constraint : named speech recognition, it aims to identify the
spoken text; its input will be the speech signal, and its output will be spoken text.

• Speaker recognition : its purpose is to recognize the speaker. A speaker recognizer can
either identify the speaker who produced the speech signal, or it can be used in case when
we have doubt in a person and we would like to check if that person has produce the
speech signal or not.

In this chapter, we will talk about the speech signal characteristics, its production and per-
ception processes, and its coding methods. We will introduce an overview of phonetics and
phonology. Finally, a literature review of speech synthesis and segmentation methods will be
presented.

26
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Figure 2.1: Phonetic apparatus (Bouman, 2009)

2.2 Speech signal characteristics

2.2.1 Speech production

Human speech is distinguishable from other sounds by its characteristics and its production
mechanism. The phonetic apparatus (Figure 2.1) is the responsible system of the production
of the speech. There are many elements that contribute in the process of generation of speech
signal, the most important are the following:

• The nervous system,

• The air generated by the respiratory system,

• Vocal cords which are located in the larynx,

• Tongue and lips,

• Oral and nasal cavities.

The nervous system is the first responsible of the generation of the speech signal. First of all,
we choose words to be said by the mean of our brain. Then, our choice is converted to orders
given by the nervous system to the phonetic apparatus. This last transforms these orders into
speech signal.

The respiratory system is the source of the energy required to produce sounds. The air
comes from the two lungs through the trachea. Then comes the role of the larynx (Figure1 2.2
shows a top view of the larynx). As shown in Figure 2.1, the larynx is located at the top of the
trachea and it is responsible of the phonation.

1Available on: http://ent4students.blogspot.com/2008/05/larynx-examination.html
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Figure 2.2: Larynx top view

Phonation is made by the rapid opening and closing of the vocal cords, this process is called
vibration. Figure 2.3 shows the vocal cord vibration cycle (The Voice Problem Website, 2003),
this cycle occurs repeatedly and many times every second. One vibratory cycle is as follows:

• Schema 1: Air is moved out of the lungs and towards the closed vocal cords.

• Schema 2 and 3: Air pressure develops below vocal cords and starts opening them.

• Schema 4 and 5: Brief opening of the vocal cords with the release of air.

• Schema 6, 7, 8 and 9: The release of air causes a low pressure. Then vocal cords re-
approximate.

• Schema 10: Vocal folds are closed again, the air cuts off and a pulse of air is released.

This process is the cause of the production of voiced sounds. Voiced sounds, vowels for
example, are characterized by the vibration of the vocal folds. The vibration rate is called
fundamental frequency and noted (F0). In contrast, unvoiced sounds, like f and h, are
characterized by the passage of air without vibration of the vocal cords.

After this passage of air (which produces a sound), the sound passes through the vocal tract
towards the mouth and the nose. Many speech sounds are then produced depending on the
geometric configuration of articulators (tongue, lips, teeth, etc).

2.2.2 Speech perception

In this section, we explain the natural process by which the sounds of language are heard,
interpreted and understood, this process is called speech perception. Human auditory system
(see Figure2 2.4) is the responsible of the perception of sounds, it includes external, middle and
inner ear.

2Available on: http://www.stanford.edu/class/me220/data/lectures/lect01/auditory.html
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Figure 2.3: The vocal cord vibration cycle (The Voice Problem Website, 2003)

• The outer ear is the responsible of the detection of the sound waves by the pinna of the
ear, then waves enter the auditory canal until reaching the ear drum.

• The middle ear contains the ear drum and three bones: malleus, incus and stapes. They
are connected by joints and ligaments and they form a pathway that transports vibrations
from the eardrum to the inner ear.

• The inner ear encodes vibrations and transmits them to neurons. In fact, the cochlea
converts sounds from the outer ear into electrical impulses that can be transmitted to the
brain via the auditory nerve.

After this process, the sound waves are converted into electrical impulses and transmitted
to the brain, exactly to the auditory cortex. The auditory cortex is the part of the brain that
is responsible of decoding and comprehension of speech.

2.2.3 Signal representation

Sound waves should be transformed into a variety of representations in order to be understood.
In this document, we talk about graphic representations and some signal characteristics.
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Figure 2.4: Auditory system

2.2.3.1 Signal characteristics

Speech signal is an acoustic phenomenon. It appears as an air pressure caused by the phonetic
apparatus. It has many characteristics, from which we introduce the following:

Fundamental frequency (F0) also called pitch, it measures the vibration rate of vocal cords
and it is expressed on Hertz (number of cycles per second). The fundamental frequency is a
function of the fundamental period (T ) which is the duration of an oscillation, then F0 = 1

T .
Fundamental frequency varies approximately from 70 to 250 Hz for men, from 150 to 400 Hz
for women and from 200 to 600 Hz for children.

Energy is related to the air pressure moved out of the lungs and towards the larynx. It
is produced by larynx vibrations and it characterizes the sound intensity. It is measured on
decibel (dB).

Signal spectrum is a representation of the signal in the frequency domain, i.e. in terms of
the vibration rate at each individual frequency. It is measured on dB/Hz.
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Figure 2.5: Time-frequency representation

2.2.3.2 Graphic representations

Time-frequency representation is a two-dimensional representation with time along the
first axis and frequency along the second (Riley, 1987). Figure3 2.5 shows an example of time-
frequency representation (the schema at the bottom) of the signal corresponding to the word
“kiwi”. The top schema of this figure shows the time evolution of the amplitude of the signal.

Spectrogram is a three-dimensional representation, generally, it is presented as a graph
with two geometric dimensions which are the time in the first axis and the frequency in the
second. The third dimension indicates the amplitude of the signal (of a particular frequency
at a particular time) and it is represented by the intensity of the gray color in the schema. An
example is shown in Figure 2.6.

2.2.4 Feature extraction

2.2.4.1 Linear predictive coding

Linear predictive coding (LPC) is a digital method for encoding the speech signal. It predicts
the current speech sample s (n) by a linear function of the past p speech samples (Rabiner and
Juang, 1993). It is generally calculated as a weighted sum of the previous speech samples.

s (n) =

p∑
i=1

ais (n− 1) +Gu (n) (2.1)

Such that a1, a2, . . . ap are the linear prediction coefficients and they are supposed to be constant,
u (n) is a normalized excitation and G is the gain of excitation. The transformation function is

3The figure is a screen shot of the open-source program WaveSurfer.
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Figure 2.6: Spectrogram of the word “kiwi”

then given by:
H (z) =

1

A (z)
=

1

1−
∑p
i=1 aiz

−i (2.2)

Estimation of this model consists on estimating the linear prediction coefficients of the digital
filter H (z) such that we know its output signal which is s (n). To solve this problem, many
methods can be used like the autocorrelation method and covariance method. More detail and
examples can be found in (Rabiner and Juang, 1993).

2.2.4.2 Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCC) are commonly used in the speech recognition pro-
cess because they take human perception sensitivity with respect to frequencies into account.

The computational steps (Nefti, 2004) are the following:

1. Pre-emphasis: In this step the speech signal s (n) passes through a filter which empha-
sizes higher frequencies.

s2 (n) = s (n)− a.s (n− 1) (2.3)

where s2 (n) is the output signal and a coefficient is a value between 0.9 and 0.1. The goal
of this step is to maintain all frequencies to be above the perceptual hearing threshold.

2. Farme blocking : The speech signal is segmented into N frames with the length within
the range of 20 to 40 ms. A frame is taken every 5 ms.
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3. Hamming windowing : Each frame is multiplied with a hamming window of the form:

w (n) = 0.54− 0.46 cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1 (2.4)

Then if our input frame is s (n) our output frame will be s (n)w (n).

4. Fast Fourier Transform or FFT : This step is used to convert each frame from time
domain into frequency domain. Then we will obtain the magnitude frequency of every
frame.

5. Mel Filter Bank Processing : In this step, we multiply the magnitude frequency ob-
tained by a set of 24 triangular bandpass filters equally spaced along the Mel frequency
scale. We get the log energy of each triangular bandpass filter. Then each magnitude
frequency is transformed into a vector of 24 log energy Ej .

6. Discrete cosine transform or DCT : We apply discrete cosine transform on the 24
log energy Ej to have 12 Mel-scale cepstral coefficients. DCT is performed using this
formula:

Ci =

N∑
j=1

Ej . cos

(
π.i

N
(j − 0.5)

)
, 1 ≤ i ≤ L (2.5)

where N is the number of the log energies and L is the number of coefficients. Then we
obtain 12 Mel-frequency cepstral coefficients MFCC that can be used alone. To improve
performance, we can add other features which are the frame energy and delta cepstrum.

7. Log Energy: The frame energy is also important and can be added as a 13th features.
The log energy is obtained by applying this formula:

E = log

(
N∑
n=1

s (n)
2

)
(2.6)

where s (n) is the speech frame.

8. Delta Cepstrum : are the time derivatives of the MFCCs. Using them as features can
ameliorate the performance of our system.

2.3 Phonetic and phonology

The phonetic and the phonology are two linguistic disciplines (Pierrehumbert, 1990), they cover
the field of sentence utterance. Phonetics looks how sounds are produced, transmitted and per-
ceived. Whereas, phonology is concerned with how sounds function are related to each other
in a language. In other words, phonetics study sounds (phones) of the language and phonology
study relations and correlations between these sounds. Phonetics provide the descriptive tools
that are used in the study of the phonological aspects of a language.
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The phoneme is the basic unit of a given language; words are analyzed as a sequence of
phonemes. They are used in the phonology as a linguistic coding unit. Whereas phonetic study
the production and perception mechanisms and physical properties of these phonemes. Hence
we distinguish between the articulatory phonetic, the perceptive phonetic and the acoustic
phonetic (Jarifi, 2007).

• Articulatory phonetic: studies how humans produce speech sounds. It studies the
roles of different organs of the phonetic apparatus and their configuration during the
production of speech sounds.

• Perceptive phonetic: studies the human auditory system and the mechanisms of per-
ception of speech sounds.

• Acoustic phonetic: studies the aspects of the speech sound, it is interested by features
and properties of the speech signal.

Speech sounds can be classified according to their articulatory characteristics. The two major
classes that can be distinguished in any language are: consonants and vowels.

Vowels are spoken sounds pronounced with an open vocal tract (Wikipedia, 2012). Vowels
can be classified according to the position of the articulatory features while they are produced.
As shown in Figure4 2.7, in English we can distinguish between:

• High and low vowel: according to the vertical position of the tongue. Then it is positioned
high for high vowel and low for low vowel. For example [i] and [u] are high vowels, [a] is
a low vowel.

• Front and back vowel: according to the position of the tongue in the mouth. We have a
front vowel when the tongue is positioned forward in the mouth such as [i] and [e]. We
have a back vowel when the tongue is positioned back in the month such as [u] and [o].

• Rounded and unrounded vowels: according to the form of the lips. When the lips are
rounded, so we have rounded vowel such as [u] and [o]. Otherwise we have unrounded
vowel like [i].

Some vowel examples are given in Figure 2.8.

Consonants are spoken sounds produced with complete or partial closure of the vocal tract.
There exist many classifications of consonants. According to (Peccei, 2006), consonant can be
classified by: voice, place of articulation or manner of articulation.

• We distinguish between voiced and unvoiced consonant. Voiced consonant are character-
ized by the vibration of vocal cords such as [b], whereas, unvoiced consonant are not like
[p].

4Available on: http://www.utexas.edu/courses/linguistics/resources/phonetics/vowelmap/index.html
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Figure 2.7: English vowel

Figure 2.8: Vowel examples (Peccei, 2006)

• The main place of articulation of the consonant can be used to classify them, for example
we distinguish:

– Labial: the air flow is obstructed by lips, for example [p].

– Labio-dental: the air flow is obstructed by lips and teeth, for example [f ].

– dental: the air flow is obstructed by placing the tongue between the teeth, like [t].

• The main manner of articulation can also be used to distinguish between consonant as:

– Plosive: also called occlusive or oral stop. It is produced when the vocal tract is
blocked so that all airflow ceases, hence it is a stop consonant. It can be done by the
tongue as [t], [k] or by the lips as [b], [p].

– Fricative: When these sounds are produced, a turbulence is caused by forcing the
air trough a smaller opening, such as [s], [z].

– Nasal: produced when the airflow is directed through the nose like [m], [n].

Some consonant examples are given in Figure 2.9.
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Figure 2.9: Consonant examples (Peccei, 2006)

2.4 Speech synthesis

The main purpose of the speech synthesis is to read any text. It is defined by (Dutoit, 1996)
as “the automatic production of speech, through a grapheme-to-phoneme transcription of the
sentences to utter ”. According to this definition, a Test-To-Speech synthesizer includes two
important processes:

• Natural Language Processing (NLP): transforms the text into a phoneme sequence with
its desired prosody5.

• Digital Signal Processing (DSP): generates the speech signal using received information
(phoneme sequence and prosody).

Speech synthesis can be classified into three major classes of methods: synthesis-by-rule, artic-
ulatory synthesis and synthesis-by-concatenation.

2.4.1 Synthesis-by-rule

Rule based speech synthesis systems study the speech signal in order to describe it by the
evolution of a set of parameters. These parameters are then used to deduce a set of rules that
models phonemes representation, transition between phonemes, etc. Synthesis system uses
these rules to create an artificial spectrogram that corresponds to the input text. Electrical
generators and resonators are then used in order to generate the speech signal (Dutoit and al,
2002). Formant synthesis is a variant of the synthesis by rule (Klatt, 1980), it models speech
waveform by a set of rules in the acoustic domain. This last is the most used in synthesis by
rule systems.

5Prosody is the music of a spoken language, it includes intonation and rhythm.
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2.4.2 Articulatory synthesis

Articulatory synthesis reproduces the functioning of the human vocal apparatus. It models the
vocal tract, larynx, lips, nasal cavity and the different articulators. It analyzes their positions
during the production of different speech sounds (Maeda, 1990). These information are then
used to generate the artificial speech.

2.4.3 Synthesis-by-concatenation

Concatenative synthesizers are based on the use of a speech database in which we found acous-
tic units and their corresponding speech sounds. Before starting, the synthesis process speech
database should be created. First of all, we choose the speech units (acoustic units) that can
be the phone (realization of one phoneme), the diphone (unit that begin in the middle of a
phone and end in the middle of the following one), the triphone (like diphone except that they
include a complete central phone). The second step is to create an exhaustive list of chosen
acoustic units. A speech corpus is then digitally recorded ensuring the appearance of all units.
A segmentation step is then needed, it can be done manually by expert or by the mean of a
segmentation algorithm (see subsection 2.5.1). Finally, the speech database is created (Dutoit,
1996). After the creation of the speech database, the speech synthesis can begin. The first step
consists on transforming the sequence of phonemes, performed to the synthesizer, into acoustic
units sequence. Then, the speech sound is produced by concatenating speech units pre-prepared.

Unit selection concatenation is a variant of speech synthesis by concatenation (Hunt and
Black, 1996; Dutoit and al, 2002). It uses a large database that contains several exemplary of
the same acoustic unit instead of only one. The advantage of having many exemplary is that
we can take into account the phonetic context of the unit, in fact varying the context may vary
the pronunciation. Also, we can have acoustic units of variable size, and then the database
can contains phones, diphones, subwords, words, etc. Through the synthesis process, a unit
selection step should be done. In fact, we must choose the appropriate units taking into account
the context prosodic. Unit selection concatenation gives the most natural speech signal.

2.5 Speech segmentation

Speech segmentation can be classified into two classes of methods, the first one is called speech
segmentation with linguistic constraint, and the second is called speech segmentation without
linguistic constraint. Speech segmentation can be done manually, however, it requires an expert
and needs a lot of time also it is very expensive. Hence automatic segmentation will be easier,
faster and cheaper.
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2.5.1 Speech segmentation with linguistic constraint

This category of segmentation takes two inputs which are the speech signal and its corresponding
text (phone sequence). It is used to detect boundaries between acoustic units (generally, between
phones). Results of this category of segmentation are used to create the speech data base that
is used for the speech synthesis by concatenation of acoustic units. It is also called speech
segmentation .

2.5.1.1 Dynamic time warping segmentation

Segmentation by Dynamic time warping (DTW) is also called speech synthesis-based
phonetic alignment because it is based on the use of a speech synthesis system (Malfère and
al, 2003). The speech synthesis system is used to create a reference speech pattern such that
its phonetic segmentation is known. These patterns are then used by the DTW algorithm to
detect boundaries between acoustic units by comparing the natural speech signal and the ref-
erence speech pattern. Therefore, the segmentation process is based on the minimization of an
accumulated distance calculated between the two speech signals. Finally, the DTW algorithm
chooses the alignment that minimizes the spectral distortion between the two acoustic frames.

The advantage of this segmentation method is the absence of the learning phase, and its
disadvantage is that it must use a synthesis system (specific to the language) and natural
speech (that will be segmented) should be obtained from the same speaker who had generated
the reference speech signal (Nefti, 2004).

2.5.1.2 Neural network based segmentation

This method is based on the use of a state-transition model associated to every acoustic unit.
Each acoustic unit is transformed into a sequence of phone; the length of this sequence is used
to determine the number of state. Parameters of these models (transition probabilities) are
then estimated (Vorstermans and al, 1996). These models are then used to align the speech
signal to its corresponding phonetic transcription. Next, a first segmentation is made and the
possible boundaries are generated. After, two neural networks are used. Before their use,
they required a training phase using a corpus of 10 minutes. The neural networks are used to
estimate the posterior phonetic segment and the phonetic class probabilities of the language.
These probabilities are then used to adjust the segmentation and to eliminate the least probable
boundary. The reader can find more detail in (Vorstermans and al, 1996).

2.5.1.3 Fusion approach for speech segmentation

It is known that segmentation algorithms do not provide the same segmentation results, in fact,
some algorithms are more preferment in the detection of some types of phoneme transitions
(segmentation marks) than others. Hence, the fusion method is proposed by (Jarifi and al,
2008). It allows us to use many segmentation algorithms that they are complementary in terms
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of transition mark detection. Furthermore, a score is attributed to every algorithm and type
of transition in order to select the appropriate mark of transition or to combine many selected
marks.

2.5.2 Speech segmentation without linguistic constraint

Speech segmentation without linguistic constraint aims to label the speech signal. In other
words, it searches to predict the spoken words automatically. It is also named speech recog-
nition . There exist many methods that can be classified according to their recognition perfor-
mance to detect some classes of acoustic-phonetic units than other. Some of these methods are
described in this section.

2.5.2.1 Detection of breaks of signal stationarity

These methods suppose that the speech is a sequence of stationary segments, hence, statistical
models are used in order to detect breaks of stationarities in the speech signal. Finding breaks
of stationarity is equivalent to to detect changes in the parameters of the models. Among these
methods we present the following.

Brandt’s GLR method supposes that the speech signal is represented by a window of
observation w0 of length n and it is characterized by a vector of parameters θ0. The goal of
the algorithm is to find the change instant r in w0 that corresponds to the change detected
in θ0 (André-Obrecht, 1988; Jarifi and al, 2005). In the first step, the algorithm suppose that
there exist two hypothesis H0 and H1: H0 supposes that there is no change instance and θ0

corresponds to one segment, H1 considers that there exists a change instant r and the parameter
vector is divided into two vectors θ1 and θ2 that correspond to w1 of length r and w2 of length
(n− r), respectively. Brandt’s Generalized Likelihood Ratio (GLR) decides between the two
hypothesis by calculating the likelihood ratioD and comparing it to a threshold λ for all possible
r, then it chooses the instant r that maximizes this test.

Divergence method is based on the use of the divergence test which is a statistical test
proposed by (Basseville and Benveniste, 1983). This test is used for making a decision between
segmenting the speech signal in a given instant or not. Divergence test is a distance measure
obtained by the cumulative sum of the mutual entropies between two statistical models.

So in the divergence method, we define two models, the first one is estimated in a fixed
window (signal sample), whereas, the second is adjusted to moving window with the same size.
We fix the first model and at each iteration of the algorithm we move our second window, we
calculate a model and the divergence test. When our models are too much different from each
other, a segmentation mark is done and the current second model becomes a reference for the
next pass of the algorithm.
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The problem with this method is its omission of some transitions between voiced segments.
This omission is caused by the asymmetric criteria of the divergence test, that is why the
forward-backward divergence method is introduced.

Forward-backward divergence method is used with voiced segment and it is introduced
by (André-Obrecht, 1988) in order to avoid omissions caused by the asymmetric criteria of the
divergence test. This method fixes the minimum duration for two successive voiced segments
noted Lmin. The forward procedure is used to segment the speech signal. If the length of the
current segment is greater than Lmin, then we use the backward procedure. If this last detects
a break then the signal is re-segmented and the forward procedure will begin its next iteration
from the new segmentation mark. Forward and backward procedures use the same principle of
the divergence method, except that the moving window in the backward procedure is moved in
the reverse direction.

2.5.2.2 Spectral variation detection

Spectral variation detection is a speech recognition technique based on the use of the Spectral
Variation Function (SVF). “SVF is defined as a correlation measure between successive
windows of acoustic observation vectors” (Petek and al,1996). The definition of this measure
comes from the property that the signal characteristics change rapidly between two successive
speech segments. SVF detects this rapid change by its local maxima (Brugnara and al, 1993).

2.5.2.3 Voicing detection based method

Voicing detection is used in many applications of speech processing from which the speech
recognition. The goal of the voicing detection based methods is to estimate the fundamental
frequency F0 in speech samples, then these frequencies are used as a feature in the recognition
process as the case of (Martin and Mauuary, 2003). Voicing detection can be performed by
several techniques like RAPT (Talkin, 1995), YIN (De Cheveigne and Kawahara, 2002) and
voicing detection based on residual harmonic (Drugman and Alwan, 2011).

2.5.2.4 HMM segmentation

Hidden Markov Models (HMM) have shown the capacity and performance to treat large speech
corpus for several years (Rabiner, 1989; Rabiner and Juang, 1993). It is a statistical approach
that can be used for speech segmentation with and without linguistic constraint. It is performed
in two steps. The first is the learning step in which model parameters are learned using a pre-
segmented speech signal. The second is the decoding or alignment step. In the case of the speech
segmentation with linguistic constraint, HMMs are used in order to detect boundaries of each
acoustic unit. Whereas, in the case of the speech segmentation without linguistic constraint,
HMMs are used to find the sequence of the acoustic units in the signal and their boundaries.
More details and literature review of this method are given in the next chapter.
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2.6 Conclusion

In this chapter, we presented some linguistic disciplines which are the phonetic and the phonol-
ogy, they are used by most speech processing disciplines and methods. Speech synthesis and
its most known techniques are introduced. Finally, Speech segmentation with and without
linguistic constraint is presented.

In the following chapter, we will present our new approach which is the belief HMM recog-
nizer.



3
Belief HMM for speech

recognition

3.1 Introduction

Our goal is to develop a speech recognizer system based on belief HMMs instead of HMMs. In
this chapter, we will present the hidden Markov model and algorithms used for training and
for inference, also, we will introduce the HMM based recognizer. Then belief HMM will be
presented and finally we will talk about our belief HMM based recognizer.

3.2 Probabilistic HMM

3.2.1 HMM definition

A Hidden Markov Model is a combination of two stochastic processes; the first one is a Markov
chain that is characterized by a finite set of non observable states (hidden) and the transition
probabilities between them. The second stochastic process produces the sequence of obser-
vations which depends on a state-dependent probability distribution. To formally define an
HMM1, we should specify five characteristics (Rabiner, 1989), as follows:

1. Ωt = {st1, st2, . . . , stN} the set of N states of the model2.

2. V = {v1, v2, . . . , vM} the set of M possible observations that can be generated by our
model. We note O = O1O2 . . . OT the sequence of observations, such that Ot ∈ V, 1 ≤
t ≤ T .

3. A = {aij} the set of N transition probability distributions, where aij = P
(
st+1
j | sti

)
, 1 ≤

i, j ≤ N .
1Conventionally, the compact notation is used: λ (A,B,Π)
2We note the currant instant t in exponent of states for simplicity.
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4. B = {bj (Ot)} the observation symbol probability distributions defined conditionally to
every state j, where bj (Ot) = P

(
Ot | stj

)
, 1 ≤ j ≤ N, 1 ≤ k ≤M and

∑N
k=1 bj (k) = 1.

5. Π = {πi} the initial state distribution, where πi = P
(
s1
i

)
, 1 ≤ i ≤ N and

∑N
i=1 πi = 1.

3.2.2 Three basic problems of HMMs

There exist three basic problems of HMMs that must be solved in order to be able to use these
models in real world applications. In this section, we will present these problems and their
solutions.

3.2.2.1 Evaluation problem

The first problem is named the evaluation problem, it searches to compute the probability that
the observation sequence O was generated by the model λ. Solutions of this problem can be
used in classification, where we have a set of models, i.e. each model corresponds to a different
class, and we have an observation sequence; the goal is to predict its class. The probability
P (O/λ) can be used as a classification criteria to choose the best model that matches the obser-
vation sequence.Then, how do we compute the probability of the observation sequence P (O/λ)

given the model λ(A,B,Π)?

Forward and Backward propagation can solve this problem (Rabiner, 1989). Their inference
mechanisms reduce the calculation complexity by avoiding the summing of the joint probability
over all possible state sequences.

Forward propagation It is an inference algorithm which allows as estimating the likelihood
of all hidden states at every time instant t. It goes forward starting with the first observation
going to the last, and at every time instance it calculates the forward variable. This estimation
is called on line estimation.

Let αt(i) be the forward variable such as: αt(i) = P (O1O2. . .Ot, qt = si | λ), this variable
represents the probability of the partial observation sequence (O1O2. . .Ot) and state si at time
t, given the model λ. Recursively, we can calculate αt(i) from t = 1 until t = T as shown below:

1. Initialization
α1 (i) = πibi (O1) , 1 ≤ i ≤ N (3.1)

2. Induction

αt+1 (j) =

(
N∑
i=1

αt (i) aij

)
bj (Ot+1) , 1 ≤ j ≤ N, 1 ≤ t ≤ T (3.2)

3. Termination

P (O | λ) =

N∑
i=1

αT (i) (3.3)
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Figure 3.1: Forward and backward propagation (Ramasso, 2007)

Then, the probability that the observation sequence O was generated by the model λ is obtained
by summing the terminal forward variables. Figure 3.1 (taken from (Ramasso, 2007)) explains
the principle of the calculation of the forward variable.

Backward propagation Like forward, the backward is an inference algorithm that estimates
the likelihood of all hidden states at every time instant t. It goes backward from the last ob-
servation returning back to the first, and at every time instance it calculates the backward
variable. This estimation is called off line estimation. Figure 3.1 shows the backward pass
(discontinuous lines) and explain the calculation principle of the backward variable.

In a similar manner, let βt(i) be the backward variable which defined as:
βt(i) = P (Ot+1Ot+1. . .OT | qt = si, λ), this variable represents the probability of the partial
observation sequence from t+ 1 to the end, given state si at time t and the model λ. βt(i) can
be calculated by using a recursive as shown in the following steps.

1. Initialization
βT (i) = 1 (3.4)

2. Induction

βt (i) =

N∑
j=1

aijbj (Ot+1)βt+1 (i) , 1 ≤ i ≤ N, t = T − 1, T − 2, . . . , 1 (3.5)

Then we can calculate P (O | λ) as:

P (O | λ) =

N∑
i=1

αt(i)βt(i) (3.6)
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3.2.2.2 Decoding problem

Given the model λ and the observation sequence O = O1O2 . . . OT , how do we choose the most
likely state sequence that produced O?

It should be clear that we cannot find the best state sequence that generates O, and there
is no correct one. In order to solve this problem, the Viterbi algorithm is commonly used.
This method allows as finding the single best state sequence for the given observation sequence
(Rabiner, 1989). To reach this result, we need to calculate a score along every single path,
eventually δt (i) = maxq1,q2,...,qt−1 P (q1, q2, . . . qt−1, qt = i, O1O2 . . . Ot−1 | λ). This score can be
calculated recursively.

Viterbi starts from the first instant, t = 1, for each moment t, it calculates δt(i) for every
state i, then it keeps the state which has the maximum δt. When, the algorithm reaches the last
instance t = T , it keeps the state which maximizes δT . Finally, Viterbi algorithm back-track
the sequence of states as the pointer in each moment t indicates. Steps below explain Viterbi
algorithm:

1. Initialization
δ1 (i) = πibi (O1) , 1 ≤ i ≤ N (3.7)

ψ1 (i) = 0 (3.8)

ψ variable keep track of the argument which maximized

2. Recursion
δt (j) = max

1≤i≤N
(δt−1 (i) aij) bj (Ot) , 1 ≤ j ≤ N, 2 ≤ t ≤ T (3.9)

ψt (j) = arg max
1≤i≤N

(δt−1 (i) aij) (3.10)

3. Termination
P ∗ = max

1≤i≤N
(δT (i)) (3.11)

q∗T = arg max
1≤i≤N

(δT (i)) (3.12)

4. Path backtracking
q∗t = ψt+1

(
q∗t+1

)
, t = T − 1, T − 2, . . . , 1 (3.13)

3.2.2.3 Learning problem

How do we adjust the HMM parameters λ = (A,B,Π) in order to maximize P (O | λ)?
Existing methods cannot find the optimal λ of the given observation sequence and the given
model. However, they can find parameters which locally maximize P (O | λ). Among these
methods, Baum-Welch (Rabiner, 1989) method is widely used. This algorithm uses the forward



3.2. Probabilistic HMM 46

and backward variables to re-estimate the model parameters. Before describing the whole
method, we need to define two more variables, which are γt (i) and ξt (i, j) as follows:

γt (i) = P (qt = si | O, λ) (3.14)

γt (i) =
αt (i)βt (i)

P (O | λ)
(3.15)

γt (i) =
αt (i)βt (i)∑N
t=1 αt (i)βt (i)

(3.16)

ξt (i, j) = P (qt = si | O, λ) (3.17)

ξt (i, j) =
αt (i) aijbj (Ot+1)βt+1 (j)

P (O | λ)
(3.18)

ξt (i, j) =
αt (i) aijbj (Ot+1)βt+1 (j)∑N

i=1

∑N
i=1 αt (i) aijbj (Ot+1)βt+1 (j)

(3.19)

Also, we can relate γt (i) to ξt (i, j) via this formula:

γt (i) =

N∑
j=1

ξt (i, j) (3.20)

Then, we can use these variables to re-estimate the model parameters via a set of re-estimation
formulas which are:

πi = γ1 (i) (3.21)

aij =

∑T
t=1 ξt (i, j)∑T
t=1 γt (i)

(3.22)

bj (k) =

∑T
t=1 s.t. Ot=vk

γt (i)∑T
t=1 γt (i)

(3.23)

Thereby, we define the re-estimated model as λ =
(
A,B,Π

)
. Now, we can describe the above

Baum-Welch procedure as shown in these steps:

1. Maximization:

• Calculate forward and backward variables

• Calculate γt (i) and ξt (i, j)

• Use 3.22, 3.23 and 3.21 formulas to re-estimate Ā, B andΠ.

2. Expectation:

• Q
(
λ, λ

)
=
∑
S⊆Ωt

p (S | O, λ) log
(
P
(
O,S | λ

))
, λ is the re-estimated model.

Then, we choose the model λ∗ that maximizes Q
(
λ, λ

)
as:

λ∗ = arg max
λ

Q
(
λ, λ

)
(3.24)
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Figure 3.2: Types of models

3.2.3 Types of models

Types of models of the HMM are given by their transition probability matrix, we present some
types:

• Ergodic model : has the property that it is possible to reach every state from every other
state (in one move or more).

• Left-right model : (also called Bakis model) has the property that, it is not possible to
transit to states whose indices are lower than the current state (Rabiner, 1989).

Figure3 3.2 gives an example of these models.

3.2.4 Types of HMM

3.2.4.1 Discrete HMM

Above this section, we considered the case of discrete HMM. We should note that, in real word
problems observations are, generally, continuous. Then, we must process as follows in order to
use discrete HMM (Kouemou, 2011):

1. We must reduce a set of real valued d-dimensional vectors in k d-dimensional vectors, by
using a clustering algorithm like k-means.

2. Classify each feature vector with the appropriate codebook vector (nearest).

3. Index of codebook vector will then be used to generate the set of observation symbols.
3Taken from http://intoverflow.wordpress.com/2008/05/27/what-is-a-hidden-markov-model/
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3.2.4.2 Continuous HMM

It is more profitable to work with the continuous observation densities. In fact, conversion
discussed above can influence results. There are some restrictions on the form of the probability
density function in order to use continuous HMM. In fact, we cannot use the observation symbol
probability distributions because they are continuous, i.e. each observation is a vector of values
instead of symbols. Then, we search to use the probability density function (pdf) that better
represents our observation vectors, this pdf can be estimated using a mixture of continuous
probability density as:

bj (O) =

G∑
g=1

cjg= (O,µjg,Σjg) , 1 ≤ j ≤ N (3.25)

Where O is the observation vector, cjg is the mixture coefficient
(∑G

g=1 cjg = 1
)
and cjg ≥

0, = is generally a Gaussian density with mean vector µjg and covariance matrix Σjg (Rabiner,
1989). Parameters of the pdf can be re estimated using these formulas:

cjg =

∑T
t=1 γt (j, g)∑T

t=1

∑G
g=1 γt (j, g)

(3.26)

µjg =

∑T
t=1 γt (j, g) .Ot∑T
t=1 γt (j, g)

(3.27)

Σjg =

∑T
t=1 γt (j, g) . (Ot − µjg) (Ot − µjg)

′∑T
t=1 γt (j, g)

(3.28)

γt (j, g) =

[
αt (j)βt (j)∑N
i=1 αt (j)βt (j)

][
cjg= (O,µjg,Σjg)∑G
g=1 cjg= (O,µjg,Σjg)

]
(3.29)

3.2.5 Training with multiple observation sequences

The training algorithms discussed above are used for training parameters on one observation
sequence. However, in real word applications, it is not practical to use only one observation
for training. In fact, HMM models are generally used for classification issues, then a new
observation sequence (to be classified) that presents some statistical variations might not be
correctly classified because its values are different from those used for training. Then, using
many sequences of observations for training will encode many statistical variations of the same
class, hence we obtain a more reliable model.

A modification of the re-estimation procedure must be done to take into account the use of
multiple observation sequences (Rabiner, 1989). This procedure is given for training of left-right
models. Let K be the number of the observation sequences, then our training set will be:

O =
[
O1, O2, . . . , OK

]
(3.30)

where Ok =
(
Ok1 , O

k
2 , . . . , O

k
Tk

)
is the kth observation sequence of length Tk. These observations

are supposed to be independent to each other. Our goal is to have a model that better describes
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O, then the joint probability of the observation sequences such the model must be maximized:

P (O|λ) =

K∏
k=1

P
(
Ok|λ

)
(3.31)

=

K∏
k=1

Pk (3.32)

The new re-estimation formulas are given by modifying the re-estimation formulas given above
to take into account Pk which is used as a scaling factor:

aij =

∑K
k=1

1
Pk

∑Tk−1
t=1 αkt (i) aijbj

(
Okt+1

)
βkt+1 (j)∑K

k=1
1

Pk

∑Tk−1
t=1 αkt (i)βkt+1 (j)

(3.33)

bj (l) =

∑K
k=1

1
Pk

∑Tk−1
t=1 s.t. Ot=vl

αkt (i)βkt+1 (j)∑K
k=1

1
Pk

∑Tk−1
t=1 αkt (i)βkt+1 (j)

(3.34)

3.3 HMM recognizer

3.3.1 Acoustic model

The acoustic model attempts to mimic the human auditory system. It is the model used by
the HMM-based speech recognizer in order to transform the speech signal into a sequence of
acoustic units, this last will be transformed into phoneme sequence and finally the desired
text is generated by converting the phoneme sequence into text. Acoustic models are used
by speech segmentation and speech recognition systems. We will explain the creation of the
acoustic model and how it can be used for speech recognition and segmentation.

3.3.1.1 Structure of the acoustic model

The acoustic model is composed of a set of HMMs (Rabiner, 1989), each HMM corresponds to
an acoustic unit. To have a good acoustic model some choices have to be done:

The acoustic unit the choice of the acoustic unit is very important, in fact, the number of
them will influence the complexity of the model (more large the number, more complex the
model). If we choose a small unit like the phone, we will have an HMM for every possible
phone in the language (this number is small), the problem with this choice is that the phone
do not model its context (we mean by the context, the previous and the next phones influence
the pronunciation of the current one). Such a model is called context independent model .
These models are generally used for speech segmentation systems.

Other units that take the context into account can be used as acoustic unit as the di-
phone which model the transition between two phones, the triphone which model the transition
between three phones, subwords, words. These models are called context dependent models.
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According to (Rabiner and Juang, 1993), when the context is greater, the recognition perfor-
mance improve. However, the number of units increases when we use a greater context. Hence
we will need a larger number of HMM models and a greater speech corpus. Then a compromise
between performance and model complexity should be done. For speech recognition systems,
it is important to model the transition between phones which explains the use of the diphone
or the triphone in most of these systems.

The model for each acoustic unit, we associate an HMM, then types of HMM model and the
probability density function of the observation must be chosen. Generally, left-right models are
used for speech recognition and speech synthesis systems (Rabiner, 1989). In fact, speech signal
has the property that it changes over time, then the choice of the left-right model is justified
by the fact that there is no back transitions and all transitions go forward.

The number of states is fixed in advance or chosen experimentally. (Carvalho and al, 1998;
Cox and al, 1998) fixed the number of state to three. This choice is justified by the fact that
most phoneme acoustic realization is characterized by three sub-segments, hence we have a
state for each sub-segment. (Brugnara and al, 1993; Toledano and al, 2003) used an HMM of
six states. Finally, we choose the probability density function of the observation. They are
represented by a mixture of Gaussian pdf (formula 3.25), the number of mixtures is generally
chosen experimentally.

3.3.1.2 Learning parameters

Learning parameters is based on the use of a training corpus which is a pre-segmented corpus,
then we should know its contents (text and acoustic units) and the segmentation marks be-
tween acoustic units4. As shown in Figure 3.3, the first step is extraction of features. Speech
segments are transformed into sequence of acoustic vectors (see subsection 2.2.4), these acoustic
vectors are our sequence of observations. We should note that we can have many observation
sequences of the same acoustic unit. Then every acoustic unit have its corresponding obser-
vation sequences that will be used for learning parameters of its HMM. Every HMM model is
learned independently of the other, using the Baum-Welch algorithm (see section 3.2.2.3 and
3.2.5 for more details).

3.3.1.3 Creation of the acoustic model

Learned models are used to create the acoustic model. For the speech segmentation problem,
we know the phonetic transcription of the signal to be segmented, this information will be
used to create the acoustic model. Then HMMs will be linearly concatenated to each other by
following the acoustic units sequence. Transition marks will be added between HMMs, achieve

4Generally speech corpus are segmented into phones, in fact, other acoustic units can be obtained by concatenation
of phones.
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Figure 3.3: Learning HMMs parameters

the transition mark means that the segmentation mark is found.

For speech recognition problem, we do not know the phonetic transcription. Then we will
create a model that takes into account all possible acoustic units sequences. In the case where
we have a small set of acoustic units, enumerating all possible sequences is not hard and then
it is easy to create such acoustic model. However, when we have a large set of acoustic units
it will be impossible to doing so. Hence, a language model should be created (Rabiner and
Juang, 1993). The language model is a statistical model that assigns a probability P (W ) to
each word sequence W . This probability is generally estimated from the text corpus. Hence,
for a sentence with N words, this probability is given by:

P (W ) =

N∏
i=1

P (wi|w0, w1, . . . , wi−1) (3.35)

Generally, we have N = 2 or N = 3 and our language model is called respectively bigram or
trigram .

Figure 3.4 shows an example of isolated word recognizer, the system is designed to recognize
three words which are: one, two and three, and we suppose that there exists a silence in the
beginning and the end of each word. The recognizer contains three levels; the first one is the
syntactic level , it represents all possible word sequences that can be recognized by our model.
The second one is the lexical level , it represents the phonetic transcription (the phoneme
sequence) of each word. Finally, the third one is the acoustic level , it models the realization
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Figure 3.4: Speech recognizer model

of each acoustic unit (in this case the phone). We should note that transition marks are added
between successive HMMs, when this mark is achieved, then the next phone begins.

3.3.2 Speech recognition process

The model described above is used for the speech recognition process. To explain this process,
we will follow the example of the Figure 3.4 and we suppose that we have four HMMs: one,
two, three and silence. Let S be our speech signal to be recognized. Recognizing S consists on
finding the most likely path in the syntactic network.

The first step is to transform S into a sequence of acoustic vectors using the same feature
extraction method used for training, then we obtain our sequence of observation O. The most
likely path is the path that maximizes the probability of observing O such the model P (O|λ).
This probability can be done either by using the forward algorithm or the Viterbi algorithm.

The second step consists on turning our HMMs from the beginning of the network until
reaching the end. At the first instant (the first acoustic vector) we run the silence HMM until
achieving the transition mark. The transition instant is saved because it will be the first instant
for the next HMM. According to our network, we have three possible paths and we have to
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choose one. Then we run tour HMMs: one , two and three in order to calculate the probability
of observing O (sub-sequence of O) such each model. We choose the path that maximizes this
probability and the transition mark of its corresponding model is also chosen. The last HMM
is run from this last transition mark until reaching the end of the sequence. Finally, the most
likely path is found and sequence S is recognized.

3.4 Belief HMM

Belief HMM is an extension of the probabilistic HMM to belief functions (Ramasso, 2007;
Ramasso and al, 2007; Ramasso, 2009; Serir and al, 2011). Analogically to HMM, we will
introduce the belief HMM. Furthermore, we will present the three problems and their belief
solutions.

3.4.1 Definition

Like probabilistic HMM, the belief HMM is a combination of two stochastic processes where
the first one is hidden and the second is observable. Therefore, we will start with the definition
of the five characteristics of HMM as follows:

1. Ωt = {st1, st2, st3, . . . , stN} the set of all possible states. Note that, at time t we can have a
set Sti of possible sates (|Sti | ≥ 1, and Sti ⊆ Ωt).

2. V = {v1, v2, . . . , vM} the set of M possible observation that can be generated by our
model, we note O = O1O2 . . . OT the sequence of observations, such that Ot ∈ V, 1 ≤ t ≤
T .

3. mΩt
a

[
St−1
i

] (
Stj
)
a set of BBA functions defined conditionally to all possible subsets of

states St−1
i , then we have

∑2Ω

j=1m
Ωt
a

[
St−1
i

] (
Stj
)

= 1

4. mΩt

b [Ot]
(
Stj
)
a set of BBA functions defined conditionally to the set of possible observa-

tion Ot.

5. mΩ1
π

(
SΩ1
i

)
the initial state distribution, generally it is defined as vacuous.

Table 3.1 presents the analogy between the probabilistic HMM and the belief HMM variables.

We notice that all HMM probabilities are replaced by BBA functions when we talk about
belief HMM. The advantages of this fact is that BBAs are convertible to many other formats
(bel, pl, q, etc).

3.4.2 Three basic problems of belief HMM

The three basic problems of HMM and their solutions are extended to belief functions in
(Ramasso, 2007; Ramasso and al, 2007). Like probabilistic HMM, in this section, we will
define the three solutions of the three most known problems of HMMs.
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Table 3.1: Analogy between HMM and belief HMM variables
HMM Belief HMM

Set of states Ωt Ωt

Set of observations V V

Transition matrix A ma

Observations B mb

A priori Π mπ

Forward variable α mα

Backward variable β mβ

γ variable γ mγ

ξ variable ξ mξ

Viterbi score δ mδ

3.4.2.1 Evaluation problem

As we know the forward algorithm resolves the evaluation problem in the probabilistic case.
Ramasso introduced the credal forward algorithm in order to resolve this problem in the
evidential case. Furthermore, he presents two versions, the first one (Ramasso and al, 2007)
uses the CRC combination rule (see section 1.4 for more detail), then, it is used for distinct
beliefs. The second solution (Ramasso, 2009) is similar to the first one except that it uses the
CCRC combination rule, hence, it generalizes the first one and it is used for non distinct beliefs.
The credal forward needs as inputs mΩt

a

[
St−1
i

] (
Stj
)
and mΩt

b [Ot]
(
Stj
)
which are transformed

into commonalities by the mean of the function 1.16. It calculates recursively the forward BBA
as:

1. Initialization: we initialize the forward BBA at the first time instant to vacuous.

qΩ1
α

(
S1
i

)
= 1 (3.36)

2. Induction

qΩt+1
α

(
St+1
j

)
=

 ∑
St
i⊆Ωt

mΩt
α

(
Sti
)
.qΩt+1
a [Sti ]

(
St+1
j

)~ qΩt+1

b [Ot]
(
Stj + 1

)
(3.37)

We note the combination rule as ~, it can be replaced by the CRC or the CCRC. After
calculation of qΩt+1

α , it is transformed into a BBA using the formula 1.17, we savemΩt+1
α (∅)

then we normalize our BBA to be used in the next iteration.

3. Termination: (Ramasso, 2009) exploits the conflict of the forward BBA to define an
evaluation metric that can be used for classification to choose the model that best fits the
observation sequence or it can also be used to evaluate the model. He justified his metric
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by the fact that “the lower is the conflict throughout the whole observation sequence, the
better is the model λ for explaining these observations”. Then, given a model λ and an
observation sequence of length T , the conflict metric is defined by:

Lc (λ) =
1

T

T∑
t=1

log
(
1−mΩt+1

α [λ] (∅)
)

(3.38)

λ∗ = arg max
λ

Lc (λ) (3.39)

Also the backward algorithm has been extended to belief function. As the case of the credal
forward, Ramasso introduces also, two versions of the credal backward . The first one is used
for the distinct body of evidence (Ramasso and al, 2007). The second one generalizes the first
one and is used for the non distinct body of evidence (Ramasso, 2009). As inputs, the credal
backward algorithm requires mΩt

a

[
St−1
i

] (
Stj
)
and mΩt

b [Ot]
(
Stj
)
. The backward BBA is then

calculated recursively as:

1. Initialization
qΩT

β

(
STi
)

= 1 (3.40)

2. Induction
qΩt

β

(
Sti
)

=
∑

St+1
j ⊆Ωt+1

(
mt+1
β~b

(
St+1
j

)
∗ qΩt

a

[
St+1
j

] (
Sti
))

(3.41)

where mt+1
β~b = mt+1

β ~mt+1
b , such that ~ denotes the conjunctive operator which can be

the CRC or the CCRC. qΩt
a

[
St+1
j

]
(Sti ) is derived from qΩt

a [Sti ]
(
St+1
j

)
by the mean of the

GBT (see section 1.6) using the relation 1.48.

3.4.2.2 Decoding problem

The goal of the Viterbi procedure, in the probabilistic case, is to define the best state sequence
given the observation sequence, then, at time t we should found the best state sj such that we
know the state sequence from the first instant until t−1. Many solutions are proposed to extend
this algorithm to the TBM (Ramasso and al, 2007; Ramasso, 2009; Serir and al, 2011). All of
them search to maximize the state sequence plausibility. According to the definition given in
(Serir and al, 2011), the plausibility of a sequence of singleton states S =

{
s1, s2, . . . , sT

}
, st ∈

Ωt is given by:

plδ (S) = plπ
(
s1
)
.

T∏
t=2

plΩt
a

[
st−1

] (
st
)
.

T∏
t=1

plb
(
st
)

(3.42)

Hence, we can choose the best state sequence by maximizing this plausibility. A further proposal
consists to use the probabilistic Viterbi algorithm with plausibilities on singletons as inputs
(Ramasso, 2009; Serir and al, 2011). Then inputs of the probabilistic Viterbi will be the
following:

• The prior plausibility plΩ1
π

(
s1
i

)
, in the case where we have no available prior information,

we have plΩ1
π

(
s1
i

)
= 1 for all states.
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• Transitions plausibilities plΩt
a

[
st−1
i

] (
stj
)
defined conditionally to singleton states.

• Observations plausibilities plΩt

b [Ot]
(
stj
)
defined on singleton states.

This solution is optimal in term of the complexity, because it has the same complexity as the
probabilistic Viterbi. Despite the optimality of this algorithm, it reduces belief functions to
singletons. That is why, the third solution is interesting.

The credal Viterbi algorithm is proposed by Ramasso (Ramasso, 2007; Ramasso, 2009)
to extend the probabilistic version into belief functions. It can be used either with distinct
body of evidence or with non distinct body of evidence. It needs as inputs mΩt

a

[
St−1
i

] (
Stj
)
and

mΩt

b [Ot]
(
Stj
)
. Then the algorithm follows these steps:

1. Initialization

(a) mΩ1

δ (Ω) = 1, the Viterbi BBA initialized to vacuous.

(b) ψ
′

1

(
s1
i

)
= 0, ∀s1

i ∈ Ω1, this variable stores the best predecessor of the current state.
At t = 1, the first state has not a predecessor,so we initialize the variable to zero.

(c) Q1

(
s1
∗, λ
)

= 1, the propagation metric, calculated at each t, used in the termination
step to choose the best state sequence.

(d) A1 = ∅, the set of predecessor defined at t− 1, initialized to the empty set because
at time t = 1 we have no predecessors. The use of this variable is justified by the
fact that at time t two different states can have the same predecessor at time t− 1.

2. Recursion: 2 ≤ t ≤ T − 1

(a) qΩt

δ

(
Stj
)

=
(∑

St−1
i ⊆At−1 m

Ωt

δ

(
St−1
i

)
.qΩt
a

[
St−1
i

] (
Stj
))
~ qΩt

b

(
Stj
)
, ∀Stj ⊆ Ωt, the

operator ~ can be replaced either by the CRC or by the CCRC.

(b) Use equation 1.17 to obtain mΩt

δ .

(c) Calculate mΩt

δ

[
st−1
i

]
using the conditioning rule (formulas 1.34).

(d) Pt
[
st−1
i

] (
stj
)

= BetP
{
mΩt

δ

[
st−1
i

]} (
stj
)
, the pignistic transformation can be re-

placed by the plausibility criteria (see section 1.8 for more details).

(e) ψt
(
stj
)

= arg maxst−1
i ∈Ωt−1

[(
1−mΩt

δ

[
st−1
i

]
(∅)
)
.Pt
[
st−1
i

] (
stj
)]
.

(f) Qt (st∗, λ) = Qt−1

(
ψt
(
stj
)
, λ
)
.pltδ

(
stj
)
.

(g) At =
⋃
stj∈Ωt

ψt
(
stj
)
.

3. Termination

(a) sT∗ = argmaxsTj ∈ΩT
QT

(
sT∗ , λ

)
4. Path backtracking: t = T − 1, T − 2, . . . , 1

(a) st∗ = ψt+1

(
st+1
∗
)
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3.4.2.3 Learning problem

The learning problem is encapsulated in estimating three parameter sets which are:

1. The observation models (generally Gaussian mixture model GMM) that relate the set of
observations to the states.

2. The credal transition matrix.

3. The prior BBA.

In the probabilistic case, the Baum-Welch algorithm resolves this problem. In the credal case,
Ramasso and Serir have proposed some solutions to estimate these parameters, we discusses
them in the following.

Observation models estimation In the probabilistic case, we associate a mixture of Gaus-
sian models to every state. GMMs produce the likelihood of observations at every time instance.
In the credal case, (Ramasso, 2007) assimilates these likelihoods to plausibilities as:

plb
[
stj
]

(Ot) ≡ bj (Ot) (3.43)

Then he applies the generalized Bayesian theorem in order to obtain plΩt

b [Ot]
(
Stj
)
using formula

1.45.

Credal transition matrix estimation A first solution that mimic the probabilistic one is
introduced in (Ramasso, 2007; Ramasso and al, 2007), this solution is based on estimating the
credal γ variable and the credal ξ variable. This last one is defined online and offline. These
variable estimations are given by:

qΩt
γ

(
Stj
)

= qΩt
α

(
Stj
)
∩ qΩt

β

(
Stj
)

(3.44)

q
Ωt−1×Ωt

ξon
(S) = qΩt−1↑Ωt−1×Ωt

α (S) .qΩt−1×Ωt
a (S) .qΩt

b [Ot]
↑Ωt−1×Ωt (S) (3.45)

q
Ωt×Ωt+1

ξoff
(S) = q

Ωt×Ωt+1

ξon
(S) .qΩt+1↑Ωt×Ωt+1

α (S) (3.46)

q
Ωt−1×Ωt
a is obtained from qΩt

a

[
St−1
i

] (
Stj
)
using formula 1.51. Then the credal transition matrix

can be estimated as:

q
Ωt+1

a

[
sti
]

=

(
1

T

T∑
t=1

q
Ωt×Ωt+1

ξoff

)[
sti
]↓Ωt+1 (3.47)

The last formula is calculated in three steps, the first one consists on calculating the average
of qΩt×Ωt+1

ξoff
, then the resulting average is conditioned to all singleton states at t. The last step

consists on using the marginalization operator (formula 1.42).

The problem with this solution is that it uses many combination rules (four conjunctive
combination rules). This can lead to the loss of interest of belief functions, in fact conjunctive
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combination promotes the focal elements that have low cardinality, this effect is called spe-
cialization effect . To avoid this problem, (Ramasso, 2009) proposes to estimate the credal
transition matrix independently from the transitions themselves. He uses the observation BBAs
as:

m
Ωt×Ωt+1

a0
∝ 1

T − 1
.

T∑
t=1

(
mΩt

b [Ot]
↑Ωt×Ωt+1 ∩mΩt+1

b [Ot+1]
↑Ωt×Ωt+1

)
(3.48)

where mΩt

b [Ot]
↑Ωt×Ωt+1 and m

Ωt+1

b [Ot+1]
↑Ωt×Ωt+1 are computed using the vacuous extension

operator (formula 1.38). The formula 3.48 estimates a BBA function defined on the product
space Ωt×Ωt+1, to obtain the credal transition matrix, this BBA is conditionned to all subsets
of Ωt, then it is marginalized on Ωt+1.

This estimation formula is used by (Serir and al, 2011) as an initialization for ITS (It-
erative Transition Specialization) algorithm. ITS is an iterative algorithm that uses the
credal forward algorithm to improve the estimation results of the credal transition matrix. It
stops when the conflict metric (formula 3.38) converged. It takes as inputs the resultant BBA
ma0 of the formula 3.48 and a convergence threshold ε used in the stopping criteria. At the
first iteration, the credal forward is applied having ma0

and mb as inputs. The resultant mα

and the conflict metric are then used in the next iteration. The forward BBA is used instead
of mb in the formula 3.48 in order to reestimate the transition used in the next iteration in-
stead of ma0 and the conflict metric is used to test the convergence. When the algorithm
achieves the last iteration, i.e. the difference between the value of conflict of the current itera-
tion and the previous one is greater than epsilon, we obtain ma∗ the resultant transition matrix.

The problem with this estimation is that we will obtain a transition matrix with high
values on singletons and low values on subsets (doubt). This problem is due to the conjunctive
combination used by the forward propagation. In order to solve this problem (Serir and al,
2011) proposed to take the result of the following formula as final credal transition matrix:

ma∗ = (ma∗ +ma0
) /2 (3.49)

Prior estimation The advantage of belief function is that we can define our prior BBA to
vacuous which indicates the case of total ignorance. Also, (Ramasso, 2007) gives another way
to estimate this BBA using the result of the credal transition as:

qΩ1

π = qΩ1×Ω2↓Ω1

a (3.50)

3.5 Belief HMM recognizer

Our goal is to create a speech recognizer using the belief HMM instead of the probabilistic
HMM. HMM recognizer uses an acoustic model to recognize the content of the signal. Then,
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we seek to mimic this model in order to create a belief HMM based one. We should note
that existing parameter estimation methods presented for the belief HMM cannot be used to
estimate model parameters using multiple observation sequences. This fact should be taken
into account when we design our belief acoustic model.

3.5.1 Belief acoustic model

In the probabilistic case, we use an HMM for each acoustic unit, its parameters are trained
using multiple speech realization of the unit. In the credal case, a similar model cannot be
used. In fact, belief HMM cannot be trained using multiple observation sequences. Hence, we
present an alternate method that takes this fact into account.

Let K be the number of the speech realization of a given acoustic unit. These speech
realizations are transformed into feature vectors. Hence, we obtain K observation sequences.
Our training set will be:

O =
[
O1, O2, . . . , OK

]
(3.51)

where Ok =
(
Ok1 , O

k
2 , . . . , O

k
Tk

)
is the kth observation sequence of length Tk. These observa-

tions are supposed to be independent to each other. So instead of training one model for all
observation set O, we propose to create a belief model for each observation sequence Ok. These
K models will be used to represent the given acoustic unit in the recognition process.

Like the acoustic model based on the probabilistic HMM, we have to make some choices
in order to have a good belief acoustic model. In the first place, we choose the acoustic unit.
The same choices of the probabilistic case can be adopted for the belief case. In this document,
we consider the case of isolated word recognition problem, hence words are chosen as acoustic
units. In the second place, we choose the model. We should note that we cannot choose the
topology of the belief HMM, this is due to the estimation process of the credal transition matrix.
In other words, the resultant credal observation model is used to estimate the credal transition
matrix, then, we cannot choose the topology of our resultant model. Consequently, choosing
the model in the credal case consists on choosing the number of states and the number of gaus-
sian mixtures. In our case, we fix the number of states to three and we choose the number of
gaussian mixtures experimentally.

The belief acoustic model is designed to recognize isolated words. For each word, we create
a set of models that are used together in the recognition process. Figure 3.5 presents the form
of our belief recognizer.

3.5.2 Speech recognition process

The belief acoustic model is used in the speech recognition process. As we said in the previous
sub-section, we want to recognize isolated words and we design the model for this purpose.
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Figure 3.5: Belief HMM recognizer

Now, we explain how the resultant model (shown in figure 3.5) will be used for recognizing
speech signal.

Let S be our speech signal to be recognized. Recognizing S consists on finding the most
likely set of models. The first step, is to transform S into a sequence of acoustic vectors using the
same feature extraction method used for training, then we obtain our sequence of observation
O. This last is used as input for all models. The credal forward algorithm is then applied. As
shown in figure 3.5, each model gives us an output which is the value of the conflict metric
(calculated using the formula 3.38). An acoustic unit is presented by a set of models, every
model gives a value for the conflict metric. Then we calculate the arithmetic mean of the
resulting values. Finally, as we use several models for each unit, we choose those that optimizes
the average of the conflict metric instead of optimizing the conflict metric, as proposed by
(Ramasso, 2009), (using formula 3.39). Hence our observation is recognized.

3.6 Conclusion

Existing belief HMM cannot be trained on multiple observation sequences. Hence the prob-
abilistic acoustic model should be modified in order to be extended to belief functions. An
alternate solution is proposed, it takes into account the special characteristics of the belief
HMM. In the next chapter, experiments and results will be presented.



4
Experiments and results

4.1 Introduction

To study the effect of belief function theory on the speech recognition process, we compare our
belief HMM recognizer to HTK (Young and al, 2006) (an optimized probabilistic HMM speech
recognizer). We focus on the isolated speech recognition task. In this chapter, we present our
experiments in order to validate our approach. Before that, we introduce HTK, our evaluation
method and our speech corpus.

4.2 HMM toolkit (HTK)

HTK is a toolkit for hidden Markov model, developed at Cambridge University Engineering
Department (CUED). It builds tools for speech processing and it is optimized for the HMM
speech recognition process. HTK provides tools for (Young and al, 2006):

• Data manipulation : HCopy, HQuant, HLEd, HHEd, HDMan and HBuild.

• Data visualization : HSLab, HList and HSGen.

• Training : HCompV, HInit, HRest, HERest, HEAdapt and HSmooth.

• Recognition : HLStats, HParse, HVite and HResults.

These tools are run using a traditional command-line.

4.2.1 HTK training

As inputs, HTK needs a speech corpus and its corresponding transcription files. We will describe
the process that we use in our experiments. Figure 4.1 presents a summary of the important
steps (Young and al, 2006). Then the training process in HTK follows these steps:

• Data preparation : a feature extraction method is used in order to transform the training
speech corpus into sequences of acoustic vectors which are saved in training files (according
to Figure 4.1). This step is made by the mean of HCopy tool.
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Figure 4.1: Training HMMs with HTK

• HMM initialization : a prototype of HMM is used in order to describe the topology
of the HMM (number of states, number of mixtures, etc). Then HCompV tool is run
taking as inputs the HMM prototype, the transcription and the training files (as shown
in Figure 4.1). HCompV calculates a global speech means and covariances that are used
to initialize the set of HMMs and then the HMMs definition file is created (contains an
HMM for every acoustic unit).

• Parameters estimation : the tool HERset is used many times. Each run of this tool
performs a single re-estimation of HMMs parameters.

4.2.2 HTK testing

The HTK recognizer includes three components:

• A set of HMM: defined in the HMM definition file resulting of the training process.
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Figure 4.2: Testing process of HTK

• A dictionary: contains the set of words that can be recognized and their phonetic tran-
scription.

• A word network: created by the tool HBuild that takes the dictionary as input.

Then we can test the performance of our recognizer as shown in figure 4.2 (Young and al, 2006).
The tool HVite takes as inputs the recognizer and a set of testing file (obtained from a testing
corpus by using the same method of feature extraction). This tool runs a Viterbi decoder in
order to find the most likely sequence of words. Finally, recognition statistics can be obtained
using the HResults tool that compares the sequence of recognized words and the transcription
files (that correspond to the testing corpus).

4.3 Evaluation

Generally there exists three types of errors for the speech recognition task (Young and al, 2006):

• Substitution errors (S): we have a substitution if the recognized label and the real one are
different.

• Deletion errors (D): we have a deletion if we have an omitted segmentation mark, i.e. for
example we obtain two segments for a signal that contains three.

• Insertion errors (I): we have an insertion if we have an additional segmentation mark (the
opposite of the deletion).
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Let N be the total number of acoustic units in test corpus. Then we can calculate:

Percent correct =
N − S −D

N
∗ 100% (4.1)

Percent accuracy =
N − S −D − I

N
∗ 100% (4.2)

Percent correct measure does not take into account the number of insertion, it calculates the
percentage correctly recognized acoustic units. Percent accuracy takes into account the number
of insertions and it better evaluates the recognizer performance.

In the case of our isolated word recognizer, we choose words as acoustic units. Hence, there
is no deletion or insertion errors. Then we will have:

Percent correct = Percent accuracy =
N − S
N

∗ 100% (4.3)

This measure can also be called the Percent of correctly clasified acoustic units (words).

4.4 Speech corpus description

We use an isolated word speech corpus that contains speech realization of seven different words
which are: apple, banana, kiwi, lime, orange, peach and pineapple. We have fifteen examplary
of each word.

In our experiments, this corpus is devided into two, the first one is used for training and
the second one is used for test.

4.5 Belief HMM recognizer vs probabilistic HMM recog-

nizer

In this section we present experiments in order to validate our approach. We compare our belief
HMM recognizer to the probabilistic HMM recognizer.

We use MATLAB to implement the belief HMM, for the fast mobius transforms, the BBA
normalization and the pignistic transformation we use the FMT MATLAB toolbox for belief
functions1 . For the probabilistic HMM recognizer we use HTK.

We use MFCC (Mel Frequency Cepstral Coefficient) as feature vectors. Also, we use a
three state HMM and two Gaussian mixtures. Finally, to evaluate our models we calculate the
percent of correctly recognized acoustic units. Results are shown in Table 4.1.

1Developped by Philippe Smets and available on: http://iridia.ulb.ac.be/~psmets/



4.5. Belief HMM recognizer vs probabilistic HMM recognizer 65

Table 4.1: Results summary: the Influence of the number of observations on the recognition
rate

Number of observations per acoustic unit 1 2 3

Belief HMM recognizer 85,71 71.43 71.43

Probabilistic HMM recognizer (HTK) 13.79 10 84.52

The lack of data for training the probabilistic HMM leads to a very poor learning and the
resulting acoustic model cannot be efficient. Then using a training set that contains only one
exemplary of each acoustic unit leads to have a bad probabilistic recognizer. In this case our
belief HMM based recognizer gives a recognition rate equal to 85.71% against 13.79% for the
probabilistic HMM which is trained using HTK (Young and al, 2006) (see Figure 4.3). This
result shows that the belief HMM recognizer is insensitive to the lack of data and we can
obtain a good belief acoustic model using only one observation for each unit. In fact, the belief
HMM models knowledge by taking into account doubt, imprecision and conflict which lead to
a discriminative model in the case of the lack of data.

Figure 4.3: Influence of the number of observations on the recognition rate

HTK is a toolkit for HMMs and it is optimized for the HMM speech recognition process. It
is known to be powerful under the condition of having many exemplary of each acoustic unit.
Hence, it needs to use several hours of speech for training. Having a good speech corpus is very
expensive which influence the cost of the recognition system. Then, the speech recognition sys-
tems are very expensive. Consequently, using the belief HMM recognizer can greatly minimize
the cost of these systems.
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4.6 Conclusion

To sum up, using belief functions theory and belief HMM in the speech recognition process can
give interesting results. Results prove that our belief HMM recognizer can be trained using
only one exemplary of each acoustic unit and, in this case, it gives better recognition rate than
the probabilistic HMM.



Conclusion and perspectives

Conclusion

Speech Recognition aims to label the speech signal. In other words, it searches to predict the
spoken words automatically. The speech is a very uncertain signal because of the variations
with the speaker voices. Therefore, that is a real problem to build good models to recognize the
speech. In literature, there exist many methods for speech recognition among them the HMM
based speech recognition which is widely used because it guarantees a good recognition rate.
It allows us to recognize about 80% of a given speech signal, but this recognition rate still not
yet satisfying.

Hidden Markov Models (HMM) have shown their capacity and performance to treat large
speech corpus for several years. It is a statistical approach that is used for speech recognition.
It is performed in two steps. The first is the learning step in which models parameters are
learned using a pre-segmented speech signal. The second is the decoding or alignment step,
in which HMMs are used to find the sequence of acoustic units in the signal and their boundaries.

Belief Hidden Markov Model is an extension of HMM to the theory of belief functions. This
theory is one of the most popular among the quantitative approaches because it can be seen as a
generalization of others. Its strength lies in: its richer representation of uncertainty and impreci-
sion compared to the probability theory, and its higher ability to combine pieces of information.

We proposed the Belief HMM recognizer. We showed that incorporating belief functions
theory in the speech recognition process is very beneficial, in fact, it reduces considerably the
cost of the speech recognition system.
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Perspectives

In this master thesis, we developed a new speech recognition system based on the use of the
belief HMM. We showed that our is very powerful in the case of lack of data, in fact it can be
trained using only one speech realization of each acoustic unit.

As future works, we suggest to focus on the following points:

• Continuous speech recognition task : Isolated word recognition is a simple task gen-
erally used to validate speech recognizer. Continuous speech recognition task is a more
compliacated problem and its basic goal is to recognize connected words. Hence, the real
challenge is to develop a belief speech recognizer for continuous speech.

• Noisy speech signal : Our experiments are made using a non-noisy speech signal. How-
ever, in real word applications, speech recognizer has to be robust to noise. Hence, building
a model that can recognize noisy speech signal will be very interesting.

• Speech recognizer independent to speaker : Speaker independent recognizer can label
speech signals that have different sources. Such a system needs a very big speech corpus
for training. Using our belief HMM recognizer can be very beneficial in this case.
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