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Abstract

This paper proposes a new approach for decision making under uncertainty based on influence diagrams and possibility theory. The
so-called qualitative possibilistic influence diagrams extend standard influence diagrams in order to avoid difficulties attached to the spec-
ification of both probability distributions relative to chance nodes and utilities relative to value nodes. In fact, generally, it is easier for
experts to quantify dependencies between chance nodes qualitatively via possibility distributions and to provide a preferential relation
between different consequences. In such a case, the possibility theory offers a suitable modeling framework. Different combinations of the
quantification between chance and utility nodes offer several kinds of possibilistic influence diagrams. This paper focuses on qualitative
ones and proposes an indirect evaluation method based on their transformation into possibilistic networks. The proposed approach is
implemented via a possibilistic influence diagram toolbox (PIDT).
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Decision tools as dynamic programming, simulation techniques and graphical decision models are important techniques
to assist decision makers in their task. In this paper, we are interested in graphical decision models which provide a com-
pact and a simple representation of decision problems under uncertainty (Shenoy, 1994).

Within existing graphical models, we are, in particular, interested in influence diagrams (IDs), initially proposed by
Howard and Matheson (1984). These networks are a popular framework representing a decision maker’s belief and pref-
erences about a sequence of decisions to be made under uncertainty. Indeed, their evaluation generates optimal decisions
while maximizing the decision maker’s expected utilities. In the standard case, we distinguish direct evaluation methods
operating on the original structure (Shachter, 1986; Tatman and Shachter, 1990) and indirect ones (Cooper, 1988; Sanchez
and Druzdzel, 2004; Shachter and Poet, 1992; Zhang, 1998; Xiang and Ye, 2001) based on its transformation into a sec-
ondary one which will be used in different computations. Most of these latter are based on the transformation of influence
diagrams into Bayesian networks (Pearl, 1988; Jensen, 1996).

The quantification of influence diagrams can be done by experts, in such a case they express their uncertainty relative to
variables by probability distributions and their preferences through utilities. Nevertheless, in most real problems it is not
obvious to provide exact probability distributions and it is easier to express uncertainty qualitatively by ranking different
states of the world.
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Moreover, decision makers may encounter several difficulties when expressing their utilities and it may be more flexible
to allow them providing a preferential relation between different consequences rather than exact numerical values.

In such situations, standard influence diagrams cannot be applied, thus, our idea is to extend them using a non-classical
theory of uncertainty for specifying their numerical component. Namely, we have opted to use possibility theory, initially
proposed by Zadeh (1978) and developed by Dubois and Prade (1988) since it offers a natural and simple framework to
handle imperfect data.

Few works exist on possibilistic networks and existing ones concern reasoning under uncertainty without considering
the decision aspect (Borgelt, 1998; Ben Amor et al., 2001; Fonck, 1994).

Recently, Garcia and Sabbadin (2006) have proposed possibilistic influence diagrams using optimistic and pessimistic
utilities (Dubois et al., 1998) for the quantification of value nodes. Nevertheless, Giang and Shenoy (2005) noted that this
utility framework is based on axioms relative to uncertainty attitude contrary to the VNM axiomatic system (Neumann
and Morgenstern, 1948) based on risk attitude, which does not make a sense in the possibilistic framework since it repre-
sents uncertainty rather than risk. Moreover, to use pessimistic and optimistic utilities, the decision maker should classify
himself as either pessimistic or optimistic which is not always obvious. To overcome these limitations, Giang and Shenoy
(2005) propose a more generalized framework based on the axiomatic system of possibilistic binary utility which will be
used in this paper.

In addition, the evaluation of possibilistic influence diagrams, proposed in Garcia and Sabbadin (2006), is based on an
indirect evaluation method which transforms them into decision trees. Such evaluation method was not successful in the
probabilistic framework since, contrary to those based on Bayesian networks, it does not use independencies encoded by
influence diagrams to save some computations since decision trees are not able to represent independencies (Zhang et al.,
1994). This argument remains available in the possibilistic framework, as it only concerns the graphical component which is
the same in the two frameworks.

Possibility theory can be interpreted in two ways: qualitatively, if the handled values reflect only an ordering between the
different states of the world or quantitatively, if these values make a sense in the ranking scale. These two interpretations
lead to different ways to quantify chance and value nodes, this explains that there exists several possibilistic influence dia-
grams. In this paper, we will focus on qualitative ones, i.e. those where dependencies between chance nodes are expressed
via qualitative possibility distributions and value nodes are quantified using ordinal utility (Neumann and Morgenstern,
1948) or qualitative possibilistic utilities (Giang and Shenoy, 2005).

Our new approach, the so-called qualitative possibilistic influence diagrams, benefits from the simplicity and efficiency of
standard influence diagrams and from the suitability of possibility theory for modeling qualitative uncertainty.

The success of indirect methods in the standard framework, has motivated us to propose an indirect method to evaluate
these models. More precisely, the proposed evaluation method is based on the transformation of qualitative possibilistic
influence diagrams into qualitative possibilistic networks (Ben Amor et al., 2001) and on making inference in this second-
ary structure using the appropriate propagation algorithms.

This paper is organized as follows: Section 2 provides a brief description of the basics of influence diagrams. The nec-
essary background on possibility theory is recalled in Section 3. Section 4 presents possibilistic influence diagrams. Section
5 focuses on qualitative possibilistic influence diagrams. Section 6 proposes an indirect evaluation method relative to this
new decision model. Finally, Section 7 briefly presents the possibilistic influence diagram toolbox (PIDT).

2. Influence diagrams

Influence diagrams (IDs) (Howard and Matheson, 1984) are a popular framework representing a decision maker’s belief
and preferences about a sequence of decisions to be made under uncertainty (Howard and Matheson, 1984). After spec-
ifying the structure of an ID, we should define a priori and conditional probability distributions relative to chance nodes. In
addition, decision makers should quantify value nodes to express their utilities. Influence diagrams have two components:

1. Graphical component (or qualitative component) is a directed acyclic graph (DAG) denoted by G ¼ ðN ;AÞ, where A is
the set of arcs in the graph and N its node set. We can distinguish two kinds of DAGs:
(a) Singly connected DAGs: which contain no loops (i.e. undirected cycle).
(b) Multiply connected DAGs: which can contain loops.
The node set N is partitioned into subsets C;D and V such that:
� C ¼ fC1; . . . ;Cng is a set of chance nodes which represent relevant uncertain factors for decision problem. Chance

nodes are represented by circles.
� D ¼ fD1; . . . ;Dmg is a set of decision nodes which depict decision options, they have a temporal order. Decision nodes

are represented by rectangles.
� V ¼ fV 1; . . . ; V kg is a set of value nodes which represent utilities to be maximized, they are represented by lozenges. In

what follows, we will handle IDs with a unique value node, for the sake of simplicity we will denote this value node by V.
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In what follows cij (resp. dij; vij) denotes the jth instance of the variable Ci (resp. Di; V i), PaðN iÞ denotes the set of parents
of a node N i 2 N and paðN iÞ is an instance of PaðNiÞ and XNi denotes the set of possible values of the node N i. Arcs in A

have different meanings according to their targets. We can distinguish:

� Conditional arcs (into chance and value nodes), those that have as target chance nodes represent probabilistic
dependence.

� Informational arcs (into decision nodes) which imply time precedence.

Influence diagrams are required to satisfy some constraints (Shachter, 1986) to be regular, namely the directed graph
should not contain cycles, value nodes cannot have children and there exists a directed path that contains all decision
nodes. As a result of this property, influence diagrams satisfy the no-forgetting property, in the sense that any decision node
and its parents correspond to the parent set of all subsequent decision nodes (Zhang, 1998). In our work, we are interesting
in regular influence diagrams that satisfy the no-forgetting constraint.

2. Numerical component (or quantitative component) consists in evaluating different links in the graph. Namely, each con-
ditional arc which has as target a chance node Ci is quantified by a conditional probability distribution of Ci in the con-
text of its parents denoted by PaðCiÞ. Such conditional probabilities should respect the following normalization
constraints:
� If PaðCiÞ ¼ ; (Ci is a root) then the a priori probability relative to Ci should satisfy:X

cij2XCi

P ðcijÞ ¼ 1: ð1Þ

� If PaðCiÞ–;, then the relative conditional probability relative to Ci in the context of its parents PaðCiÞ should satisfy:X
cij2XCi

P ðcijjPaðCiÞÞ ¼ 1: ð2Þ

Each decision alternative may have several consequences according to uncertain variables. The set of consequences is
characterized by a utility function. In IDs, consequences are represented by different combinations of value node’s parents.
Hence, each value node is quantified by a utility function, denoted by U, in the context of its parents.

The quantification of value nodes, in standard IDs, have been made using two ways:

� Cardinal utility when decision makers are able to give cardinal numbers representing their satisfaction.
� Ordinal utility when decision makers can only define a total preference’s relation representing their satisfaction (Neu-

mann and Morgenstern, 1948). This preference’s relation must satisfy some axioms (Neumann and Morgenstern,
1948), the most important of them are completeness, reflexivity and transitivity axioms.

Example 1. Let us state a simple decision problem represented by an influence diagram as represented in Fig. 1. It contains
3 chance nodes (A;B;C), 1 decision node (D) and 1 value node (V).

Table 1 represents a priori and conditional probabilities for chance nodes A, B and C. Table 2 represents the utility func-
tion (ordinal utilities) for the value node V, in the context of its parents (A and D).

Table 1
A priori and conditional possibility distributions for chance nodes

A PðAÞ A B P ðBjAÞ B C P ðCjBÞ
T 0.4 T T 0.1 T T 0.5
F 0.6 F T 0.2 F T 0.25

T F 0.9 T F 0.5
F F 0.8 F F 0.75

ABC

D V

Fig. 1. An example of influence diagram.
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Decision nodes act differently from chance nodes, thus it is meaningless to specify prior probability distribution on
them. Moreover, it has no meaning to attach a probability distribution to children nodes of a decision node Di unless a
decision dij has been taken.

Jensen (2002) has shown that the chain rule relative to influence diagrams can be deduced from the one relative to Bayes-
ian network (Kim and Pearl, 1987) as follows:

PðCjDÞ ¼ PCi2CP ðCijPaðCiÞÞ ð3Þ

Evaluation of influence diagrams: Once the ID is constructed, it can be used to identify the optimal policy,
this can be ensured via evaluation algorithms which allow to generate the best strategy yielding to the highest expected
utility.

Within proposed evaluation algorithms, we can distinguish direct methods (Shachter, 1986; Tatman and Shachter, 1990)
which operate directly on influence diagrams or indirect methods (Cooper, 1988; Sanchez and Druzdzel, 2004; Shachter
and Poet, 1992; Zhang, 1998; Xiang and Ye, 2001) which transform them into a secondary structure and then evaluate
these structures.

Howard and Matheson (1984) have defined an indirect evaluation method, they used decision trees as a secondary struc-
ture to determine the optimal policy. Then, in 1986, Shachter proposed a direct evaluation method based on arc reversal
and node deletion. Since 1988, several indirect evaluation methods, which reduce the influence diagram evaluation problem
into a Bayesian network inference one, have been developed.

The use of decision trees for evaluation influence diagrams does not use conditional independencies and direct evalua-
tion requires a lot of probabilistic calculations which justify the great development of indirect methods initiated by Cooper
(1988) for the particular case of influence diagrams with a unique value node.

The key idea of indirect methods using Bayesian network as a secondary structure is to transform decision and value
nodes into chance nodes to obtain a Bayesian network. In this work, we will only focus on these indirect methods and
especially on the one proposed by Cooper (1988).

3. Background of possibility theory

Possibility theory was initially proposed by Zadeh (1978) and was developed by Dubois and Prade (1988). This section
briefly recalls basic elements of possibility theory, for more details see (Dubois and Prade, 1988).

3.1. Basic elements

The basic buildings block in the possibility theory is the notion of possibility distribution denoted by p, it is a mapping
from the universe of discourse denoted by X ¼ fx1; . . . ;xng to the unit interval [0,1].

This scale has two interpretations, a quantitative one when the handled values have a real sense and a qualitative one
when the handled values reflect only an ordering between the different states of the world (Dubois et al., 2001). In the first
case, the product operator can be applied while in the second one, the min operator is used.

A possibility degree is the value from the interval [0, 1] associated to each element x of X. The possibility measure of any
subset w # X is defined as follows:

PðwÞ ¼ max
x2w

pðxÞ: ð4Þ

A possibility distribution is said to be normalized, if maxx2wpðxÞ ¼ 1.
In the possibilistic framework, extreme forms of partial knowledge can be represented as follows:

� Complete knowledge: 9xi 2 X; s:tpðxiÞ ¼ 1 and xj–xi; pðxjÞ ¼ 0:
� Total ignorance: 8xi 2 X; pðxiÞ ¼ 1:

Table 2
Utility function

A D U(A,D)

F F 8
F T 2
T F 4
T T 10
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The two interpretations of the possibilistic scale induce two definitions of the conditioning:

� Min-based conditioning relative to the ordinal setting:

pðxjmwÞ ¼
1 if pðxÞ ¼ PðwÞ and x 2 w;

pðxÞ if pðxÞ < PðwÞ and x 2 w;

0 otherwise:

8><
>: ð5Þ

� Product-based conditioning relative to the numerical setting:

pðxjpwÞ ¼
pðxÞ
PðxÞ if x 2 w;

0 otherwise:

(
ð6Þ

3.2. Qualitative possibilistic utility

Classical approaches for decision making under uncertainty are based on maximal expected utility. However, the com-
putation of this measure is not always obvious especially in complex decision problems when probabilities and numerical
utilities are difficult to assess.

To overcome this limitation many researches aim to introduce non-probabilistic decision theory. Indeed, many efforts
have been made to create an axiomatic basis for possibility-based decision theory. We can distinguish those following Von
Neumann and Morgenstern axiomatic system (Neumann and Morgenstern, 1948) and those following Savage axiomatic
system (Savage, 1972). More precisely, Dubois et al. (1998) proposed pessimistic and optimistic qualitative utilities and
Giang and Shenoy (2005) introduced the concept of binary qualitative utility as a possibilistic counterpart to VNM’s axi-
omatic system. In our work, we are only interested in possibilistic qualitative utility following VNM’s axiomatic system.

Two qualitative criteria that evaluate the worth of decision have been defined in the literature. It concerns pessimistic
(Whalen, 1984) and optimistic (Yager, 1979) criteria based on possibility events. Decision makers are supposed supplying
an order between different consequences expressing their attitude in front of risk. A decision maker is said to be neutral if
he is neither pessimistic nor optimistic.

Dubois et al. (1998) defined qualitative possibilistic decision theory based on the uncertainty-aversion decision maker’s
behavior (a pessimistic and an optimistic view).

Giang and Shenoy (2005) criticized pessimistic and optimistic utilities presented by Dubois et al. (1998), their arguments
are based on the fact that proposed frameworks for possibilistic utilities are based on axioms relative to uncertainty atti-
tude contrary to the VNM axiomatic system based on risk attitude which does not make a sense in the possibilistic frame-
work since it represents uncertainty rather than risk. Moreover, to use pessimistic and optimistic utilities, the decision
maker should classify himself as either pessimistic or optimistic which is not always obvious.

Giang and Shenoy (2005) investigated a new axiomatic system for preference relation for the set of qualitative lotteries
which are the possibilistic counterpart of probabilistic lotteries (probability distribution over the set of consequences). This
axiomatic system is based on the fact that lotteries that realize in the best prize or in the worst prize (called canonical lot-
teries) play an important role in decision making.

To represent a canonical lottery in the probabilistic case, we only need a simple number which is the probability p of
getting the best prize. For the worst case, this probability is obviously equal to 1� p.

In possibility theory, we need two measures to represent a canonical lottery since the knowledge that the best prize is
fully possible could imply nothing about the possibility of getting the worst prize. The concept of binary utility was intro-
duced to represent canonical lotteries in the possibility theory (Giang and Shenoy, 2005). In what follows, we present basic
elements of this concept (for more details see (Giang and Shenoy, 2005)).

� Let X be a finite set of consequences (i.e. outcomes or prizes). In the set X, we can distinguish two particular elements
namely the best and the worst consequence.
� Let PX be a set of canonical lotteries.
� Let W be a linearly ordered scale and UW be a set of pairs of elements in W such that one of them is equal to 1. Indeed,

the set UW equipped with the order � is a binary utility scale.
� Let V be a finite ordered scale representing uncertainty, such that 8v 2 V ; 0 6 v 6 1.

Giang and Shenoy defined a basic utility assessment as a function BU : X ! U W that assigns an utility for each prize in
X, such that 8x 2 X ;BUðxÞ ¼ hBULðxÞ;BU RðxÞi, where BU RðxÞ and BU LðxÞ are respectively, the right and the left element of
the pair BUðxÞ.

W. Guezguez et al. / European Journal of Operational Research 195 (2009) 223–238 227



Author's personal copy

Note that BURðxÞ represents the utility affected to the worst prize and BU LðxÞ represents the one affected to the best
prize.

A possibilistic utility function PU relative to each lottery p is a mapping from PX to U W defined as follows:

PUðpÞ ¼ max
x2X

minðkðpðxÞÞ;BUðxÞÞ; ð7Þ

where k is a binary vector function defined as follows:

Definition 1. Let k ¼ hk1; k2i such that 8r ¼ 1; 2; kr is an order preserving mapping from V to W, such that krð1Þ ¼ 1 and
krð0Þ ¼ 0. The binary vector function k is relative to the type of the decision maker (i.e. optimistic, pessimistic, neutral).
More precisely:

� If the DM is pessimistic then k1ð0Þ ¼ 0; 8v 2 fV � 0gk1ðvÞ ¼ 1 and 8v 2 Vk2ðvÞ ¼ v.

� If the DM is optimistic then 8v 2 Vk1ðvÞ ¼ v; k2ð0Þ ¼ 0 and 8v 2 fV � 0gk2ðvÞ ¼ 1.

� If the DM is neutral then 8v 2 Vk1ðvÞ ¼ k2ðvÞ ¼ v.

Example 2. Let us consider the uncertainty scale V ¼ f1; 0:7; 0:5; 0g. Binary utilities for the three types of decision maker
are given by Table 3.

The possibilistic utility of the lottery p denoted by PUðpÞ is considered as the expected qualitative utility of p. This means
that the expected qualitative utility of the consequence x is PUðxÞ, since each consequence can be written in the form of a
lottery px.

4. Possibilistic influence diagrams

Possibilistic influence diagrams are a possibilistic adaptation of standard influence diagrams, as the latter they have two
components:

1. A graphical component defined by a directed acyclic graph (DAG), denoted by GðN ;AÞ, where N is the set of chance,
decision and value nodes and A is the set of arcs in the directed graph.

2. A numerical component evaluating different dependencies between chance nodes and utilities for value nodes.
� For each chance node Ci, we should provide conditional possibility degree PðcijjpaðCiÞÞ of each instance cij of Ci in

the context of each instance of its parents. In order to satisfy the normalization constraint, these conditional distri-
butions should satisfy:

max
cij

Pðcijj}paðCiÞÞ ¼ 1; 8paðCiÞ; ð8Þ

where } is the min-based or the product-based conditioning according to the interpretation of the possibilistic scale.
Note that for root chance nodes, i.e. (PaðCiÞ ¼ ;), (8) corresponds to maxcijPðcijÞ ¼ 1.

� For each value node V i, there are three ways to represent decision maker’s preferences on the set of consequences,
using cardinal, ordinal or qualitative binary utilities. Note that likewise standard influence diagrams, decision nodes
in possibilistic IDs are not quantified.

Table 4
Different variants of possibilistic influence diagrams

Value nodes chance nodes Cardinal utility Ordinal utility Qualitative possibilistic utility (PO)

Product-based conditioning (*) PIDC
� PIDO

� PIDPO
�

Min-based conditioning (min) PIDC
min PIDO

min PIDPO
min

Table 3
Binary utilities for the three types of DM

v Pessimistic DM, hk1ðvÞ; k2ðvÞi Optimistic DM, hk1ðvÞ; k2ðvÞi Neutral DM, hk1ðvÞ; k2ðvÞi
1 h1; 1i h1; 1i h1; 1i
0.7 h1; 0:7i h0:7; 1i h0:7; 0:7i
0.5 h1; 0:5i h0:5; 1i h0:5; 0:5i
0 h0; 0i h0; 0i h0; 0i
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Different combinations of the quantification of chance and utility nodes offer several kinds of possibilistic influence dia-
grams summarized in Table 4.

These different kinds of possibilistic IDs can be regrouped into three principal classes:

� Product-based possibilistic influence diagrams where both dependencies between chance nodes and value nodes are quan-
tified in a genuine numerical setting (i.e. PIDC

� ).
� Min-based possibilistic influence diagrams or qualitative possibilistic ID where both dependencies between chance nodes

and value nodes are quantified in a qualitative setting used for encoding an ordering between different states of the world
(i.e. PIDO

min and PIDPO
min).

� Mixed possibilistic influence diagrams where dependencies between chance nodes and value nodes are not quantified in
the same setting (i.e. PIDC

min;PIDO
� and PIDPO

� ).

In a previous study (Guezguez et al., 2006), we have shown that product-based possibilistic influence diagrams are very
close to standard ones since they share same operators (i.e. product operator) and same features. This is not the case for
min-based possibilistic influence diagrams since the minimum operator has different properties from the product one. This
explains our interest to this kind of influence diagrams in this paper.

5. Qualitative possibilistic influence diagrams

In these qualitative models, conditionals between chance nodes are defined using min-based conditioning expressed by
(5). This means that } in (8) corresponds to this type of conditioning.

There are two ways to quantify value nodes in min-based possibilistic influence diagrams:

1. Qualitative possibilistic IDs with ordinal utilities (denoted by PIDO
min): in this case, the decision maker should provide a

complete preferential relation, denoted by �, between different consequences.
2. Qualitative possibilistic IDs with binary utilities (denoted by PIDPO

min): in that case, the decision maker should provide a
complete preferential relation, denoted by �, between different consequences and a utility scale W. Obviously, he should
also precise his behavior (i.e. pessimistic, optimistic or neutral).

To define the chain rule for the two kinds of qualitative possibilistic influence diagrams (i.e. PIDO
min and PIDPO

min), our
idea is to proceed in the same way than the standard influence diagrams by ignoring utility nodes and links into decision
nodes.

Since decision nodes are not quantified, they act differently from chance nodes, thus for a given chance node Ci and a
decision node Di, it is meaningless to consider Pðcij; dijÞ. In fact, what is meaningful is PðcijjmdoðdijÞÞ, where doðdijÞ is the
particular operator defined by Pearl. When iterating this reasoning we can bunch the whole decision nodes together and
express the joint possibility distribution of different chance nodes conditioned by decision nodes. This means that if we fix a
particular configuration of decision nodes, say d, we get a qualitative possibilistic network (Ben Amor et al., 2001) repre-
senting PðCjmdoðdÞÞ, i.e. the joint possibility relative to C, in the context of d.

Using the chain rule relative to qualitative possibilistic networks (Ben Amor et al., 2001), the following chain rule for
qualitative possibilistic IDs can be inferred:

pmðCjmDÞ ¼ min
Ci2C

PðCijmPaðCiÞÞ: ð9Þ

In other words, possibilistic influence diagrams are a compact representation of the joint distribution relative to chance
nodes conditioned by a fixed configuration of decision nodes.

The following example illustrates the two kinds of qualitative possibilistic influence diagrams.

Example 3. Let us reconsider the possibilistic ID represented in Fig. 1. Possibility distributions for chance nodes A;B and C

are represented in Table 5. For the quantification of the node V, we can consider two decision makers who express their
utilities in an ordinal manner but in different ways:

Table 5
A priori and conditional possibility distributions for chance nodes

A PðAÞ A B PðBjAÞ B C PðCjBÞ
T 1 T T 0.9 T T 1
F 0.6 F T 0.2 F T 0.3

T F 1 T F 0.2
F F 1 F F 1
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� the first expresses his utility via a preferential relation � between different consequences, as follows:

ðD ¼ Act2 ^ A ¼ F Þ � ðD ¼ Act1 ^ A ¼ T Þ � ðD ¼ Act1 ^ A ¼ F Þ � ðD ¼ Act2 ^ A ¼ T Þ:
� the second, who is optimistic, uses binary utilities, by providing a preferential relation � and an utility scale W as

follows:

ðD ¼ Act1 ^ A ¼ T Þ � ðD ¼ Act2 ^ A ¼ F Þ � ðD ¼ Act2 ^ A ¼ T Þ � ðD ¼ Act1 ^ A ¼ F Þ
W ¼ f1; 0:7; 0:5; 0g:

Note that, the DM should precise his behavior towards the risk since, � and W are not sufficient to have this information.

It is clear that this induces two different possibilistic influence diagrams, the first one will be referred to by PID1 and the
second by PID2.

6. Evaluation of qualitative possibilistic influence diagrams

Given a possibilistic ID, we should evaluate it in order to generate optimal decisions. As we have seen in Section 2, there
are two approaches to evaluate standard influence diagrams, namely, direct and indirect ones.

Direct evaluation methods (Shachter, 1986; Tatman and Shachter, 1990) require heavy computations since they are
based on arc reversal and node deletion, contrary to indirect ones which are based on the transformation of influence
diagrams into Bayesian networks. This explains the great development of indirect methods in the probabilistic case
(Cooper, 1988; Sanchez and Druzdzel, 2004; Shachter and Poet, 1992; Zhang, 1998; Xiang and Ye, 2001).

The success of indirect evaluation methods for standard IDS, motivates us to develop an indirect evaluation method for
qualitative possibilistic influence diagrams. Our choice is reinforced by the fact that a possibilistic counterpart of Bayesian
networks has been recently developed as well as their propagation algorithms (Ben Amor et al., 2001).

More precisely, we will develop a possibilistic counterpart of Cooper’s method (1988) for the particular case of influence
diagram with a unique value node, since it represents the basis of existing indirect methods.

Thus, the principle of our evaluation algorithm is to transform decision and value nodes into chance nodes in order to
obtain a qualitative possibilistic network, and then to use this secondary structure to compute maximal expected utilities
via a propagation process. These two major phases are detailed in what follows:

6.1. Transformation phase

This phase consists in transforming decision and value nodes into chance nodes.

6.1.1. Decision nodes transformation

Each decision node Di in the possibilistic influence diagram is transformed into a chance node which should be quan-
tified. In the probabilistic case, this quantification is ensured by an equi-probable distribution. Nevertheless, this is not
really appropriate, since equi-probability represents randomness rather than total ignorance. This problem can be over-
come in the possibilistic framework where our ignorance about the new chance node can be suitably represented via a uni-
form possibility distribution. More formally:

PðdijjmpaðDiÞÞ ¼ 1; 8dij; paðDiÞ: ð10Þ

6.1.2. Value node transformation

The value node V will be converted into a new binary chance node having two values, i.e. False (F) and True (T). To quan-
tify this node, we should compute its possibility distribution PðV jmPaðV ÞÞ. This quantification depends on the kind of utility
used in specifying decision maker’s preferences. In what follows, we distinguish the case of ordinal and binary utilities.

� Case of ordinal utilities: in this case, the value node is transformed into a new chance node V characterized by a possi-
bility distribution derived from the original preferential relation � between different consequences. The principle of this
transformation, is to first convert � into numerical utilities as shown by Proposition 1, then to use these utilities to
derive the new possibility distribution.

Proposition 1. Let � be a preferential relation between different consequences. Then, the order induced by � can be rescaled
into a numerical scale as follows:

UðpaðV ÞÞ ¼ cardðPaðV ÞÞ � rankðpaðV ÞÞ þ 1: ð11Þ
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where cardðPaðV ÞÞ is a function that determines the number of combinations of paðV Þ 2 PaðV Þ and the function rankðpaðV ÞÞ is

the rank of paðV Þ in the preference relation �. More precisely, it is a mapping from the � to N such that the most preferred

consequence in � has as rank 1 and 8Ci; rankðCiþ1Þ ¼ rankðCiÞ þ 1.

Proof 1. We will prove that the proposed transformation method verifies the fundamental theorem of VNM (Neumann
and Morgenstern, 1948). This theorem denotes that for each preference relation that satisfies the three axioms of
orderability, reflexivity and transitivity, there exists a utility function such that for any two consequences A and B, we
have:

A � B iff UðAÞP UðBÞ;
A � B iff UðAÞ ¼ UðBÞ:

�

For our case, let pa1ðV Þ and pa2ðV Þ be two consequences such that pa1ðV Þ � pa2ðV Þ, we have:

rankðpa1ðV ÞÞ 6 rankðpa2ðV ÞÞ
) �rankðpa1ðV ÞÞ þ 1 P �rankðpa2ðV ÞÞ þ 1

) cardðPaðV ÞÞ � rankðpa1ðV ÞÞ þ 1 P cardðPaðV ÞÞ � rankðpa2ðV ÞÞ þ 1:

Thus, Uðpa1ðV ÞÞP Uðpa2ðV ÞÞ. h

Once the set of utilities assigned to different consequences is computed, the possibility distribution attached to the new
chance node can be computed as follows:

Pðv ¼ T jmpaðV ÞÞ ¼ UðpaðV ÞÞ � Umin

Umax � U min

; ð12Þ

Pðv ¼ F jmpaðV ÞÞ ¼ UðpaðV ÞÞ � U max

U min � Umax

; ð13Þ

where U max (resp. Umin) is the maximal utility level (resp. minimal utility level).
The obtained qualitative possibility distribution PðV jPaðV ÞÞ may be sub-normalized. Thus, we should normalize it in

order to satisfy Eq. (8). For the sake of clarity, we will denote the normalized distribution by PN . The normalization
can be insured as follows: 8paðV Þ 2 PaðV Þ; 8v 2 fT ; F g,

PN ðvjmpaðV ÞÞ ¼
1 if maxðPðvjmpaðV ÞÞ;Pð:vjmpaðV ÞÞÞ ¼ PðvjmpaðV ÞÞ;

PðvjmpaðV ÞÞ otherwise;

�
ð14Þ

� Case of binary utilities: in this case, the decision maker provides his utility scale and the preferential relation on the set of
consequences and defines his behavior. These values will be used to quantify the new chance node V by computing
PðV jPaðV ÞÞ as follows:
1. The binary utility scale U W is derived from the utility scale W provided by the decision maker.
2. According to the decision maker behavior and his preference relation, the binary utilities are assigned to each

consequence.
3. In order to transform binary utilities into PðV jPaðV ÞÞ, we propose to define the reciprocal function of the binary vec-

tor function k (e.g. Section 3.2), denoted by k�1 as follows:

Proposition 2. Let k�1 be the reciprocal function of the binary vector function k. k�1 is a mapping from UW to W, and it is
defined independently of the decision maker behavior. More formally, 8w 2 W :

k�1ðBUðwÞÞ ¼ minðBURðwÞ;BULðwÞÞ; ð15Þ
where BU RðwÞ and BU LðwÞ are respectively, the right and the left element of the binary utility.

Proof 2. We will prove that whatever the behavior of the decision maker is, we have 8w 2 W ; k�1ðkðwÞÞ ¼ w.
–if the DM is pessimistic then k�1ðkð0ÞÞ ¼ k�1ðh0; 0iÞ ¼ 0, and k�1ðkðwÞÞ ¼ k�1ðh1;wiÞ ¼ w,
–if the DM is optimistic then k�1ðkð0ÞÞ ¼ k�1ðh0; 0iÞ ¼ 0, and k�1ðkðwÞÞ ¼ k�1ðhw; 1iÞ ¼ w,
–if the DM is neutral then k�1ðkðwÞÞ ¼ k�1ðhw;wiÞ ¼ w. h

The possibility distribution Pðv ¼ T jPaðV ÞÞ resulted from Eq. (15) may be sub-normalized. Thus, we should normalize it
in order to satisfy Eq. (8). To satisfy this constraint, we should first compute Pðv ¼ F jPaðV ÞÞ. However, the computation
of the exact value of this degree is not possible from available data since we are in an ordinal setting. Thus, our idea is to
compute it using (13), then to normalize the distribution issued from (15) using (14).
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6.2. Propagation phase

The possibilistic network issued from the transformation phase can be used to generate optimal decisions by computing
the maximal expected utility (MEU) relative to each decision node. This computation is ensured by applying a propagation
process.

Since we are in a qualitative setting, we should select a min-based propagation algorithms for qualitative possibilistic
networks (Fonck, 1994; Borgelt, 1998; Ben Amor et al., 2001) according to the DAG structure (singly or multiply con-
nected) and to its size. Note that the propagation process is an NP-complete problem.

We can distinguish two exact min-based propagation algorithms defined according to the nature of the DAG. Namely,
the qualitative possibilistic adaptation of the centralized version of Pearl’s algorithm Pearl (1986) is used when the DAG is
singly connected and the qualitative possibilistic adaptation of junction trees propagation algorithm (Ben Amor, 2002) is
appropriate for multiply connected DAGs. If these two algorithms are blocked, an approximate approach, such as the any-
time algorithm (Ben Amor et al., 2001), can be applied.

To illustrate the propagation phase, we briefly recall the min-based propagation algorithm in junction trees.

6.2.1. Propagation in junction trees

The propagation algorithm in junction trees is similar to the one proposed by Jensen for multiply connected Bayesian
networks (Jensen, 1996). This algorithm is based on four steps (S1� S4):

6.2.2. Step S1: Building junction tree

The first step consists in transforming the initial network into a secondary structure corresponding to a junction tree, in
order to eliminate existing loops. This step is identical to the one proposed for Bayesian networks since it is independent
from numerical values. The principle steps to build a junction tree from a DAG can be summarized as follows (Huangn
and Darwiche, 1994):

� Moralization of the initial graph: This step allows to create an undirected graph from the initial one by connecting the
parent set of each node.
� Triangulation of the moral graph: The goal of this step is to identify sets of variables which can be regrouped in clusters,

denoted by Cli. It is possible to have different triangulation of a moral graph. However, it is important to find the opti-
mal triangulation assuring the minimization of cluster sizes to allow local computations. The task of finding an optimal
triangulation is stated as an NP-complete problem (Cooper, 1988) and several heuristics have been proposed (Kjaerulff,
1990).
� Building a junction tree JT: To build an optimal junction tree, clusters identified in the previous step should be con-

nected such that all cluster pertaining to the path between any two clusters Cli and Clj should contain Cli \ Clj. Once
adjacent clusters are identified, we should insert between each pair of clusters Cli and Clj a separator denoted by Sij and
containing common variables.

6.2.3. Step S2: Initialization

This step allows the quantification of the JT, built in the previous step, by transforming initial conditional possibility
distributions into local joint distributions attached to clusters and separators. More specifically, a potential pt

Cli
(resp. pt

Sij
),

where t is relative to the propagation step, is affected to each cluster Cli (resp. separator Sij) of JT. In particular, t ¼ I
corresponds to the initialization step. The main steps of the initialization procedure are as follows:

� Affect a uniform possibility distribution 1 (i.e. a uniform possibility distribution) where all the elements are equal to 1 for
all clusters and separators.
� For each variable Nk, choose a cluster Cli containing fN kg [ PaðNkÞ and modify its local possibility distribution such

that pI
Cli
 minðpI

Cli
Þ;PðN kjPaðNkÞÞ.

6.2.4. Step S3: Global propagation

Once the junction tree JT is initialized, the global propagation is performed in order to make it globally consistent, i.e.
the link existing between any two adjacent clusters Cli and Clj in JT is coherent. More formally:

max
ClinSij

pt
Cli
¼ pt

Sij
¼ max

CljnSij

pt
Clj
; ð16Þ

where maxClinSijp
t
Cli

is the marginal distribution of Sij defined from pt
Cli

.
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The global propagation is ensured via a message passing mechanism between clusters which starts by choosing an arbi-
trary cluster to be a pivot node, then follows two main phases:

� A collect-evidence phase in which each cluster passes a message to its adjacent cluster in the pivot direction (in this direc-
tion each cluster has a unique adjacent cluster).
� A distribute-evidence phase in which each cluster passes a message to its adjacent clusters away from the pivot direction

beginning by the pivot itself until reaching the leaves of the graph.

If a cluster Cli sends a message to its adjacent cluster Clj then the potentials of Cli;Clj and their separator Sij are updated
as follows:

1. Save the same potential for Cli : ptþ1
Cli
 pt

Cli
.

2. Update the potential of Sij : ptþ1
Sij
 maxClinSijp

t
Cli

.
3. Update the potential of Clj : ptþ1

Clj
 minðpt

Clj
; ptþ1

Sij
Þ.

6.2.5. Step S4: Marginalization

Let pCl
Cli

be the potential of Cli after the global propagation step, then it can be proved that this potential encodes the
local joint distribution of Cli induced from the initial graph, i.e. pCl

Cli
. Thus, the computation of the marginals relative to

each variable N k can be ensured by the marginalization of the potential of any cluster Cli containing it, i.e.
PðNkÞ ¼ maxClinNk p

Cl
Cli

.

6.2.6. Handling the evidence

The manipulation of an evidence e, corresponding to the set of instantiated variables, allows the computation for any
variable N k of PðNk ^ eÞ instead of PðNkÞ.

This can be ensured by integrating this evidence in the junction tree by first encoding the local evidence related to each
variable N k as follows:

KNk ðnkÞ ¼
1 if N k is not instantiated;

1 if N k is instantiated as nk;

0 if N k is instantiated by a different value of nk:

8><
>: ð17Þ

Then this local evidence is integrated by choosing a cluster Cli containing Nk and updating its potential as follows:
pI

Cli
 minðpI

Cli
;KNk Þ.

According to the global propagation step and the hypothesis that we have a certain evidence e, the potential of each
cluster Cli encodes PðCli ^ eÞ. Thus, if we marginalize the potential pCl

Cli
of a cluster Cli with respect to a variable N K per-

taining to it, we obtain the possibility degree of NK and the evidence e, i.e. PðN k ^ eÞ ¼ maxClinNk p
Cl
Cli

.
However, our goal is to compute PðNkjeÞ, this value can be easily obtained by applying the min-based conditioning (see

Eq. (5)) as follows:

PðNkjeÞ ¼
PðNk ^ eÞ if PðN k ^ eÞ < PðeÞ ¼ max

Nk

PðNk ^ eÞ;

1 otherwise:

(
ð18Þ

6.2.7. Computation of the maximal expected utility

In order to generate the optimal decision strategy, we should compute the maximal expected utility (MEU) relative to
each decision node starting by the last one Dm to the first one D1. For the node Di, we should integrate already computed
optimal decisions, i.e. those relative to D1; . . . ;Di�1.

This computation depends on the used utility for the quantification of the value node:

� In the case of ordinal utilities, the maximal expected utility relative to a decision node Di is defined as follows:

MEUðDi;EÞ ¼ max
dij

½maxPa0ðV ÞminðPðv ¼ T jPaðV ÞÞ;PðPa0ðV Þjdij;EÞÞ�; ð19Þ

where Pa0ðV Þ denotes the set of chance nodes in PaðV Þ.Note that Pðv ¼ T jPaðV ÞÞ is a transformation of UðPaðV ÞÞ into the
unit interval [0,1] using 12 in order to let UðPaðV ÞÞ and PðPa0ðV Þjdij;EÞ commensurable since, the min operator is used. To
compute PðPa0ðV Þjdij;EÞ and Pðv ¼ T jPaðV ÞÞ, we should use the appropriate possibilistic propagation algorithm as
explained in the introduction of Section 6.2.
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� In the case of binary utilities, we will use the fact that the expected qualitative utility of a lottery p corresponds to PUðpÞ
(see Section 3.2). Since each consequence x can be written in the form of a lottery, then we can conclude that the
expected utility of each consequence x 2 X can be computed as follows:

EUðxÞ ¼ PUðxÞ ¼ UðxÞ; ð20Þ
Hence, the maximal expected utility relative to a decision node Di can be computed as follows:

MEUðDi;EÞ ¼ max
dij

UðPaðV ÞÞ ¼ maxdijPðv ¼ T jPaðV Þ; dij;EÞ: ð21Þ

As it is done in the case of ordinal utilities, Pðv ¼ T jPaðV Þ; dij;EÞ is computed via the appropriate propagation algorithm
(see Section 6.2).

Example 4. Let us consider the qualitative possibilistic influence diagrams PID1 and PID1 given in Example 1. The
transformation phase generates the qualitative possibilistic network represented in Fig. 2. Note that the graphical
component of this network is the same for the two influence diagrams since they shame the same initial structure (see
Fig. 1).

In the same way, the conditional possibility distribution relative to the D (presented in Table 6) is identical for PID1 and
PID1 since it represents our ignorance about this node (see Eq. (10)).

Obviously, the quantification of the node V, in context of its parents D and A depends on the initial quantification of the
value node. More precisely:

� For PID1, the preferential relation ðD ¼ Act2 ^ A ¼ F Þ � ðD ¼ Act1 ^ A ¼ T Þ � ðD ¼ Act1 ^ A ¼ F Þ � ðD ¼ Act2^
A ¼ T Þ is transformed into numerical utilities using (11) as presented in Table 7. Then, these values are used to compute
the conditional possibility distribution of V using ()()()(12)–(14) as presented in Table 8.
� For PID2, the binary utility scale derived from the utility scale W ¼ f1; 0:7; 0:5; 0g is defined by:

UW ¼ fh0; 1i; h0:5; 1i; h0:7; 1i; h1; 1i; h1; 0:7i; h1; 0:5i; h1; 0ig. Table 9 for different kinds of decision makers and their
transformation using 15. Table 10 presents the new normalized possibility distribution attached to V.

Suppose that we receive a certain information saying that the variable C takes the value T, then the computation of the
impact of such information differs from PID1 and PID2. More precisely:

ABC

D V

Fig. 2. Resulted possibilistic network.

Table 6
The possibility distribution relative to the decision node D

C D PðDjCÞ
T Act1 1
F Act2 1
T Act2 1
F Act1 1

Table 7
Numerical utilities

A D U(A,D)

T Act1 2
F Act2 1
T Act2 4
F Act1 3
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� For PID1, we should first compute PðPa0ðV Þjdij;EÞ, i.e. Pðajd;C ¼ T Þ using the qualitative possibilistic adaptation of
junction tree propagation algorithm (presented in Section 6.2.1) since the resulted possibilistic network is multiply con-
nected (see Fig. 2). The first step of this phase is to build the junction tree JT as presented in Fig. 3 (JT contains 5
clusters ðAVD;BAV ;ABC;BCD;CDV Þ and 4 separators ðAV ;AB;BC;CDÞ). Then, the global propagation step provides
the following values:

PðA ¼ T jD ¼ Act1;C ¼ T Þ ¼ 1;

PðA ¼ F jD ¼ Act1;C ¼ T Þ ¼ 0:3 ¼ 0:3;

PðA ¼ T jD ¼ Act2;C ¼ T Þ ¼ 0:9 ¼ 0:9;

PðA ¼ F jD ¼ Act2;C ¼ T Þ ¼ 0:3 ¼ 0:

Finally, these values are used to apply Eq. (19) as follows:

minðPN ðv ¼ T jA ¼ T ;D ¼ Act1Þ;PðA ¼ T jD ¼ Act1;C ¼ T ÞÞ ¼ minð1=3; 1Þ ¼ 1=3;

minðPN ðv ¼ T jA ¼ F ;D ¼ Act1Þ;PðA ¼ F jD ¼ Act1;C ¼ T ÞÞ ¼ minð1; 0:3Þ ¼ 0:3;

minðPN ðv ¼ T jA ¼ T ;D ¼ Act2Þ;PðA ¼ T jD ¼ Act2;C ¼ T ÞÞ ¼ minð1; 0:9Þ ¼ 0:9;

minðPN ðv ¼ T jA ¼ F ;D ¼ Act2Þ;PðA ¼ F jD ¼ Act2;C ¼ T ÞÞ ¼ minð0; 0:3Þ ¼ 0:

Thus, we can conclude that the optimal decision D� ¼ Act2 with a maximal expected utility equal to 0.9.

Table 9
Binary utilities and their transformation using k�1

A D Pessimistic DM Optimistic DM Neutral DM

U(A,D) k�1ðUðA; DÞÞ U(A,D) k�1ðUðA; DÞÞ U(A,D) k�1ðUðA; DÞÞ
T Act1 h0; 0i 0 h1; 1i 1 h1; 0i 0
F Act2 h1; 0:5i 0.5 h0:7; 1i 0.7 h1; 0:5i 0.5
T Act2 h1; 0:7i 0.7 h0:5; 1i 0.5 h0:7; 1i 0.7
F Act1 h1; 1i 1 h0; 1i 0 h0; 1i 0

Table 10
New possibility distribution PðV jA;DÞ (values of PN ðV jA;DÞ are under brackets)

V A D Pessimistic DM Optimistic DM Neutral DM

T T Act1 0 (0) 1 (1) 0 (0)
T F Act2 0.5 (1) 0.7 (1) 0.5 (1)
T T Act2 0.7 (1) 0.5 (1) 0.7 (1)
T F Act1 1 (1) 0 (0) 0 (0)
F T Act1 1 (1) 0 (0) 1 (1)
F F Act2 0.5 (0.5) 0.3 (0.3) 0.5 (0.5)
F T Act2 0.3 (0.3) 0.5 (0.5) 0.3 (0.3)
F F Act1 0 (0) 1 (0) 1

Table 8
The possibility distribution of the value node V

V A D PðV jA;DÞ PN ðV jA;DÞ
T T Act1 1/3 1/3
T F Act2 0 0
T T Act2 1 1
T F Act1 2/3 1
F T Act1 2/3 1
F F Act2 1 1
F T Act2 0 0
F F Act1 1/3 1/3

AVD AV BAV AB ABC BC BCD CDVCD

Fig. 3. The junction tree relative to the DAG of Fig. 2.
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� For PID2, we should first compute PðV ¼ T jPaðV Þ; dij;EÞ, i.e. PðV ¼ T ja;C ¼ T Þ using the qualitative possibilistic
adaptation of junction tree propagation algorithm (see Section 6.2.1). The junction tree JT is similar to the one
obtained in the case of ordinal utilities (see Fig. 3) Different values of MEU according to the type of DM are presented
in Table 11. From Table 11 it is clear that if the decision maker is pessimistic (resp. optimistic, neutral) then, the optimal
action D� is Act2 (resp. Act1;Act2) with a maximal expected utility equal to 0.9.

7. Possibilistic influence diagram toolbox (PIDT)

To illustrate our work, we have implemented a ‘‘possibilistic influence diagrams toolbox” (PIDT) with Matlab 6.5.
Fig. 4 represents the architecture of PIDT. First, we should provide a file describing the PID, i.e.:

� parameters relative to the DAG structure, i.e. for each node, its name, its type (chance, decision or value node), its car-
dinality and its parent set;
� parameters relative to the quantification of the network, i.e. initial conditional possibility distributions of chance nodes

in the context of their parents and utility functions for value nodes;

Table 11
Computation of the MEU according to the type of the DM

A D Pessimistic DM Optimistic DM Neutral DM

F Act2 0.3 0 0
T Act2 0.9 0.5 0.9
F Act1 0.3 0.3 0.3
T Act1 0 0.9 0

Fig. 4. PIDT architecture.
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� if we use binary utilities, we should specify the decision maker behavior (optimistic, pessimistic or neutral) and his utility
scale;
� the eventual evidence on chance nodes.

Given these parameters, the PIDT will proceed to the transformation of the possibilistic influence diagram into a pos-
sibilistic network and the application of the appropriate propagation algorithm using Possibilistic Networks Toolbox (PNT)
which is a possibilistic toolbox implementing different propagation algorithms for min-based and product-based possibi-
listic networks (Ben Amor et al., 2001).

Since we treat qualitative possibilistic influence diagrams, their transformation leads to qualitative possibilistic net-
works. Then, if we are in the presence of a singly connected DAG, then the qualitative possibilistic adaptation of the cen-
tralized version of Pearl’s algorithm is used. Otherwise, i.e. if the DAG is multiply connected, then the qualitative
possibilistic adaptation of junction trees algorithm is used. In the case that this algorithm fails (i.e. time execution
>10,000 s), then the anytime algorithm is used. This algorithm has the advantage to avoid eventual blocking especially with
networks having complex structure with a great number of nodes. Finally, the PIDT generates the optimal strategy max-
imizing the expected utility.

8. Conclusion

This paper proposes a new approach for decision making under uncertainty using influence diagrams in the possibilistic
framework.

The possibility theory encodes uncertainty in two ways, quantitatively using numerical values in the unit interval or
qualitatively using a total preferential relation between different states of the world. These two interpretations lead to sev-
eral possibilistic influence diagrams organized in three principal classes. Namely, product-based (quantitative possibilistic
influence diagrams), min-based (qualitative possibilistic influence diagrams) and mixed possibilistic influence diagrams.

In this paper, we have studied qualitative ones, i.e. where the quantification of chance nodes is done via qualitative pos-
sibilistic distributions. For value nodes, we have proposed two ways for its quantification: in the first one we used ordinal
utilities (Neumann and Morgenstern, 1948) and in the second qualitative binary utilities (Giang and Shenoy, 2005) are
used.

To evaluate qualitative possibilistic influence diagrams, we have proposed an indirect method based on two phases: first
we will transform the initial network into a possibilistic network (Ben Amor et al., 2001), then, we will apply propagation
mechanism on this secondary structure.

The principle of the transformation phase is to transform decision and value nodes into chance nodes which will be
quantified by conditional possibility distributions. Indeed, utility function is converted into a possibility distribution. This
conversion depends on the type of utility used to quantify the value node in the possibilistic influence diagram.

Our developments show that quantitative possibilistic influence diagrams are very close to standard ones, in fact they
share same operators (i.e. product operator). This is not the case for qualitative possibilistic influence diagrams, since
the min operator has different properties than the product one which leads to a deep study of normalization constraints.
In addition, value node transformation procedure in quantitative possibilistic influence diagrams is quiet similar to the
probabilistic one used for standard influence diagrams, whereas it is different in qualitative influence diagrams.

The evaluation of standard influence diagrams is known to be an NP-hard problem (Cooper, 1988). This complexity
remains the same in the possibilistic framework since the transformation phase is linear while the propagation phase is
NP-hard (Ben Amor et al., 2001).

Nevertheless, our evaluation method has the advantage to avoid eventual blocking especially with networks having com-
plex structure with a great number of nodes. In fact, once the transformation done, we try to apply an exact propagation
algorithm, if it fails (i.e. time execution >10,000 s) we switch to the anytime algorithm (Ben Amor et al., 2001) which pro-
gressively converges to exact marginals. This algorithm is polynomial and it provides a high number of exact marginals (i.e.
96.42%).

The proposed approach, has been implemented in a possibilistic influence diagram toolbox (PIDT) which can be seen as
a decision support system.

A direct improvement of our approach will be to extend the proposed evaluation methods to deal with more than one
value node in order to treat multi-objective decision problems. Our idea is to consider decision nodes sequentially as pro-
posed by Zhang’s method (Zhang et al., 1994; Zhang, 1998) in the standard case. This method is based on previous
advances made by Zhang et al. (1994) regarding the notion of stepwise decomposable influence diagrams and Bayesian
inference techniques. The principle is to decompose the influence diagram into two components called tail and body with
respect to the tail decision node, i.e. the last one in the ordered list of the whole decision nodes. Then the tail is evaluated
separately as a possibilistic influence diagram with a unique value node and its optimal decision rule is merged with the
body which will be considered as the new influence diagram to evaluate. This process is repeated iteratively until the body
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contains one value node. The decomposition theorem used in this method is based on Baye’s theorem, the main challenge
in the possibilistic framework will be to define the suitable decomposition theorem regarding the interpretation of the pos-
sibilistic scale.

Another interesting line of research will be to extend our work to mixed influence diagrams in order to treat the case
where experts and decision makers are heterogeneous, i.e. they express their uncertainty in both qualitative and quantita-
tive setting.
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